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A B S T R A C T   

New developments in vision algorithms prioritise identification and perception over accurate coordinate mea-
surement due to the complex problem of resolving object form and pose from images. Consequently, many vision 
algorithms for coordinate measurements rely on known targets of primitive forms that are typically planar 
targets with coded patterns placed in the field of view of vision systems. Although planar targets are commonly 
used, they have some drawbacks, including calibration difficulties, limited viewing angles, and increased 
localisation uncertainties. While traditional tactile coordinate measurement systems (CMSs) adopt spherical 
targets as the de facto artefacts for calibration and 3D registration, the use of spheres in vision systems is limited 
to occasional performance verification tasks. Despite being simple to calibrate and not having orientation- 
dependant limitations, sphere targets are infrequently used for vision-based in-situ coordinate metrology due 
to the lack of efficient multi-view vision algorithms for accurate sphere measurements. Here, we propose an 
edge-based vision measurement system that uses a multi-sphere artefact and new measurement models to extract 
sphere information and derive 3D coordinate measurements. Using a spatially encoded sphere identities 
embedded in the artefact, a sphere matching algorithm is developed to support pose determination and tracking. 
The proposed algorithms are evaluated for robustness, measurement quality and computational speed to assess 
their performance. At the range of 500 mm to 750 mm, sphere size errors of less than 25 μm and sphere-to-sphere 
length errors of less than 100 μm are achievable. In addition, the proposed algorithms are shown to improve 
robustness by up to a factor of four and boost computational speed.   

1. Introduction 

Advances in optical sensing and computing technologies have 
improved the resolution and speed of machine vision (MV) technologies 
[1]. The quality of information conveyed by vision systems has also 
improved, paving the way for the adoption of MV as a fundamental 
technology in the advanced manufacturing paradigm of industry 4.0 
[2–4]. Previously time-consuming and complex measurement verifica-
tion processes can now be automated and integrated into industry 4.0 
information architectures [5,6]. However, it is necessary to ensure that 
new strategies in the automated measurement and data management 
processes remain compliant with existing measurement verification 
standards. Carrying out detailed in-process measurements using MV that 
is industrially reliable and supports measurement quality verification 
remains a major challenge [7]. Commonly, industrial in-process appli-
cations limit the functionalities of MV to visual feedback to human 

operators, identification of tags, monitoring of faults in production lines 
and so forth [3,8]. The outputs of these applications are typically 
data-driven simplified logical or numerical values, which inform process 
control and monitoring [9,10]. The problem with these simplified out-
puts is that without rigorous metrological assessment, it becomes diffi-
cult to determine the reliability of the conveyed information. If the 
outputs of MV systems can be related to physical coordinates of known 
calibrated targets, it is possible to assess known dimensions and estab-
lish metrological traceability through the calibrated reference mea-
surements of the targets [11,12]. Therefore, through the coordinate 
measurements of integrated dimensional artefacts, the associated un-
certainties of MV measurements can be evaluated in-line. 

MV technologies and algorithms enable the use of cameras for car-
rying out vision-based measurements in industrial environments. Driven 
by the desire to automate inspection, improve quality and reduce cost 
[13], vision-based measurement has progressed to become a core 
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technology in intelligent manufacturing industries [2,6]. At the centre of 
vision-based measurement systems is the projective mapping of 3D 
geometric shapes to 2D images where depth information is lost. 
Resolving shapes from image projections is a challenging problem; 
therefore, common MV strategies rely on either the use of primitive 
targets or the integration of additional active or passive visual cues [14]. 
The use of supplementary visual cues, such as speckles [15], fringes 
[16], silhouettes [17] and structured lights [18], is common for 
post-process measurements of objects. However, for in-situ determina-
tion of the coordinate positions of machine tools and objects, targets of 
basic geometries are usually placed in the measured area [19–21]. The 
types of geometric features used as targets are usually limited to point 
and planar features with limited visibility and difficult-to-calibrate 
features [22,23]. To estimate measurement quality using targets, we 
suggest adoption of some processes outlined in standard performance 
verification documents (ISO 10,360 and VDI/VDE 2634 [24,25]) in 
real-time vision-based measurements. The use of artefacts made up of 
spheres, as suggested by these standard documents, can enable 
maximum visibility, simple target calibration and adoption of quality 
verification procedures [26,27]. 

Measurements from vision systems rely on algorithms for detection 
and extraction of relevant features from images. The general paradigm 
of feature extraction is aimed at target description and classification for 
the purpose of recognition, rather than 3D coordinate measurement 
[28]. Therefore, fast sphere detection algorithms, such as the Hough 
transformation, centroid operator and blob detection are not accurate 
and robust enough for coordinate metrology [29,30]. Negative effects of 
noise, environmental disturbances and eccentricity errors in sphere 
images must be ameliorated by detection algorithms to maintain 
consistently high-quality measurements. The majority of vision algo-
rithms depend on low-level features, such as edges, to detect and localise 
desired features [28], where the statistical dispersion of spread functions 
in fitting methods assume uniform variance (homoscedasticity) for the 
features. Due to varying lighting, shadowing and other environmental 
conditions, image contrast is not uniform and the spread functions of 
features can be heteroscedastic. Therefore, feature models should take 
into account the heteroscedasticity of the underlying edge data for 
improved localisation and specificity [16]. Ellipse-based contour 
methods using a direct algebraic ellipse model is suggested in reference 
[31] and ellipse eccentricity errors are simulated in reference [29]. The 
geometric ellipse models in reference [32] are shown to be more robust 
than the direct algebraic ellipse model and sigmoidal edge spread 
functions are used to improve localisation of image edges [33–35]. 
Essentially, accurate vision-based measurement of spherical feature 
positions and sizes from images requires solving complex equations and 
measurement uncertainty is not readily evaluated [36,37]. Research 
work on vision-based strategies combining accurate feature detection, 
identification and verification methods for coordinate measurements of 

sphere-based artefacts is lacking. 
Beyond position measurement, orientated coded targets are used to 

measure the pose of objects and machine tools [38]. In various appli-
cations that require digital replication or monitoring of the physical 
environment, it is necessary to not only measure target positions but also 
identify the targets along with their orientations [39]. Whenever mul-
tiple targets are involved, reliably distinguishing unmarked targets can 
be a challenging problem. A method of encoding geometric distances 
between targets to aid target identification was suggested for hand-held 
collaborative virtual reality applications [40]. Identification tests of the 
distance-encoded targets indicated that the approach mislabels targets 
and requires more stability against occlusion. Multi-target artefacts, 
consisting of a five-sphere frame [41] and light pipes [42], have been 
suggested to aid measurement of robotic poses where improved coor-
dinate measurement accuracy remains a challenge. For multi-sphere 
artefacts, we suggest encoding both sphere size and adjacent distances 
to reinforce sphere target identification process that leads to reliable 
pose measurement of the artefact. 

Combining vision-based 3D coordinate measurements with built-in 
joint-angle-based measurements has been shown to be an effective 
way of improving robot positioning accuracy [43–45]. Vision systems 
provide reference measurements from which the absolute positions of 
robots can be determined in relation to other objects and systems that 
interact with robots [46]. These vision systems allow for the intelligent 
goal-orientated supervisory control of industrial operations that can 
ensure quality and efficiency [47]. Simultaneous quality assessment of 
measured positions can be accomplished by using the proposed spatially 
encoded artefact that is pre-calibrated. The calibrated dimensions of the 
artefact can support both the identification of features and the evalua-
tion of measurement quality. 

Vision-based coordinate metrology comprises prerequisite processes 
that include vision system characterisation [48], feature recognition 
[49], modelling of image data [26], finding correspondence from 
multi-view features [50] and metric reconstruction [51,52] (see refer-
ence [53] for a review of optical coordinate metrology). These processes 
cover multiple areas of research and collectively affect the quality of 
measurements. To introduce and investigate new contributions in the 
different stages of coordinate measurement using a sphere-based mea-
surement artefact, we propose a measurement scheme that synthesises 
the various prerequisite processes. We propose methods ranging from 
image-based detection and localisation strategies to dimension and co-
ordinate measurements. The novelty in the paper is outlined through 
improvements of existing methodologies by revision and derivation of 
measurement models, error reduction strategies for feature extraction 
and implementation of 3D feature identification through the spatial 
encoding of the measurement artefact. This paper contributes to various 
applications where physical environments are monitored by accurate 
measurement of positions and poses of objects such as robotic arms, 

Fig. 1. Processes involved in the vision-based artefact detection, coordinate measurement and identification.  
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virtual reality equipment and manufactured products [54]. Here, the 
measurement artefact structure can be tailored into a size and shape that 
fits a specific application. 

In Section 2 of this paper, we explain the setup of the measurement 
test and the proposed measurement methodology from image local-
isation of target features to 3D coordinate and size measurements of the 
identified targets. The performance of the proposed image localisation 
models and coordinate measurement methods are discussed in Section 3. 
The performance results are investigated in terms of measurement 
quality, computational complexity and robustness. After conclusion of 
the paper in Section 4, additional information referenced in the paper 
are presented in the supplementary sections—Supplementary material, 
Appendix A and Appendix B. 

