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A B S T R A C T

A crew pairing represents a sequence of flight legs that constitute a crew work allocation, starting and ending
at the same crew base. A complete set of crew pairings covers all flight legs in the timetable of an airline
for a given planning horizon. That determines the rosters for the crew and their quality, since those pairings
would potentially include layovers, deadheads and connection times which are the key factors which directly
contribute to the operational crew costs. Considering that crew costs form the second largest bit in the overall
operational cost, generating optimized crew pairings is a vital process for the airline companies. In this study,
a score-based adaptive greedy heuristic and a genetic algorithm are presented for solving large scale instances
of airline crew pairing problems. Both solution methods are applied to a set of real-world problem instances
from Turkish Airlines which is one of the largest carriers in the world. The empirical results show that the
proposed approaches are indeed capable of generating high quality solutions for crew pairing, even for the
large scale problem instances.
. Introduction

The airline industry and its planning problems have been the main
ocus of Operation Researchers (ORs) since 1950s (Kasirzadeh et al.,
017). Many airlines can improve their profitability by employing
dvanced optimization models & algorithms and computer hardware &
oftware (Klabjan, 2005; Herekoglu and Kabak, 2023) There is a range
f optimization problems in the competitive airline industry (Agustin
t al., 2017) to deal with, for example, flight scheduling, fleet as-
ignment, aircraft maintenance & routing, and crew scheduling (crew
airing and crew rostering) (Ahmed et al., 2022; Deveci and Demirel,
018a). Those problems are typically solved sequentially (Wen et al.,
021) and often in a stage-based manner (Dunbar et al., 2014) due to
he complex nature of the real-life instances, such as, their scale, num-
er of constraints & variables, non-linear costs and more (Muter et al.,
013; Klabjan et al., 2001b). Crew scheduling problem (CSP) is one of
he biggest airline planning problems and also the most sophisticated
ne. Because of its high level of complexity, it is generally decomposed
nto two problems: (i) crew pairing problem (CPP), and (ii) crew
ostering (or crew assignment) problem (CRP), respectively (Shafipour-
mrani et al., 2021; Ahmed et al., 2022). Since both problems carry

imilar mathematical structures, they are often tackled by employ-
ng similar methods (Desrosiers et al., 2000), including heuristic or
athematical programming techniques (Deng and Lin, 2011).
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This study focuses on the airline crew pairing problem which is an
NP-hard optimization problem (Azadeh et al., 2013; Aydemir-Karadag
et al., 2013; Saemi et al., 2022), inherently complex, and computation-
ally intensive part of airline crew scheduling (ACS) (Zeighami et al.,
2020). A crew paring is a sequence of one ore more duties/legs in a time
period which starts and ends at a home base. The lengths of pairings
for short-haul generally may range from minimum of 1 to maximum 4
of days including overnight rest, but this rule may be flexible according
to airline company or medium-haul/long-haul flight. It is actually a
sequence of flight legs representing a work pattern for crew assign-
ment (Zeren and Özkol, 2016). The aim of crew pairing optimization
is to cover all flight legs and minimizing crew costs and increasing
efficiency by generating set of feasible pairings (Cohn and Barnhart,
2003). The quality of crew pairings depend on some important factors,
such as, the number of deadheads, number of overnights and total man
day as key performance indicators. An effective and efficient solution to
CPP is crucial, since the crew costs are the second highest component
of direct operating cost after fuel (Deveci and Demirel, 2018a) For a
major airline, the salary costs of the crew members can reach hundreds
of millions of dollars per year. The main objective of the pairing opti-
mization helps to minimize operational crew costs and maximize crew
utilization (Zeren and Özkol, 2016) while respecting various complex
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constraints, such as, airline company policies, union or Federal Aviation
Administration (FAA) (Emden-Weinert and Proksch, 1999). Even small
improvements in CPP can provide significant financial benefits (million
of dollars saving) (Gershkoff, 1989; Graves et al., 1993; Hoffman and
Padberg, 1993; Barnhart et al., 1995; Kohl and Karisch, 2004; Deveci
and Demirel, 2018a; Wen et al., 2021). Because of all of these reasons
including its economic importance, the CPP has received the great
interest from the operations research community (Zeighami et al.,
2020). It is also one of the most commonly studied problems in both
industrial and academic environment.

Airline crew pairing problems are classified as daily, weekly or
monthly crew pairing problems. In daily problem, every flight leg is
supposed to be flown every day (Haouari et al., 2019) If the each
flight is repeated each week, then this problem can be solved as
weekly problem. Although the monthly problem leading to large scale
instances is the most difficult class to solve, airline companies prefer
monthly schedules the most (Deveci and Demirel, 2018b).