2. Detection and measurement methodology 

This section describes the components and processes involved in 
measuring spherical features of a vision-based measurement artefact. 
First, the experimental setup is introduced, followed by the detailed 
strategies employed for feature identification, localisation and coordi-
nate measurement. We also discuss methods for reducing errors and 
improving the accuracy of photometric feature measurements, as well as 
the derivation of explicit solutions for the metric 3D measurements 
using both binocular and trinocular vision systems. Additionally, a 
graph-matching approach for sphere identification from images of the 
artefact at different positions is presented. Fig. 1 provides an overview of 
the vision-based coordinate measurement system (CMS). 

Beginning with captured multi-view images, known camera param-
eters and artefact dimensions as indicated in Fig. 1, a circular Hough 
transform (CHT) algorithm is used for determining the regions of in-
terest (ROIs) where spheres are recognised in images. Edge points are 
then sampled, modelled and eccentricity errors in all detected image 
features are estimated and compensated. Using the feature correspon-
dence of detected images from different camera views, the metric 3D 
position and size of the spherical features are evaluated. Finally, known 
pre-calibrated artefact dimensions are used to determine the identity of 
every measured sphere feature. 

2.1. Experiment 

Three 20 mega-pixel Basler machine vision cameras, each with a 16 
mm focal length, were used to capture three sets of multi-view images in 
this paper. The three cameras were pre-calibrated as binocular camera 
pairs AB, AC, and BC (as shown in Fig. 2) using MATLAB’s computer 
vision toolbox, at distances ranging from 500 mm to 750 mm. The pre- 
calibration process uses a 200 mm by 150 mm checkerboard artefact 
fabricated by lithographic printing with square sizes of 15 mm, manu-
factured with a tolerance of 20 μm. The obtained binocular camera 
parameters were used to characterise the trinocular vision system con-
sisting of the three cameras using the method described elsewhere [55]. 
The pre-calibration process estimated the cameras’ intrinsic parameters 
(the pixel focal lengths, principal point location and lens distortion co-
efficients) as well as inter-camera properties, such as relative camera 
positions and orientations. Radial distortions of the binocular and trin-
ocular camera systems were expressed using three and six distortion 
coefficients respectively, while tangential distortion was considered 
negligible [55]. For every reference to image point, it is assumed that 
image distortions have been corrected using the distortion model 
described in Section 2.5.1. 

The measurement artefact used in this paper is made up of eleven 
white polyoxymethylene solid spheres attached to dark contrasting 
plates (shown in Fig. 2). To ensure that the identity of every sphere could 
be determined from any camera pose, the diameter and spacing of the 
spheres were designed to encode sphere identities. Specifically, the 
artefact was designed to guarantee the following conditions:  

1 at least three spheres are visible at any configuration of the artefact,  
2 the nominal diameters and distances between neighbouring spheres 

are selected from the candidate sets D = {20, 25, 30} mm and L =

{107, 114, 121, 128, 135, 142} mm respectively, and  
3 every group of three neighbouring spheres has a unique set of 

diameter and spacing arrangement. 

To facilitate the experimental tests, the measurement artefact was 
securely fastened to a linear actuator stage depicted in Fig. 2 after 
artefact calibration using a Mitutoyo Crysta Apex S7106 contact CMS 
with a stylus of 2 mm diameter. With travel range of 300 mm, the 
actuator also carries the reflector for a distance measuring Renishaw XL- 

Fig. 2. Experimental setup of a vision system and a laser interferometer for the measurement of artefact position and size; a) shows the top view and b) shows the 
isometric view of the setup. 
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80 laser interferometer, which has a certified measurement accuracy of 
± 0.3 μm for the distances measured in this paper. The actuator is 
responsible for moving the artefact and reflector when the artefact is 
measured by the cameras and laser interferometer. 

Table 1 lists the calibrated diameters of the artefact spheres, deter-
mined by measuring twenty-five points on each sphere’s surface with 
the Mitutoyo contact CMS. Each sphere is indexed and sphere the indices 
are used for the expression of sphere adjacency. In Table 2, the distances 
between adjacent spheres of the artefact, calibrated by the contact CMS, 
are also listed. Sphere index pairs represent all the adjacent spheres of 
the artefact. The combination of the sphere adjacency, sizes S a and 
spacings E a fully define the geometric structure of the artefact. The 
expanded uncertainties in the tables are expressed at confidence in-
tervals of 95 % from three repeats of sphere diameter and centre coor-
dinate measurements using the contact CMS. 

2.2. Image feature recognition 

Image features contain specific properties that are both detectable 
and desirable for implementation in MV algorithms. Recognition of such 
features is commonly the starting point of computer and MV algorithms. 
For an image of the spherical targets in this paper, we observe corre-
sponding image features that represent the projections of sphere sil-
houettes viewed from the image’s camera centre. The properties of the 

image feature depend on the sphere size and its relative location with 
respect to the camera. Viewed from a camera, the observable contour of 
a sphere is a tangential circle on the sphere that has a diameter less than 
the diameter of the sphere. The projection of the sphere contour is an 
ellipse, which serves as the image feature for the sphere [56]. 

Given an image containing ellipse features, the aim of a feature 
recognition process is to determine approximately where the features 
are located in the image. This paper implements CHT for the recognition 
of the desired image features. The CHT algorithm searches for images 
points that are close to the boundaries of circles of a given radial range 
using convolution or Hough transform filtering [57]. The algorithm is 
robust and sensitive enough for MV applications with circular and 
elliptical features [58]. 

In this paper, CHT is implemented on images where resolution is 
downscaled for two reasons. First, there is no need for a high-resolution 
search of image points as the features are elliptical and not exactly cir-
cular. Therefore, CHT detection is only used to obtain approximate in-
formation about the location and size of the features. Accurate 
localisation of features is carried out afterwards in segmented ROIs of 
every identified image feature. It was observed that for all spheres in this 
paper, where diameters are less than 50 mm and distances greater than 
500 mm from all cameras, CHT can recognise image features easily 
because the eccentricity values of the corresponding image ellipses are 
small. The second reason for using downscaled images is to improve the 
speed and efficiency of the CHT implementation. Compared to full-scale 
images where CHT computation takes up to 4 s, images downscaled by a 
factor of eight take less than 0.2 s to search. Furthermore, it was 
observed that the downscaled images have the added benefit of recog-
nising more candidate image ROIs at a given CHT sensitivity. 

The CHT recognition algorithm covered in this section provides 
critical information about where more demanding computations should 
be carried out to accurately characterise the elliptical image features. To 
reduce the computational cost of searching for circular features using 
the Hough transform, the implemented CHT algorithm breaks down the 
search into multiple sub-problems that focus on specific ranges of search 
radii. By doing so, we can avoid the computationally expensive search 
operations that would be required if we were to perform a single CHT 
search over a wide range of radii. 

2.3. Gradient-based edge localisation 

From the candidate image features identified in Section 2.2, up to a 
maximum of eight features with the highest detection metrics per image 
are selected for a more accurate localisation process. The estimated 
location and size of each candidate feature are used to determine a 
rectangular ROI for a high-resolution determination of the feature edge. 
To accurately estimate edges, edge points are sampled close to the res-
olution limit of the camera using a gradient-based method similar to ISO 
12,233 edge localisation methodology [59]. Essentially, a detailed 
vision system response to a sphere contour is investigated using the 
sampled image intensity around the edge of the image feature corre-
sponding to the sphere contour. 

Fig. 3a) shows a feature ROI where edge profile sections are probed 
at different values of the parameterisation angle ϕi ϵ (0,2π], where the 
arc spacing of the probed sections are roughly four to five pixels. In-
tensity values, known as edge spread functions (ESFs) [59], along the 
edge profile sections, are evaluated by bilinear interpolation of the 
image pixel intensities. As shown in Fig. 3b), the ESF declines sharply in 
the vicinity of the feature edge and this intensity reduction is useful in 
the determination of the edge location. When the ESF is negated ( − yESF) 

and the first derivative 
(

yLSF =
− dyESF

drp

)
is taken along the profile distance 

rp, the line spread function (LSF), shown in Fig. 3c) is obtained. The LSF 
is the gradient of the edge profile and gradients are essential for edge 
detection. Using the LSF, the edge localisation problem is translated to 
the evaluation of the peak position of the LSF. The ESF and LSF data are 

Table 1 
Diameters of vision artefact spheres showing the diameter values as designed 
and as calibrated.  

Sphere index (na) Design /mm Calibrated (S a) /mm Uncertainty /µm 

2 25 24.988 2 
3 30 29.999 2 
4 20 19.973 3 
5 30 29.990 3 
6 30 29.981 3 
7 30 29.975 4 
8 20 19.961 3 
9 25 24.969 2 
10 25 24.984 3 
11 25 24.990 4 
12 20 19.966 3  

Table 2 
As-designed and as-calibrated distances between adjacent spheres.  