Selection hyper-heuristics are a class of general-purpose high-level
optimizers managing and mixing a set of low level heuristics whether
constructive or perturbative. This study proposes a novel squeaky-
wheel (Joslin and Clements, 1999) inspired adaptive greedy heuristic,
controlling a set of constructive heuristics, for large-scale crew par-
ing. This approach can be considered as a non-stochastic selection
hyper-heuristic as none of its components have any randomness. Its
performance is compared to a novel genetic algorithm (GA) used as a
hyper-heuristic mixing constructive low level heuristics. Additionally,
in this study, we provide a set of new benchmark instances obtained
from a major airline company, Turkish airlines using their publically
available schedule for future research. We have tested our approaches
across those instances. The rest of the paper is organized as follows:
Section 2 mentions literature review. Fundamental definitions are intro-
duced in Section 2.2. Section 4 gives some notation and mathematical
formulation.

2. Background

2.1. Related work

The crew scheduling problem (CSP) has been studied extensively
for many years by the OR community and various techniques rang-
ing from exact methods to heuristics have been proposed. Although
significant results are achieved and optimal algorithms do exist for
various instances of this problem, nevertheless not to the satisfaction
of all airlines (Arabeyre et al., 1969; Baker and Fisher, 1981; Deveci
and Demirel, 2018b). CSP plays an important role in the OR literature
because of not only its potential economic impact but also its chal-
lenging nature as a real-world problem influencing the development
and improvement of important optimization solution methodologies in-
cluding branch-and-price (Quesnel et al., 2020), branch-and-cut (Hoff-
man and Padberg, 1993), lagrangian relaxation (Beasley and Cao,
1996; Sandhu and Klabjan, 2007), stabilization (du Merle et al., 1999),
shortest path algorithms (Lavoie et al., 1988; Hjorring and Hansen,
1999; Makri and Klabjan, 2004; Borndörfer et al., 2006), benders
decomposition (Mercier et al., 2005; Zeighami and Soumis, 2019) and
heuristics (Salazar-González, 2014; Quesnel et al., 2017; Saemi et al.,
2022).

Focusing on crew pairing problem (CPP), mathematical program-
ming based exact methods including branch&cut, branch&bound, col-
umn generation based heuristics, branch&price (Levine, 1996; Klabjan
et al., 2001a; Barnhart et al., 2003; Tahir et al., 2022); have been pro-
posed as solution methods. However, when the problem size increases
to large-scale, it becomes extremely difficult to find a high quality
solution in reasonable amount of time using mathematical program-
ming and sometimes even a solution might not be found. Klabjan et al.
(2001a) proposed LP relaxation of the set partitioning problem for solv-
ing large-scale airline crew scheduling problem. They have generated
2

roughly half a billion pairings and selected nearly 10 million pairings
with low reduced cost from within. Branch-and-bound heuristic is used
for column selection. Yaakoubi et al. (2020) integrated a machine
learning and mathematical programming permits to solve larger crew
pairing problems.

Meta-heuristic algorithms have also been applied to CPP. The per-
formance of meta-heuristics are usually dependent on the initial al-
gorithmic parameter settings and cannot guarantee that the solutions
obtained are optimal (Doi et al., 2018). Azadeh et al. (2013) presented
various meta-heuristics, including ant colony optimization (ACO), ge-
netic algorithm (GA), particle swarm optimization (PSO), and hybrid
algorithms based on GA and ACO for solving the crew pairing problems
and applied to synthetic small scale flight data. The hybrid PSO outper-
formed the other approaches across 20 instances. Saemi et al. (2022)
presented an integrated mathematical model to solve crew pairing and
rostering problems using an ant colony optimization algorithm.

A hyper-heuristic is a search method or learning mechanism that
selects or generates low level heuristics to solve computationally hard
problems (Drake et al., 2020). The main characteristic of hyper-
heuristics is that they search the space of heuristics instead of solutions
directly (Burke et al., 2019). The iterative search process carried out
at each step by a selection hyper-heuristic can usually be decomposed
into two stages: heuristic selection and move acceptance (Drake et al.,
2020). Selection hyper-heuristics have been successfully applied to
many real-world problems, including timetabling (Burke et al., 2003;
Kendall and Hussin, 2004; Burke et al., 2007; Pillay and Banzhaf,
2009), bin-packing (Ross et al., 2002; López-Camacho et al., 2014),
vehicle routing (Walker et al., 2012), personnel scheduling (Cowling
et al., 2002), and cutting stock (Terashima-Marín et al., 2005). In none
of the previous studies, a hyper-heuristic is used for crew pairing and
we introduce two novel methods in this study.

2.2. Airline crew pairing terminology

Crew pairings generated during crew pairing optimization phase
must be legal and satisfy all the constraints of collective agreements,
union’s specific work rules, governmental regulations, company poli-
cies and FAA, which often differ from one airline to another. Some of
the types of constraints can be defined as follows: Minimum connection
times must be within a certain range which can be between 30, 60 or
90 min depending on the connection airport. Total duty time must not
exceed 12–14 h depending on the starting time of the duty and/or crew
composition. Minimum rest time can be between 8–36 h depending
on duration of the flight duty. A crew pairing can touch maximum 4
days (Zeren and Özkol, 2016). A sample crew pairing can be seen in
Table 1. Some of the basic airline terminology is covered in Table 2.

3. Proposed approach

In the literature and in the industry, mathematical based meth-
ods have been heavily studied and used to solve CSPs. Even though
there are plenty of papers on solving CSPs using meta-heuristics such
as genetic algorithms (GA), particle-swarm optimization (PSO) etc.,
none of them are tested using the large scale instances of CSP (De-
veci and Demirel, 2018b). Hence, this situation offers an opportu-
nity for researchers who work in the field of heuristic optimiza-
tion, including meta-heuristics, and hyper-heuristics to design and test
new approaches. In previous studies, each solution methods is often
tested on either synthetic problems or particular problem instances
obtained from particular airline companies which are often not acces-
sible. Hence, the lack of public benchmark datasets in this field is an
other issue for the researchers. Even for the small and medium size CSP
instances, this makes it almost impossible to compare the performance
of different heuristic optimization approaches. Contributing to the liter-
ature and to further developments by making the datasets used public
would be an other contribution of this study to the field. Therefore
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Table 1
A sample crew pairing.

Flight duty nr Duty start Duty end Departure time Arrival time Dep. Arr.

1 25.03.15 10:00 25.03.15 11:15 25.03.15 13:20 IST TLV
25.03.15 14:20 25.03.15 16:25 TLV IST

25.03.15 23:05 25.03.15 17:25 25.03.15 22:35 IST ALA
Rest period – – – – – –
2 26.03.15 19:45 27.03.15 03:25 26.03.15 20:45 27.03.15 02:55 ALA IST
Rest period – – – – – –
Table 2
The definitions of some basic concepts of crew scheduling.

Basic concepts Definitions

Flight/Flight leg Flight leg is the most basic input for crew scheduling. Each flight leg has the following characteristics: flight no, place of
departure, place of arrival, departure time, arrival time, flight (block) time and fleet type.

Duty/Flight Duty A duty is constituted by one ore more consecutive flight legs and means a working day for a crew (Klabjan and Schwan,
2001).

Pairing A pairing is composed of flight legs of aircraft rotations, starts and finally ends at the same home base. It is a sequence of
duties and rest periods. In short and medium-haul problems, pairings usually take 1–4 days. Longer pairings are allowed
in long-haul problems (Kasirzadeh et al., 2017).

Home/crew base A home base is a city or an airport where all or part of the flight crew of airline resides. Major airline companies usually
have more than one home bases. Therefore all the pairings must start and end at the same home base and crew pairings
generated for each home base must be proportional to the numbers of the crew who resides on that home base.

Connection time Time period between two consecutive flight legs.

Rest period Time period between two flight duties is named rest period. During this period crew is free of any duty and must have
rest for the next duty at the hotel they are taken to.

Deadhead Deadhead crew is passive (not working) members of the flight. They are just transported to an other location like
passengers to perform an other duty (Andersson et al., 1998).

Total duty time Time period that starts with briefing period that takes place just before the first leg of the duty and ends at the end of
debriefing period that takes place at the end of last leg of the duty (Demirel and Deveci, 2017).

Briefing period Time period that is mainly reserved for preparation purposes for the crew just before the first leg of the duty. It is
generally applied as 30 or 60 min depending on whether the duty is the first duty of the pairing.

Debriefing period Time period that is reserved for doing necessary arrangements, data collections etc. just before ending the flight duty.
the main motivation of this study can be summarized as developing
effective heuristic optimization approaches for solving large scale crew
pairing problems and encourage further developments in the field by
making the used datasets public.