Adjacent sphere pairs Design /mm Calibrated (E a) /mm Uncertainty /µm 

2–3 121 121.870 8 
2–7 114 114.725 7 
2–9 107 108.223 9 
2–11 128 129.173 12 
3–7 142 142.910 8 
3–8 107 108.027 13 
3–12 114 115.081 11 
4–5 121 121.163 7 
4–10 121 121.101 8 
4–11 121 120.742 9 
4–12 121 121.437 8 
5–6 121 121.289 7 
5–8 135 134.702 1 
5–10 121 121.299 3 
5–12 121 120.363 9 
6–7 114 114.647 9 
6–8 135 134.643 3 
6–9 142 142.336 7 
6–10 128 128.231 4 
7–8 128 128.795 8 
7–9 107 107.797 9 
8–12 114 114.353 12 
9–10 142 141.928 9 
9–11 107 107.956 7 
10–11 121 120.969 10  
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not commonly smooth and the edge location is affected by noise in the 
image. ISO 12,233 suggests applying a hamming window filter to the 
LSF, before evaluating edge location, to reduce the influence of noise 
[33]. A simple method of determining the edge location is by directly 
extracting the pixel location of the maximum value of the LSF. However, 
the evaluated location resolution is limited by the sampling rate of the 
probed profile which makes continuous sub-pixel localisation impos-
sible. A more precise localisation can be estimated using the 
gradient-weighted centroid of the LSF. 

While a high degree of smoothing of the sampled edge spread data 
can suppress noise, it can also lead to over-averaging and loss of high- 
spatial frequency information that defines edge location at high reso-
lution. As an alternative, there are known analytical models that can fit 
the ESF and LSF data to reduce the effect of noise [35]. Observing the 
ESF in Fig. 3b), − yESF has the characteristic “S” shape of sigmoidal 
functions. Fitting the edge spread data to sigmoidal functions can opti-
mise edge location by refining the intensity distribution at the edge. Two 
sigmoidal functions—logistic and Gaussian error functions—are inves-
tigated for modelling edge spread data in this paper. 

One common sigmoidal function for modelling ESFs is the logistic 
function [35,34]. For the edge profile, shown in Fig. 3a), probed at the 
angle ϕi with ESF values of yESF, sampled along the radial profile dis-
tances of rp, the ESF data (rp, yESF) is fitted to (x, fh(x)) for the logistic 
function given by 

f h(x) =
yh

1 + e−
(x− μh)

sh

+ dh, (1)  

where yh and dh are the height scale and offset parameters respectively. 
The distribution scale parameter is sh, while μh is the distribution loca-
tion parameter of the logistic function. The best-fit solution for the four 
parameters given the ESF data is outlined in Appendix A.1. Fig. 3b) 
shows the fitted logistic plot of the ESF data and the edge point location 
derived from the logistic function in Eq. (1). 

The second sigmoidal function considered for modelling edge spread 
data is the Gaussian error function. When the ESF of a probed edge 
profile (− yESF) is designated as a Gaussian error function, the LSF, which 
is the gradient of the ESF, takes the form of a Gaussian function—the 
probability distribution function (PDF) of the Gaussian error function. 
Here, LSF data (rp, yLSF) is fitted to (x, f g(x)) for the Gaussian function 

given by 

f g(x) = y0e−
(x− μ)2

2σr 2 , (2)  

where the Gaussian mean μ, standard deviation σr and height y0 pa-
rameters need to be determined. The Gaussian fitting problem seeks to 
find the values of these parameters that minimise the difference between 
the LSF data (rp, yLSF) and the ideal Gaussian values (x, f g(x)). To avoid 
computationally expensive iterations, the Gaussian function can be 
linearised by exploiting the fact that Eq. (2) is an exponential function of 
a quadratic function. Therefore, a proposed Caruana Gaussian fitting 
algorithm [60] reduces the Gaussian fitting problem to a linear problem 
by expressing Eq. (2) in the logarithmic scale. Appendix A.2 explains the 
linear least-squares approach used to solve the Gaussian fitting problem 
in this paper. 

As can be observed in Fig. 3c), the signal-to-noise ratio (SNR) of the 
curve yLSF increases as the gradient value (yLSF) diminishes at the two 
tails of the curve. The noise at the tails of yLSF significantly impacts the 
result of the Caruana Gaussian fitting process [61]. As a result, the 
gradient cut-off points, shown in Fig. 3c), are suggested to ensure only 
high gradient data between the cut-off points is fitted to the Gaussian 
model. Furthermore, a gradient-weighted Caruana algorithm [61], 
which reduces the sensitivity of Gaussian fitting to noise, is also 
implemented. Details on the implementation of the weighted Caruana 
algorithm are provided in Appendix A.2. It should be noted that the use 
of edge profile cut-off points is only implemented to the Gaussian models 
and not the aforementioned logistic function because the logistic fitting 
algorithms fails occasionally when edge profile data is reduced to the 
profile length between the cut-off points. 

Apart from image noise, the probed edge profile could also contain 
erroneous edges that do not belong to the desired feature. It is also 
possible for parts of the desired feature to have weak edges or be 
occluded; hence, the probed profile at those edge profiles should be 
discarded. To mitigate erroneous points from being considered as part of 
the feature edges, the following selection criteria are implemented when 
the edge points are probed:  

⋅ gradient strength: the gradient must be greater than a threshold 
gradient value; 

Fig. 3. Edge point localisation showing: a) a cross-sectional line of a sampled edge profile and edge points that are accepted and rejected at various profile positions 
along with the five-sigma bounds of the line spread function (LSF) of the edge points, b) the edge spread function (ESF) and the logistic-fitted model of the sampled 
edge profile, and c) the LSF of the sampled profile, maximum gradient edge location and Gaussian-fitted model. 
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⋅ radial consistency: the change in radial distance from the probed 
feature centre must be less than a radial distance threshold;  

⋅ tangential consistency: the change in the angle between the 
tangential and radial directions must not exceed a tangential angle 
threshold;  

⋅ second derivative agreement: the zero-crossing of the ESF second 

derivative 
(
− dy2

ESF
d2rp

= 0
)

must be located near the edge point. 

The above criteria are checked simultaneously as the edge points are 
probed, and the selection operation takes only (8 ± 0.5) ms per image, 
where each image contains six to eight spherical features. The edge point 
selection method is fast and efficiently improves the quality of the 
probed data by accepting only points that are compliant with the four 
criteria given above. Fig. 3a) shows the accepted points that pass the 
selection criteria, indicating how effective the selection criteria are at 
rejecting erroneous edge points. The quantitative evaluation of the 
performance and computational complexity of the investigated edge 
localisation strategies are discussed in Section 3. 

2.4. Image feature models 

Simply sampling edge points alone does not convey important in-
formation on the size and location of the image features; they need to be 
fitted to the expected shape of the features. Based on the geometric setup 
between the spheres and image planes used, the projection of the 3D 
circular spherical contours on the image planes results in elliptical type 
of conic sections. When we consider the cone of light emanating from a 
sphere and terminating at the camera centre (a cone vertex), the image 
plane intersection with the surface of the cone of light is an ellipse. 
Therefore, the sampled edge points belong to ellipse features and should 
be fitted accordingly to elliptical models. 

A two-dimensional (2D) ellipse is fully defined by five parameters, 
and in parametric form, they are two location parameters, two size pa-
rameters and one orientation parameter. When an ellipse is instead 
represented as a general conic, six parameters in the form of algebraic 
coefficients are used, but these coefficients should be subject to an 

ellipticity constraint. Fitting an ellipse to given data points involves 
minimising error measures between the data and the model ellipse. In 
this paper, we distinguish the ellipse fitting models by the type of error 
measure implemented by the model. 

The first ellipse model considered in this paper is the direct ellipse 
fitting model that uses constrained algebraic conic parameters to mini-
mise algebraic distance [31]. This direct model is fast but lacks the 
necessary geometric interpretation of the minimised distance and opti-
mised parameters, thereby limiting the ability to associate geometric 
uncertainty to the outcome. The computational details of the direct 
model are given elsewhere [31]. Serving as the elementary ellipse 
model, the direct ellipse model is implemented as a computational 
starting point and for comparison with other ellipse fitting models that 
improve the direct model. 