Two different heuristic optimization approaches that can be consid-
ered as hyper-heuristics were developed and compared in this study:

• A score based ordering heuristic (𝑆𝐵𝐻) which is a novel adaptive
greedy heuristic that is inspired by squeaky-wheel optimization
method (Joslin and Clements, 1999). It uses difficulty scores
calculated for each leg after each pairing generation using val-
ues obtained from some sub-heuristics such as CoverabilityDegree
(CD), DeadheadingHeuristicModifier (DHM) and ActivityHeuristic-
Modifier (AHM) which are discussed in detail in Section 4.1.
Ordering (priority) of the legs is dynamically changed according
to their difficulty scores and crew pairings are generated accord-
ing to this order by solving a sub optimization problem that was
modeled as a resource constrained shortest path problem (RCSP).
This approach can also be called an adaptive hyper-heuristic that
uses combination of heuristic orderings.

• A novel genetic algorithm (𝐺𝐴) model used as a hyper-heuristic
mixing constructive low level heuristics that is used for find-
ing optimum ordering (priority) of the legs and generates crew
pairings by solving the same RCSP problem.

3.1. Main problem model

CSP can generally be represented as a set partitioning (SP) (Anbil
et al., 1991; Desaulniers et al., 1997; ReVelle and McGarity, 1997;
Dawid et al., 2001; Doi et al., 2018) or a set covering (SC) prob-
lem (Baker and Fisher, 1981; Aydemir-Karadag et al., 2013; Díaz-
Ramírez et al., 2014; Demirel and Deveci, 2017) in the literature.
Each column represents a generated pairing and each row represents
3

a different flight leg. If a flight leg was covered more than once,
this model should be considered as SC problem. Over-covered flights
represents deadhead flights.

The mathematical formulation of this study was formulated as set
covering model because it perfectly satisfies all the representation
requirements of CPP. The mathematical formulation of SC for CPP can
be defined as follows:

min
∑

𝑝∈𝑃
𝑐𝑝𝑥𝑝 (1)

s.t.
∑

𝑝∶𝑓∈𝑝
𝑥𝑝 ≥ 1, ∀𝑓 ∈ 𝐹 (2)

𝑥𝑝 ∈ {0, 1}, ∀𝑝 ∈ 𝑃 (3)

In the Eq. (1), 𝑐𝑝 indicates cost value for each crew pairing in 𝑃 and
𝑥𝑝 is the decision variable which indicates whether the crew pairing is
in the solution set. Hence, Eq. (1) gives the total cost of the solution.
Eq. (2) is an inequality constraint which guarantees the full covering
of all flights in F. If Eq. (2) gives a value greater than 1 for a flight
in F, that flight is a dead-head flight. And Eq. (3) represents standard
constraints that designate ranges for decision variables of the problem.

3.2. Outline

The ultimate aim of the proposed approaches is to find optimized
leg orderings (priorities) that would eventually generate solutions of
good quality when pairings were generated in that order. Both of the
developed approaches use some common codes for their initialization
and solution generation phases. As can be seen from Fig. 1 both of
them start with the same main initialization routine and run almost
the same solution generation procedure. They only differ in the internal

mechanism they use for leg orderings.
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Fig. 1. Main schema of the proposed approaches.

The score based approach (𝑆𝐵𝐻) uses a score based dynamic or-
dering that was achieved by calculating difficulty score for each leg
after each pairing addition to the solution. Difficulty score used in
this study was calculated using a combination of some sub-heuristics
such as CoverabilityDegree (CD), DeadheadingHeuristicModifier (DHM)
and ActivityHeuristicModifier (AHM).

The GA based approach obtains leg orderings directly from chro-
mosomes and manipulates ordering information coded on the chromo-
somes using GA operators during the optimization.

3.3. Initialization

In initialization, both approaches run the same phases as depicted in
Fig. 2. Initialization retrieves all the legs as input for the optimization
period, first.

Then the optimization context is formed to store all the informa-
tion generated from input data; including leg lists, duty lists, duty
network and rule implementations. This process is followed by the
initialization of the rule engine which is responsible for all sort of
validation checks. After that, all the airports are extracted from the
leg data and all the legs are validated and classified. Then all the
valid duties are generated using a depth-first-search implementation.
Every duty instance is validated using the rule engine during the duty
generation. After generating all the possible duties, duty network which
was intensively used during the pairing generation (shortest path) step
of the approaches is built. For the details of the duty network used
in this study, readers can refer to Zeren and Özkol (2016). After the
duty network is built, pairing generation check for all duties and legs is
performed in order to know whether a duty and/or leg could be covered
by a valid pairing before the optimization phase starts. At the last step
of the initialization phase, default values of associated state variables
of all legs are calculated and set. The default values calculated in this
phase are used at the beginning of each iteration to reset/assign leg
states. Therefore, instead of calculating these values in each iteration,
using already calculated default leg state values significantly improves
the performance of the approach.
4

Fig. 2. Initialization of the system.