In addition to the direct algebraic model, we also investigate two 
geometric ellipse fitting models. The first geometric model implemented 
is the orthogonal-distance geometric (ODG) model, where the deviations 
of edge points are evaluated as the closest orthogonal distances to an 
ellipse. The five ellipse parameters (Ω = [a, b, ue, ve, θ]) solved by the 
ODG method are the standard parametric ellipse parameters: the semi- 
major axis length a, the semi-minor axis length b, the ellipse centre 
components xe(ue, ve) and the ellipse angle θ. For each edge point xi, the 
nearest orthogonal point on the ellipse x⊥ is required to minimise the 
following ODG objection function 

min
Ω

1
n
∑n

i=1
fODG(Ω) = min

Ω

1
n
∑n

i=1
( ‖ x⊥xi
̅̅→‖)

2
. (3) 

Fig. 4 illustrates the ellipse parameters, the location of the orthog-
onal ellipse point x⊥ and the closest orthogonal distance di = ‖ x⊥xi

̅̅→ ‖. A 
two-level iteration problem is encountered when implementing the 
objective function; for each iteration of the ellipse parameters Ω = [a, b,
ue,ve,θ], the locations of x⊥ must be determined by another iteration. The 
initial ellipse iteration parameters are obtained by conversion of the six 
parameters of an elliptical conic, solved by the direct algebraic model, 
using the expressions given in reference [62]. 

The second geometric model uses the geometric definition of an el-
lipse, as the locus of 2D points, with a constant sum of distances from 
two focal points [32]. These two focal points, referred to as the ellipse 
foci (c1, c2), define ellipse location, orientation and linear eccentricity. 
The ellipse centre xe lays at the mid-point of the two foci, as shown in 
Fig. 4. The ellipse’s major axis passes through the ellipse foci and centre, 
as well as the farthest points (ellipse vertices) on the ellipse. The com-
bination of the ellipse focal locations, c1(c1u, c1v) and c2(c2u,c2v), and the 
length of the ellipse semi-major axis a is sufficient to fully define an 
ellipse. We represent the combination of the ellipse foci and semi-major 
length as the foci-based ellipse parameters Λ = [a, c1u, c1v, c2u, c2v]. For 
every point sampled on an ellipse, the sum of distances from that point 
to c1 and c2 has a constant value of 2a. Based on this constant, the 
geometric distance error of an arbitrary edge point xi to the foci is given 
by ‖ c1xi

̅̅→‖ + ‖ c2xi
̅̅→‖ − 2a. By further normalisation of this distance error 

[32], the foci-based geometric (FBG) approach minimises the sum of the 
squared error of foci-based distances of n edge points given by 

min
Λ

1
n

∑n

i=1
fFBG(Λ) = min

Λ

1
n

∑n

i=1

(
1

1 + γcos(ψi)
( ‖ c1xi
̅̅→‖ + ‖c2xi

̅̅→‖ − 2a)2
)

,

(4)  

where ψ i <
π
2 is the angle  ̂c1xic2 (see Fig. 4) and γ is the tuning parameter 

with a value between zero and one, which can be set using the method 
outlined in reference [32]. The FBG error function fFBG(Λ) in Eq. (4) is 
normalised by the angle-dependant term to account for the 
non-uniformity of the contribution of the point deviations at different 
points of the ellipse. 

The FBG objective function given in Eq. (4) does not consider the 
difference in the edge spread of each point and, therefore, assumes the 

Fig. 4. Illustration of an ellipse fitted to data points showing the orthogonal 
distance di of the point xi from the ellipse, foci (c1,c2), ellipse centre xe, ellipse 
major axis angle θ and the normally distributed N (0, σ2

i ) line spread function of 
the edge point xi. 
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points have isotropic LSF variances. The edge of an ellipse feature can 
have varying contrast, sharpness, noise, illumination and background 
colour. These differences can make the variance of the LSF of some edge 
points significantly larger than that of others. We revise Eq. (4) to reflect 
the anisotropic variance of the edge points to improve the ellipse fitting. 
The distribution of the LSF of the sample sphere edge in Fig. 3a), given 
by the five-sigma bounds of the LSF Gaussian fitting, shows that the 
variance varies for edge points. 

The contribution of the non-normalised FBG distance error 
(‖ c1xi
̅̅→‖ + ‖c2xi

̅̅→‖ − 2a)2 of a point, to the expectation of the orthogonal 
distance error of the same point, is approximately proportional to σ2

i (1 +

cos(ψ i)), assuming the point has normally distributed probability den-
sity N (0,σ2

i ), along the nearest orthogonal direction to the ellipse [32]. 
The method in Section 2.4 already provides the radial variance infor-
mation for each edge point using the Gaussian or logistic edge local-
isation methods. For the Gaussian model of the LSF, the radial variance 
σ2

r of the Gaussian-fitted LSF is given directly from Eq. (1). However, a 
logistic-fitted ESF requires evaluation of the variance from the scale 
parameter sh in Eq. (2). The variance of the logistic distribution of the 
LSF is expressed as σ2

r = π2

3 s2
h [63]. 

Let h=‖ c2c1
̅̅→‖ and the ellipse semi-minor axis becomes b =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

a2 − h2

4

√

. The equivalent variance of the probability distribution of the 
point xi along the orthogonal distance di in Fig. 4 can be estimated by 

σi = σr
ab

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
b2sin2(ϕ) + a2cos2(ϕ)

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a2sin2(ϕ) + b2cos2(ϕ)

√ . (5) 

For the edge point xi sampled at the angle ϕi in Fig. 4, Eq. (5) is 
derived from the projection of the radial ellipse-to-point vector on the 
orthogonal direction vector along di. The orthogonal direction vector is 
simplified as the direction vector perpendicular to the ellipse tangent at 
the angle ϕi. Using the estimated variance for each edge point, the 
minimisation of a new error function (f ∗FBG(Λ)) for a heteroscedastic FBG 
model is obtained as 

min
Λ

1
n

∑n

i=1
f ∗FBG(Λ) = min

Λ

1
n

∑n

i=1

(
1

σ2
i (1 + γcos(ψi))

( ‖ c1xi
̅̅→‖ + ‖c2xi

̅̅→‖ − 2a)2
)

.

(6) 

When solving the minimisation problem, an iterative parameter 
update, determined by the gradient of the error function f∗FBG(Λ), assists 
in making the least-squares algorithm stable and convergent. The gra-
dients of the objective function in Eq. (6), with respect to the five ellipse 
parameters Λ, are derived in Appendix B. The new FBG objective 

function is minimised iteratively to solve for the five parameters in Λ 
using the gradients to determine gradient descent direction. 

A similar revision to Eq. (3) is carried out to obtain a heteroscedastic 
objective function for the ODG model, where fODG is replaced by 
f∗ODG(Ω) = 1

σ2
i
fODG(Ω). Using the direct, FBG and ODG fitting models of 

the edge points, the identified image features are characterised by pre-
cise sub-pixel locations and dimensions even in the presence of noise. 
The performances of the new heteroscedastic FBG and ODG ellipse 
models are investigated in Section 3. 

2.5. Metric sphere measurements 

After the spherical features are detected and fully characterised as 
ellipses in images, the metric positions and sizes of the spheres need to 
be evaluated. This evaluation requires knowledge of the intrinsic and 
extrinsic parameters of the two or more cameras needed to map the 3D 
world position of the spheres to the respective 2D images of the cameras. 
Throughout Section 3.5, the parameters of the three vision cameras used 
in this paper are assumed to be predetermined. The details on how the 
camera parameters are characterised can be found elsewhere [55,64, 
65]. 

2.5.1. Image projection mapping 
The intrinsic parameters of a camera facilitate the mapping of the 

projection of 3D world points onto the camera’s 2D image plane, where 
the 3D points are expressed in the camera coordinate system (CCS) 
located at the camera centre. As illustrated in Fig. 5, the camera A maps 
the camera-centric 3D point XA = [xA, yA, zA]

⊤ to the corresponding 2D 

image point xA = [uA, vA]
⊤ through the linear expression 

[
xA
1

]

=

1
zA

KAXA, where KA is the camera calibration matrix given by 

KA =

⎡

⎢
⎢
⎣

fu 0 cu

0 fv cv

0 0 1

⎤

⎥
⎥
⎦

A

. (7) 

The principal point coordinates xc = [cu, cv]
⊤ and the pixel-scaled 

focal lengths [fu, fv]
⊤ of the camera form the calibration matrix of Eq. 

(7). A 3D point XW = [xW, yW, zW]
⊤, expressed in an arbitrary world 

coordinate system (WCS), needs to be transformed to the CCS before 
going through the projection mapping. The camera parameters that 
describe the transformation from a WCS to a CCS are called the extrinsic 

Fig. 5. Projection mapping of a 3D point XA onto the image plane of camera A showing the camera coordinate system (CCS) and the world coordinate system (WCS).  
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parameters. Assigning TA
W as the transformation matrix from WCS to 

CCS, the general projection mapping of a vision camera can be expressed 
as 
[

xA
1

]

= wAKATA
W

[
XW
1

]

, (8)  

where wA = 1
zA 

for [xA, yA, zA]
⊤

= TA
W

[
XW
1

]

. 