3.4. Rule engine

The rule engine is designed as a separate component within the
approach for improved manageability and maintainability. To control
and validate each step of the airport registration, leg registration, duty
generation, and pairing generation, following standard interfaces are
developed.

• 𝐼𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑒𝑟 is used to initialize and classify instances of airports
and legs before they are registered. Some attributes of airports
such as location (international or domestic), status (home base or
not) are determined by calling all registered implementations of
this interface.

• 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝐶ℎ𝑒𝑐𝑘𝑒𝑟: A leg to leg connection while building a
duty or, a duty to duty connection while building a crew pairing
can be established by calling all registered implementations of
this interface.

• 𝐴𝑝𝑝𝑒𝑛𝑑𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐶ℎ𝑒𝑐𝑘𝑒𝑟: Addition of a leg to a duty or, addition
of a duty to a pairing can be possible after calling all registered
implementations of this interface.

3.5. LegState

𝐿𝑒𝑔𝑆𝑡𝑎𝑡𝑒 is a special data structure that was used to keep the status
f legs at any time and at any step of the solution generation procedure.
t is always maintained during the optimization and some critical values
elated to legs are stored. The most important 𝐿𝑒𝑔𝑆𝑡𝑎𝑡𝑒s are as follows:

• 𝑁𝑢𝑚𝑂𝑓𝐶𝑜𝑣𝑒𝑟𝑖𝑛𝑔𝑠 (𝑁𝑜𝐶): Indicates how many times a leg was
covered. At the beginning of each iteration, this state is reset to
zero ‘‘0’’ for all the legs. During the solution generation phase, it
is updated regularly after each pairing generation. When a crew

pairing was generated, 𝑁𝑜𝐶 values of all the legs of that pairing
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are increased by one ‘‘1’’. If 𝑁𝑜𝐶 value of a leg was greater
than one ‘‘1’’, this means that leg was covered by more than one
pairing and except one of those pairings, all the other pairings
would include that leg as deadhead.

• 𝑁𝑢𝑚𝑂𝑓𝐼𝑛𝑐𝑙𝑃 𝑎𝑖𝑟𝑠𝑊 𝑜𝐷ℎ (𝑁𝑜𝑃 ): Indicates how many crew pair-
ings left that would cover a particular leg in the search space,
without causing any deadheads. Like 𝑁𝑜𝐶, an instance of 𝑁𝑜𝑃
variable is stored and updated for each leg in the timetable.

.5.1. LegState initialization
During the system initialization default values of all leg state vari-

bles are calculated and set. Default values of 𝑁𝑜𝐶 variables of all legs
in the system is zero ‘‘0’’. But calculation of default values of 𝑁𝑜𝑃
variables is a more computationally expensive task. As it is illustrated
in Alg. 1, all the possible combinations of pairings are enumerated to
calculate 𝑁𝑜𝑃 values of each leg.

As it is discussed in the experimental results section, enumera-
tion of all possible pairings requires high computational power and
significantly reduces performance of the algorithm. With the help of
performance benchmarks performed, only crew pairings that include
one or two duties were enumerated. Therefore enumeration for crew
pairings with three or more duties are not carried out.

As illustrated in Alg. 1, initialization process to calculate default
values of 𝑁𝑜𝑃 variables is started with generating an empty 𝑃𝑎𝑖𝑟 on
ine 2. On line 3–5, all the deadhead free, home base departed duties
re evaluated in a loop. On line 6, the duty found is added to the
𝑎𝑖𝑟. On line 7–8, if 𝑃𝑎𝑖𝑟 was a one duty pairing, 𝑁𝑜𝑃 values of the

egs that are included in 𝑃𝑎𝑖𝑟 is increased by calling 𝑖𝑛𝑐𝐿𝑒𝑔𝑆𝑡𝑎𝑡𝑒()
rocedure. If the 𝑃𝑎𝑖𝑟 was not complete, on line 10, recursive procedure
𝑖𝑛𝑑𝑃𝑎𝑖𝑟𝑖𝑛𝑔𝑠() is called to find connection duties that would com-
ose new complete pairings. In 𝑓𝑖𝑛𝑑𝑃𝑎𝑖𝑟𝑖𝑛𝑔𝑠() procedure, algorithm
earches for connection duties that will eventually generate complete
𝑎𝑖𝑟s and increase 𝑁𝑜𝑃 variables if any new pairing was found.