In practice, the linear mapping between XW and xA only holds after 
correction of lens distortion—the dominant distortion type is the radial 
distortion [18,66]. Since Brown [67] proposed the radial polynomial 
distortion model, it has become the conventional radial distortion 
model, giving rise to various methods of carrying out inverse radial 
distortion solutions [68]. Assuming the raw pixel coordinates captured 
from the camera are [ũ, ṽ]⊤, the distortion-corrected pixels [u, v]⊤ are 
expressed in terms of the radial distortion coefficients {k1, k2, k3,…kn}

and the distortion centre [du, dv]
⊤ in 

[
ũ

ṽ

]

=

(

1 +
∑n

i=1
ki
(
(u − du)

2
+ (v − dv)

2)i
)[

u

v

]

. (9) 

For the vision system in this paper, tangential distortion was found to 
be negligible and is, therefore, not considered. 

When an artefact, such as checkerboard is imaged, the known 
physical dimensions of the artefact and the observed distorted dimen-
sion of the artefact can be used to solve for the inverse of the distortion 
model in Eq. (9). The raw pixel data [ũ, ṽ]⊤, obtained by imaging a 
checkboard artefact during the camera pre-calibration process, is used to 
solve the inverse distortion problem by determining the radial distortion 
coefficients and the distortion centre. amongst the methods for solving 
the inverse radial distortion problem, iterative methods are reported to 
give the best results [68]. The distortion model in Eq. (9) is normally 
truncated to a finite value of n, where higher values of n are used for 
more demanding applications. It is often the case that the distortion 
centre is taken as the principal point of the camera—MATLAB and 
OpenCV vision algorithms commonly make this simplification. 

Therefore, the MATLAB stereo camera characterisation implemented in 
this paper uses the simplification [du, dv]

⊤
= xc and the maximum 

number of radial distortion coefficients supported by the MATLAB 
application (n = 3). However, the trinocular camera characterisation 
algorithm developed for this paper uses an independent value for the 
radial distortion centre and a higher number of radial distortion co-
efficients n = 6 [55]. It should be noted that the computations for lens 
distortion correction are carried out during the pre-calibration process, 
when the camera intrinsic and extrinsic parameters are evaluated, after 
which corrected pixels xA = [u, v]⊤ can be used in Eq. (8). 

From an ellipse feature detected from a camera, we do not have 
enough information to evaluate the sphere 3D coordinate and diameter. 
One or more additional cameras are required for 3D measurement of the 
sphere. Fig. 6a) shows the boundaries of the ellipse features imaged by 
three cameras as a result of the projections of the corresponding 
spherical tangential circles. Each observation of the sphere from the 
three views is a result of projection of a different tangential circle on the 
sphere. Therefore, reconstruction of the size and location of the sphere 
from its image projections requires evaluation of the relationship be-
tween the multi-view ellipse features. 

2.5.2. Ellipse eccentricity error 
When a sphere is viewed from an angle away from the principal axis 

of a camera, the projection of the centre of the sphere does not exactly 
match the centre of the observed ellipse feature. The actual projection of 
the sphere centre is not available from the acquired image of the sphere 
and must be derived from the observable ellipse feature in the image. 
The Euclidean distance, shown in Fig. 6b), between the ellipse centre xe 
and the actual projection of the sphere centre xs is referred to as the 
eccentricity error [69]. 

Given that the projection of a sphere centre is located along the 
radial line joining the principal point and the ellipse centre [29,36], we 
investigate the sphere points L and M whose projections also lay along 
the radial direction (see Fig. 6). The radial line coincides with the ellipse 
major axis; therefore, the values of xL and xM (the projection of the 3D 
points L and M respectively) are known from the detected ellipse 

Fig. 6. Ellipse features in three cameras A, B and C where each camera observes projection of different tangential circles on the sphere in a). The geometric sketch of 
plane containing the major axis (xLxM

̅̅̅→) on image A and 3D points L and M on a tangential circle in a) is given in b). 
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features from Section 2.4. Fig. 6b) isolates the plane of light containing 
L,M and the radial line on the image, where the ellipse centre xe divides 
the distance between xL and xM equally by the ellipse semi-major axis a. 
The angle α, in Fig. 6b), can be evaluated from 

α =
1
2
tan− 1

(
‖ xe − xc‖ − a

fuv

)

+
1
2
tan− 1

(
‖ xe − xc‖ +a

fuv

)

(10)  

where fuv is the equivalent focal length in pixels along the unit radial 
direction ê. The value of fuv can be derived from the known pixel-scaled 
focal lengths [fu, fv]⊤, the principal point xc = [cu, cv]

⊤ and the ellipse 
centre xe = [ue, ve]

⊤ as 

fuv =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(ue − cu)

2f 2
uf 2

v + (ve − cv)
2f 2

uf 2
v

(ue − cu)
2f 2

v + (ve − cv)
2f 2

u

√

. (11) 

The sphere centre image location is then obtained as xs = fuvtan(α)ê 
and the eccentricity error vector can be expressed as Δw = xe − fuvtan(α)ê 
using Eq. (10) and Eq. (11) to evaluate α. 

To demonstrate the value of the eccentricity error in our vision 
system, the error is evaluated at arbitrary 3D sphere positions. For a 
sphere with diameter of 30 mm placed at the camera depth of zA = 500 
mm, the eccentricity error vector xe − xs across the camera image plane 
is shown in Fig. 7. For the [u, v]⊤ pixel positions on the image, the vertical 
axis and the colour map in Fig. 7 show the eccentricity error and the 
ellipse eccentricity respectively. The direction of the eccentricity error 
vector is indicted by the arrows that have lengths proportional to the 
magnitude of the eccentricity error. It is observed that the eccentricity 
error increases as the sphere is viewed from a farther angle from the 
principal axis of the camera and the error vector is directed radially from 
the principal point xc on the image plane. 

2.5.3. Image feature correspondence 
To be able to reconstruct the 3D positions of spheres from their multi- 

camera images, it is necessary to determine the correspondence between 
the multi-view features detected in the images. Corresponding image 
features resulting from projections of a 3D object in multiple cameras 
are related by multi-view geometric relationships [65], that enable 
reconstruction of the 3D coordinates of the object. Therefore, from sets 
of features detected from different views, we investigate the criteria for 
evaluating image feature correspondences. 

For a binocular case, the epipolar constraint that defines the rela-
tionship between two corresponding image points xA and xB, from 
camera A and B respectively, is expressed as 

δAB(xA, xB) = w l

[
xB

1

]⊤

FAB

[
xA

1

]

, (12)  

where δAB ≈ 0, FAB is the fundamental matrix of binocular camera pair 
AB and w l is the Euclidean normalisation factor of the epipolar line 

FAB

[
xA
1

]

. An image feature xA from camera A corresponds to another 

image feature xB from camera B if δAB(xA, xB) satisfies ‖ δAB(xA, xB)

‖<δmax and xB results in the minimum value of ‖ δAB(xA, xB)‖ for all 
candidate features observed from camera B. The value of the pixel 
threshold δmax is chosen between 0.5 to 3 pixels. Epipolar constraints 
similar to Eq. (12) can be expressed for the other camera pairs AC and BC 
using their respective fundamental matrices FAC and FBC. The funda-
mental matrices FAB, FAC and FBC represent the geometric relationships 
between the corresponding camera pairs and are predetermined during 
camera characterisation. 

The binocular correspondence criteria can effectively find corre-
sponding features and erroneous correspondences are scarce. In theory, 
the binocular criteria can be prone to correspondence errors that can be 
resolved by considering an additional third camera. A three-camera 
system can be simply modelled as a multi-binocular system with mul-
tiple fundamental matrices or a trinocular system where the internal 
relationship in the three-view system is encapsulated in a single trifocal 
tensor. Compared to the multi-binocular vision system, the trifocal 
tensor of the trinocular vision system provides better three-view 
agreement and a more compact model. In Einstein notation, three 
image points xA, xB and xC observed from cameras A, B and C respec-
tively correspond to one another if δ ≈ 03×3 in 

δst = xi
Axj

Bxk
CϵjqsϵkrtTqr

i , (13)  

where Tqr
i is the trifocal tensor, ϵijk represents the Levi-Civita tensor and 

{i, j, k, q, r, s, t} are the indices of the Einstein notation. Hence, similar to 
the binocular criteria, correspondence amongst candidate image feature 
triplets can be determined using Eq. (13). 

2.5.4. Sphere 3D position and size 
The 3D coordinates of sphere centres are evaluated by triangulation 

of the corresponding image locations from two or more views. Consid-
ering cameras A and B, sphere centre projections xA and xB (from 
cameras A and B respectively) are triangulated to determine the 3D 
coordinates of the sphere centre S. The MATLAB computer vision 
toolbox is used to carry out the binocular triangulation to determine S. 
For the trinocular system of cameras A, B and C, a triangulation solver is 
developed using least squares to determine S. Using Eq. (8) and 
assigning S in the CCS of camera A (at OA in Fig. 6), the projection 

mapping of the point S in the three cameras can be expressed as: 
[

xA
1

]

=

wAKAS, 
[

xB
1

]

= wBKBTB
A

[
S
1

]

and 
[

xC
1

]

= wCKCTC
A

[
S
1

]

. After restruc-

turing terms in the three projection equations, the unknown S is eval-
uated using a least-squares solution based on singular value 
decomposition (SVD) [65]. It should be noted that the values of the 
camera matrices KA, KB and KC, and the transformation matrices TB

A and 
TC

A are part of the predetermined camera parameters. 
The size of the sphere can also be evaluated from the elliptical fea-

tures determined in the images. Referring to Fig. 6b), the radius of the 
sphere is related to the size of the image ellipse by 

2a = fuv

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅

x2
s + y2

s

√

+ rscos(αm)

zs − rssin(αm)
−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅

x2
s + y2

s

√

− rscos(αl)

zs + rssin(αl)

)

, (14)  

where S = [xs, ys, zs]
⊤, αm = tan− 1

(
‖xe − xc‖+a

fuv

)
and αl = tan− 1

(
‖xe − xc‖− a

fuv

)
. 

We can simplify Eq. (14) into a simple quadratic equation in the form 
ζ1r2

s + ζ2rs + ζ3 = 0 and find rs as 

Fig. 7. Eccentricity error xe − xs is plotted for pixel positions at camera depth 
of zA = 500 mm for a 30 mm diameter sphere. The colour map shows the ellipse 
eccentricity and arrows indicate the direction of the eccentricity error. 
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rs = −
ζ2

2ζ1
−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ζ2
2 − 4ζ1ζ3

√

2ζ1
, (15)  

where the quadratic terms are defined as: 

ζ1 = sin(αm − αl) −
2a
fuv

sin(αm)sin(αl)

ζ2 =
2a
fuv

zs(sin(αl) − sin(αm)) − (sin(αl)+ sin(αm))

̅̅̅̅̅̅̅̅̅̅̅̅̅̅

x2
s + y2

s

√

− zs(cos(αm)+ cos(αl))

ζ3 = 2a
fuv

z2
s .

The 3D position and size of all detected spheres can be accurately 
calculated using the triangulation solver for S and Eq. (15) respectively. 
Further refinement of the sphere 3D coordinates is possible using iter-
ative minimisation of the geometric objective functions, where the SVD- 
based solution is used as an initial guess for the iteration [65]. 

2.5.5. Sphere identification 
A final sphere identification process is suggested to match the 

measured spheres with the calibrated artefact data. The identification 
process provides a means of both labelling and checking the spatial 
consistency of the measured sphere features. When the artefact position 
is changed, sphere identification makes it possible to reliably track 
changes in sphere positions and relate them to the traceable artefact 
calibration data. 

The identification of spheres relies on the spatial encoding of the size 
and distance dimensions of the measurement artefact. The deliberate 
combination of sphere connectivity, sphere sizes S a and spacings E a, in 
Tables 1 and 2 respectively, ensures that the identification of adjacent 
sphere triplets is possible. We organise the calibrated artefact and 
measured sphere information into undirected graphs for easy imple-
mentation of the identification algorithm using graph theory [70]. Al-
gorithm 1 summarises the identification process for a set of sphere 
coordinates X m and sphere sizes S m measured from corresponding 
binocular or trinocular images. 

The calibrated dimensions of the manufactured target in Tables 1 
and 2 are organised into a graph G a, such that the indices of the spheres 
are the nodes where adjacent spheres share an edge. Bearing no sphere, 
Node 1 was reserved as the attachment point of the artefact to the mo-
tion systems and, therefore, is not linked to the other nodes. The iden-
tification method determines the nodes of a subgraph G m formed by 
some measured spheres by comparing all adjacent node triples (referred 
to as tricycles) in the subgraph to the nodes in the main graph G a. C a is 
the set of all tricycles in G a and is an input to Algorithm 1 where the 
nodes and edges in the measured tricycle set C m are searched for. For 
every matching tricycle, the index of nodes in G a matching nodes in G m 
are recorded in M. For all the tests carried out in this paper, there has not 
been any contradiction in matched nodes between G a and G m. Algo-
rithm 1 outputs the arrays nm and na which are the corresponding 
indices of nodes in graphs G m and G a respectively. Fig. 8 shows a 
subgraph of six measured sphere nodes after they have been matched 

Algorithm 1 
Identification of measured spheres using calibrated artefact data.   

Input: connectivity (G a, C a) and dimension data (E a ,S a) of artefact, 
measured coordinate and size data (X m,S m)

Output: correspondence between measured spheres and calibrated artefact 
data (nm, na)

1 G m← construct undirected graph from (X m, S m) for distances and sizes 
matching (E a, S a) 

2 C m ← find all tricycles in graph G m where nodes are numbered k = 1,2,…kn 

3 (C
t
m, C

t
a)← tokenize tricycles from node triplets in C m and C a to searchable 

string tokens 
4 (nm, na)← initialize arrays nm and na with size equal to kn (number of nodes in 

G m) 
5 M← initialize a 2D list with kn rows 
6 for every tricycle token ti(i= 1, 2…in) in C t

m: 
7 ta ← search for the token in C t

a that contains identical characters in ti 
8 (c∗m, ca)← find the tricycle nodes corresponding to ti in C m and ta in C a 

9 (c∗m, ti)← adjust order of nodes in c∗m(and token ti) to CCW direction if it is CW 
10 (t′i, t″i)← find variations of ti: t′i = [ti(3 : 6), ti(1 : 2)] and t″i = [ti(5 : 6), ti(1 : 4)]
11 if ti matches ta: 
12 cm←c∗m 
13 elseif t′i matches ta: 
14 cm←[c∗m(2 : 3), c∗m(1)] move the first node to the end 
15 elseif t″i matches ta: 
16 cm←[c∗m(3), c∗m(1 : 2)] move the third node to the beginning 
17 end 
18 for j = 1,2…3 
19 nm(cm(j))← cm(j)
20 M(cm(j))← add the artefact matching node ca(j) to row number cm(j) of M 
21 end 
22 end 
23 na← find the mode of node entries in each row in M  

Fig. 8. Identification of measured spheres using sphere graph data of the calibrated artefact and the measured spheres. The corresponding sphere indices {4, 5, 6,
9, 10, 11} from the calibrated artefact data are shown in views A and B, which are obtained from cameras A and B respectively. The identified subgraph G m of the 

measured spheres using Algorithm 1 is overlaid on the overall artefact graph G a. The 3D coordinates of the centres of the measured spheres are also given. 
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with the full artefact graph. The identification graphs at displaced po-
sitions of the artefact can be found in the supplementary GIF video 
submitted with this paper (see the supplementary material section). 

3. Performance assessment 

The performance of the methods used for feature localisation and 
sphere measurement are compared using some verification tests in this 
section. First, the robustness and computational complexity of the 
investigated edge and ellipse localisation methods are evaluated. Next, 
the measurement quality of the measured sphere coordinates and sizes is 
analysed. Lastly, the errors in the displaced sphere positions are inves-
tigated through an interferometry displacement experiment. 

3.1. Robustness and computational complexity 

Due to the presence of noise in electronic systems, it is critical to 
evaluate how image-based algorithms are able to operate in the presence 
of noise. Robustness analysis of image algorithms provides the necessary 
performance metric to assess whether an algorithm can be considered 
robust given a tolerance for the level of noise and image degradation 
[71]. The robustness of the edge and feature localisation methods, dis-
cussed in Sections 2.3 and 2.4 respectively, provides vital information 
about the algorithmic performance of the methods in the presence of 
noise. Using robustness measures, we can compare how different 
localisation and edge models perform at various noise levels. Since 
robustness analysis in MV depends on knowing the level of degradation 
and the accurate scale of the noise, determining robustness using the 
actual experimental images that already contain unknown noise from 
various sources can be challenging. 

A common approach for robustness assessment involves the use of 
synthetic images, where the addition of varying levels of noise can be 
used for the assessment [72,73]. By adding perturbations, such as ad-
ditive, multiplicative and speckle noise to synthetic images using the 
script in reference [74], we investigated the error in the edge points 
sampled using different edge localisation methods in the presence of 
varying image degradation levels. Fig. 9 shows the mean error of the 
evaluated edge points from 100 generated samples of synthetic images 
using five edge localisation methods—the maximum gradient, 
gradient-weighted centroid, Gaussian, weighted Gaussian and logistic 
methods. Details on these edge localisation methods are discussed in 
Section 2.3. Overall, the logistic and Gaussian edge spread models are 
more robust when compared with the other methods. The weighted 

Gaussian method results in errors that are between the errors observed 
in the maximum gradient and the Gaussian edge points. As a result of the 
gradient cut-off points introduced to reduce the noise-sensitivity of the 
Gaussian fitting presented in Section 2.3, the Gaussian edge points 
perform more robustly than the weighted-Gaussian edge points. 

When actual images (accessible from the reference [75]) are used, 
the logistic fitting method is observed to be highly sensitive to variations 
in brightness and shadows around the sphere edges. The reason why the 
logistic fitting method is more sensitive is that large portions of edge 
profiles are required for the convergence of the iterative logistic solver. 
The wideness of the edge profile used for fitting the logistic function 
makes the solver susceptible to noise (at low SNR), background varia-
tions and shadows. As a result, the logistic method does not outperform 
the Gaussian and centroidal edge localisation methods on actual images. 

In addition to the use of a robust edge localisation method, the ellipse 
fitting model should also be robust to noise. By adding orthogonal and 
normally-distributed noise to the sampled ellipse edge points shown in 
Fig. 10, we fit ellipses using the models discussed in Section 2.4. The 
edge points are sampled from only the right side of the ellipse to 
accentuate the variations in the shapes of the fitted ellipses. The random 
orthogonal deviations N (0,σ2

n) are sampled from normal PDFs with 
varying standard deviations σn and zero means. The variance of the 
added noise is chosen such that σn has values between zero and thirty 
pixels. Based on the fitted ellipses shown in Fig. 10, the direct [31] and 
homoscedastic FBG [32] models are far from the original ellipse. The 
proposed models in this paper—the heteroscedastic FBG and ODG 
models—improve the fitting of the respective homoscedastic FBG and 
ODG models. 

To quantitatively compare the results from the data shown in Fig. 10, 
using the normalised ellipse error defined in reference [32], 1000 
randomly generated ellipses are investigated with varying ellipse shapes 
and noise levels. The normalised ellipse error is the normalised area of 
the exclusive disjunction (XOR operation ⊕) of a fitted ellipse Ω and the 
actual ellipse Ω0 given by 

A (Ω⊕Ω0)
A (Ω0)

, where A is the area function of a closed 2D pixel region. 
From Fig. 11a), the direct algebraic ellipse fitting model results in the 

highest increase in ellipse error as the noise level is increased. The ho-
moscedastic FBG model in Fig. 11b) shows little improvement over the 
direct model, while the heteroscedastic FBG model reduces the nor-
malised error by more than a factor of three for very noisy data. A sig-
nificant improvement is also observed in Fig. 11c) when the 
heteroscedastic ODG model is compared to its homoscedastic 
counterpart. 

From the results in this section, it is shown that the methods used for 
edge localisation and ellipse fitting affect how robustly sphere features 
are detected. It is important to investigate the computational cost that 

Fig. 9. Error of edge localisation methods evaluated as the mean of orthogonal 
deviations of edge points evaluated at different image noise and degrada-
tion levels. 

Fig. 10. An ellipse (in colour blue) is partially sampled and degraded by noise 
to illustrate the robustness of the direct, homoscedastic FBG (homo-FBG), 
heteroscedastic FBG (hetero-FBG), homoscedastic ODG (homo-ODG) and het-
eroscedastic (hetero-ODG) ellipse fitting models. 
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comes along with using more robust methods. On a computer running on 
Windows 11 operating system, equipped with an Intel i7–11800H eight- 
core processor and 16 Gb RAM, the average time elapsed, per image, to 
detect the spheres are shown in Fig. 12. amongst the edge localisation 
methods, the iterative logistic edge spread solution has the highest order 
of computational complexity, taking around ten times the computation 

time of the other edge localisation methods. Similarly, the ODG model, 
requiring two-stage iteration, exhibits high computational time as a 
result. Considering both robustness and computational complexity, the 
Gaussian and centroid edge localisation methods in conjunction with the 
heteroscedastic FBG ellipse model show favourable performance. The 
heteroscedastic FBG ellipse model provides high robustness to noise, 
similar to the ODG model, but with a much faster computation time. 

Based on the findings presented in this section, we deduce that the 
gradient-centroid-based edge localization method offers a more 
computationally less expensive alternative to the Gaussian-based 
localisation method, although it may exhibit slightly lower robustness. 
The proposed heteroscedastic FBG and ODG ellipse models significantly 
improve robustness of the geometric fitting models. When the hetero-
scedastic FBG model is implemented with the centroidal or Gaussian 
localisation method, robustness performance similar to the hetero-
scedastic ODG model is achieved with computation time reduced by up 
to a factor of ten. 

3.2. Measurement quality 

Relying on the calibrated artefact measurements shown in Table 1 
and Table 2, the quality of the measured coordinate positions of the 
vision system are evaluated. A multi-sphere artefact is suitable for use as 
a verification test artefact in the ISO and VDI/VDE standard documents 
on optical CMSs [24,25]. The performance of the vision-based CMS in 
this paper is assessed using quality parameters that are evaluated and 
reported in accordance with the VDI/VDE 2634 definitions [25]. By 
assessing the quality parameters, we can gain a comprehensive under-
standing of the performance of the image localisation algorithm options 

Fig. 11. Error comparison of fitted ellipses at increasing noise levels. Plot lines show the mean normalized error and error bars show the minimum and maximum 
error observed for 1000 ellipses. 

Fig. 12. Average image computation time for different combinations of edge 
localisation and ellipse fitting algorithms. 

Fig. 13. Size error distributions for various edge localisation methods and ellipse fitting models. The bars indicate the mean error, and the error bars show the 20 % 
and 80 % lower and upper quartiles of the error distributions respectively. 
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presented in this paper. 
Evaluated sphere sizes calculated from Eq. (15) are verified using the 

probing size error quality parameter, which is defined as the difference 
between a measured sphere diameter and the calibrated diameter of the 
same sphere [25]. Fig. 13 shows the size error distribution (within the 
20th and 80th quartile) of the artefact spheres for the different image 
edge localisation methods discussed in this paper. The size errors are 
evaluated at eleven evenly spaced positions along the travel range of the 
linear actuator from the experimental setup shown in Fig. 2. For each of 
the edge localisation methods, the size error distributions consist of 
errors evaluated from five repeated experiments using AB, AC and BC 
binocular camera pairs. From Fig. 13, the feature edges defined by the 
maximum gradient pixel positions consistently overestimate the sphere 
sizes and result in the highest systematic size errors. The weighted 
Gaussian edge localisation method moves Gaussian localisation edges 
closer to the maximum gradient pixel positions, which increases the 
systematic size error in this application. The gradient centroid and 
Gaussian edge locations exhibit the least systematic errors, with ma-
jority of the size errors falling below 20 μm. 

Probing size error qualifies the error behaviour of the measurement 
system in localised regions where the images of the spheres are 
captured. To assess measurement quality spanning multiple localised 
regions, another important quality parameter, known as length mea-
surement error, should be evaluated. Specifically, the length measure-
ment error is defined as the difference between the sphere spacings 
measured by an optical CMS and the calibrated spacings between the 
spheres, as detailed in standard documents [24,25]. The measured 
sphere coordinate positions presented in Section 2.5 are validated using 
the error in the distances between every pair of detected spheres, as 
gauged from the calibrated artefact sphere spacings. The measured 
distances between the spheres range from approximately 107 mm to 
210 mm, depending on the spacings between all sphere pairs detected in 
each image. 

Fig. 14 shows the comparison of the length measurement error of the 
binocular and trinocular CMSs for the different edge location and ellipse 
feature models given in Sections 2.3 and 2.4 respectively. The length 

errors are evaluated using the same set of images used for the size 
measurement verification. Fig. 14a) shows length errors for binocular 
camera pairs and Fig. 14b) shows the same errors for coordinate posi-
tions measured from the trinocular CMS. The bars in Fig. 14 indicate the 
mean of the length errors and the error bars show the distribution using 
a 20 % lower quartile, median and 80 % upper quartile. 

Both Fig. 14a) and Fig. 14b) show that the length measurements are 
predominantly underestimated, and the type of ellipse feature model 
employed does not have a noticeable influence on the length errors. This 
is most likely due to the low levels of noise and degradation in the 
images—the same applies to the probing size error results in Fig. 13. 
Evidently, even for a partially sampled ellipse (such as the ellipse in 
Fig. 10), the difference in the performance of the ellipse models becomes 
less apparent as the noise level diminishes, as shown in Fig. 11. 

For the edge localisation methods, the method used for extracting 
edge points significantly affects the length measurement error. In 
agreement with the probing size errors, the gradient centroid and 
Gaussian edge localisation techniques tend to yield lower mean length 
errors compared to the other methods shown in Fig. 14. Specifically, the 
maximum gradient edge localisation method tends to have the highest 
mean length error, while slightly lower errors are observed with 
weighted Gaussian edge points. 

The trinocular measurements shown in Fig. 14b) demonstrate a 
reduced systematic length error in comparison to the binocular mea-
surements shown in Fig. 14a). However, the error distributions of the 
trinocular measurements are more skewed. These findings suggest that 
the choice of edge localisation method and the number of cameras used 
can have a significant impact on the accuracy of length measurements, 
particularly when dealing with images that are not subjected to high 
levels of noise. 

3.3. Displacement test 

To further validate the measurement quality results, we employ the 
laser interferometer described in Section 2.1 to obtain reference 
displacement measurements. The laser interferometer measurements 

Fig. 14. Length measurement errors of edge localisation methods and ellipse feature models for a) the binocular CMSs and b) the trinocular CMS. The bars indicate 
the mean error and the error bars show the 20 % and 80 % lower and upper quartiles of the error distributions respectively. 
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are not influenced by either the measurement artefact or the captured 
images. The artefact is displaced by nominal displacements of 25 mm 
and the vision-based displacements, evaluated from the change in 
sphere coordinate positions, are compared. Using the reference cali-
brated displacements from the laser interferometer, the displacement 
error of the vision CMS for different edge localisation methods and 
camera combinations is given in Fig. 15. 

The vertical bars in Fig. 15 indicate the root-mean-square (RMS) of 
displacement errors while the error bars show the minimum and 
maximum error values evaluated for each binocular and trinocular 
camera combinations. The same set of images used for the measurement 
quality evaluations given in Section 3.2 are used for the displacement 
test here. 

Comparing the trinocular and binocular results in Fig. 15, the 
improvement in trinocular CMSs agrees with the improvement in length 
measurement shown in Fig. 14. The RMS error of the trinocular system is 
lower than the error of the binocular systems. 

Fig. 15 shows that trinocular measurements exhibit a consistently 
lower RMS displacement error, which corroborates the findings pre-
sented in Section 3.2. Unlike the length measurements, the weighted 
Gaussian edge localisation method performs comparably to the 
maximum gradient, gradient centroid and Gaussian edge localisation 
methods. The discrepancy in performance between the displacement 
and length measurements can be attributed to the fact that the measured 
length scales in the two measurements vary. Despite having the lowest 
error for the robustness test presented in Fig. 9, the logistic edge local-
isation method exhibits the highest error in Fig. 15. As mentioned earlier 
in Section 3.1, the performance of the logistic edge localisation method 
deteriorates when actual images are used. 

4. Conclusion 

For applications in coordinate metrology, this paper investigates 
vision algorithms used to sample, localise and model ellipse image 
features for a multi-sphere artefact measurement. The multi-sphere 
artefact spatially encodes the sphere diameters and spacings to enable 
spherical feature identification and measurement. From the localised 
image features of the artefact, we derived the metric 3D coordinates and 
size of the artefact spheres. A sphere identification algorithm is proposed 
using the spatial relationship of the artefact spheres from multi-view 

images. The performance of sphere size and coordinate measurements 
are investigated using a contact CMS and a laser interferometer. 

Amongst the methods used for image localisation of ellipse edges, 
gradient-based centroid and Gaussian methods are found to be compu-
tationally efficient and robust when the proposed gradient cut-off 
techniques are applied. In conjunction with the edge localisation 
methods, the proposed foci-based geometric ellipse model is found to be 
approximately ten times faster than the orthogonal distance-based 
geometric model for fitting the ellipse edge points. Moreover, at the 
improved speed, the foci-based model performs comparably to the 
orthogonal model in the presence of noise and other systematic errors. 

Using the proposed heteroscedastic FBG ellipse model and Gaussian- 
based or centroid-based edge localisation method, sphere size errors less 
than 25 μm and sphere-to-sphere length errors less than 100 μm are 
achievable. The heteroscedastic FBG model is also shown to improve the 
robustness of homoscedastic FBG model by up to a factor of four. The 
provided results show that the improved sphere localisation and 
detection models improves the quality of coordinate measurements. 
Future work will perform complete acceptance and verification tests to 
determine the maximum permissible error of the measurement system. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data used is access through the cited doi. We uploaded the data 
through our university and are available to every one (http://doi. 
org/10.17639/nott.7284). 

Acknowledgements 

This work is funded by the Engineering and Physical Sciences 
Research Council (EPSRC) under grant number: EP/T023805/1—High- 
accuracy robotic system for precise object manipulation (HARISOM).  

Fig. 15. Root mean square (RMS) of displacement errors evaluated for binocular and trinocular CMSs for 25 mm nominal displacements. Error bars show the 
minimum and maximum errors. 

M.A. Isa et al.                                                                                                                                                                                                                                   

http://doi.org/10.17639/nott.7284
http://doi.org/10.17639/nott.7284


Optics and Lasers in Engineering 172 (2024) 107885

15

Supplementary materials 

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.optlaseng.2023.107885. 

Appendix A. Solution of edge point localisation methods 

A.1 Logistic edge spread function model 
From the logistic function given in Eq. (1), 

f h(x) =
yh

1 + e−
(x− μh)

sh

+ dh,

we designate the logistic parameters as Ψ = [μh, sh, yh, dh] and determine the values of the parameters for which x and fh closely fit the observed ESF 
data. 

Given ESF data (xi, yi)|i=1,2…n of size n, consider fh(xi,Ψ) as the logistic function value at xi for the unknown values of Ψ. We determine Ψ by solving 

min
Ψ

(
∑n

i=1
(yi − fh(xi,Ψ))

2

)

, (A1)  

where iterations of Ψ are evaluated, starting with the initial parameter value Ψ = Ψ0. For improved stability, the minimisation problem given in 
Equation (A1) is solved for a constraint Ψ, such that Ψl < Ψ0 < Ψu. Ψl and Ψu are the respective lower and upper bounds of the values of the logistic 
parameters prescribed for the expected ESFs. Equation (A1) is implemented using the “lsqcurvefit” function of the MATLAB optimisation toolbox. 

A.2 Gaussian line spread function model 
The Gaussian edge spread model is simplified by taking the natural logarithm of Eq. (2), 

ln
(
fg(x)

)
= ln

(

y0e−
(x− μ)2

2σ2

)

,

which can be expanded and grouped into 

ln
(
fg(x)

)
= ln(y0) −

μ2

2σ2 +
2μx
2σ2 −

x2

2σ2.
(A2) 

Equation (A2) is observed to be quadratic in terms of x and is simplified as 

ln
(
fg(x)

)
= a + bx + cx2,

where a = ln(y0) −
μ2

2σ2, b =
2μ
2σ2 and c = − 1

2σ2. 
Given the LSF data (xi, yi)|i=1,2…n of size n, obtained by sampling the edge profile of a spherical feature, the following objective function is 

minimised to find parameters a, b and c: 

δ(a, b, c) =
∑n

i=1

(
ln(yi) − ln

(
fg(x)

))2
=
∑n

i=1

(
ln(yi) −

(
a + bxi + cx2

i

))2
.

The derivative of δ(a, b, c) with respect to [a, b, c] yields the following linear systems of equations 

∇δ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
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⎥
⎥
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x2

i
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. (A3) 

The global minima of the function δ is obtained when ∇δ = 0, leading to the linear problem: 
Aη = b,where η = [a, b, c]T and A and b are the respective substitutions of the matrix and vector terms in Equation (A3) corresponding to ∇δ = A⋅η 

− b. 
The unknown parameters contained in η are solved linearly using lower-upper (LU) factorisation η = A− 1b. The values of μ, σ and y0 are then 

determined from the calculated parameters η. 
In the presence of additive random noise, the contribution of the noise to the expectation of δ is proportional to 1

y2
i 
[61]. Therefore, when |yi| is large 

compared to the scale of the noise, the influence of the noise is negligible but, when |yi| is relatively small, δ is affected by noise. A weighted Gaussian 
objective function, defined as δw(a,b,c) = y2

i δ(a,b,c), reduces the sensitivity of the Gaussian objective function to random noise. Gradient of δw(a,b,c), 
in a similar way to Equation (A3), is derived and the parameter values μ, σ and y0 are obtained for the weighted Gaussian line spread function model. 
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Appendix B. Gradient of FBG objective function 

The solution of the FBG ellipse fitting problem involves using the gradient of the FBG objective function, given by Equation (6), to determine the 
gradient decent direction when minimising the objective function. The FBG error function in Equation (6) depends on the ellipse parameters Λ = [a,
cu1,cv1,cu2,cv2], where the value of the spread standard deviation σi is updated for every iteration of Λ using Equation (5). For xi = [xu, xv]

⊤, c1 = [c1u,

c1v] and c2 = [c2u, c2v], to the simplify gradient computation, define h =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(c1u − c2u)
2
+ (c1v − c2v)

2
√

, h1 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xu − c1u)
2
+ (xv − c1v)

2
√

and h2 =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xu − c2u)
2
+ (xv − c2v)

2
√

.

From the above definitions, cos(ψ i) from Equation (6) can be expressed as 

cos(ψ i) =
h2

1+h2
2 − h2

2h1h2
.

The error function in Equation (6) can now be expressed as 

δFBG(a, cu1, cv1,cu2, cv2) = 1
n
∑

i

1
σ2

i

2h1h2(h1+h2 − 2a)2

γ(h2
1+h2

2 − h2)+2h1h2
.

For the gradient computations, we define g(a, cu1, cv1, cu2, cv2) as 

g(a, cu1, cv1, cu2, cv2) =
2h1h2(h1 + h2 − 2a)2

γ
(
h2

1 + h2
2 − h2

)
+ 2h1h2

,

such that 

δFBG =
1
n
∑

i

1
σ2

i
g(a, cu1, cv1, cu2, cv2).

We can then express the gradients of g(a, cu1, cv1, cu2, cv2) as 
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Finally, the gradient of the error function is given by 
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