In all steps of this enumeration procedure, rule engine was inten-
ively called to validate pairings enumerated.

Algorithm 1 𝐿𝑒𝑔𝑆𝑡𝑎𝑡𝑒 initialization
1: procedure initLegStates(𝐷𝑢𝑡𝑖𝑒𝑠)
2: Pair ← {}
3: for all 𝐷𝑢𝑡𝑦 in 𝐷𝑢𝑡𝑖𝑒𝑠 do
4: if 𝐷𝑢𝑡𝑦 has no deadheads then
5: if 𝐷𝑢𝑡𝑦 starts from the home base then
6: Pair ← Pair + Duty
7: if 𝐷𝑢𝑡𝑦 ends at the home base then
8: incLegState(Pair)
9: else
0: findPairings(Pair, Duties)
1: Pair ← Pair - Duty
2: procedure findPairings(𝑃𝑎𝑖𝑟,𝐷𝑢𝑡𝑖𝑒𝑠)

13: for all 𝐷𝑢𝑡𝑦 in 𝐷𝑢𝑡𝑖𝑒𝑠 that are addable to 𝑃𝑎𝑖𝑟 do
14: if 𝐷𝑢𝑡𝑦 has no deadheads then
15: Pair ← Pair + Duty
16: if 𝐷𝑢𝑡𝑦 ends at the home base then
17: incLegState(Pair)
18: else
19: findPairings(Pair, Duties)
20: Pair ← Pair - Duty
21: procedure incLegState(𝑃𝑎𝑖𝑟)
22: for all 𝐿𝑒𝑔 in 𝑃𝑎𝑖𝑟 do
23: nop[Leg] ← nop[Leg] + 1

3.5.2. LegState update
After each pairing generation during the optimization, values of all

leg state variables are updated. 𝑁𝑜𝐶 variables are increased by one ‘‘1’’
or all legs that were included in new pairings generated and added to
he solution. On the contrary, 𝑁𝑜𝑃 variables of the affected legs are
ecreased from the default values they obtained in the beginning of
he solution generation.

Similarly, in Alg. 2, update process to decrease values of 𝑁𝑜𝑃
variables is started with generating an empty 𝑃𝑎𝑖𝑟 on line 2. On line 3–5
5

all the deadhead free duties that include any of the legs from 𝑁𝑒𝑤𝑃𝑎𝑖𝑟
re evaluated in a loop. The rest of the procedure is very similar to the
nitialization procedure described above. The most important difference
etween initialization and update procedures is that in the initialization
rocedure, duties that do not start from home base does not trigger
he rest of the procedure. Because the aim of the initialization is
numerating all the pairs possible and therefore duties that do not start
rom home base would be considered in pairings that were already
tarted by home base departed duties. But in the update procedure, as
an be seen in lines 13–14 home base arrival duties can trigger the
rocedure as well.

Since, only crew pairings that include one or two duties were enu-
erated as described above, for the sake of ease, Alg. 2 was depicted

s not to expose the flow needed for duties that neither start nor end
t the home base.

Algorithm 2 𝐿𝑒𝑔𝑆𝑡𝑎𝑡𝑒 update
1: procedure updateLegStates(𝑁𝑒𝑤𝑃𝑎𝑖𝑟,𝐷𝑢𝑡𝑖𝑒𝑠)
2: Pair ← {}
3: for all 𝐿𝑒𝑔 in 𝑁𝑒𝑤𝑃𝑎𝑖𝑟 do
4: for all 𝐷𝑢𝑡𝑦 in 𝐷𝑢𝑡𝑖𝑒𝑠 that include 𝐿𝑒𝑔 do
5: if 𝐷𝑢𝑡𝑦 has no deadheads then
6: Pair ← Pair + Duty
7: if 𝐷𝑢𝑡𝑦 starts from the home base then
8: if 𝐷𝑢𝑡𝑦 ends at the home base then
9: decLegState(Pair)
10: else
11: findPairings(Pair, Duties, fw)
12: else
13: if 𝐷𝑢𝑡𝑦 ends at the home base then
14: findPairings(Pair, Duties, bw)
15: Pair ← Pair - Duty
16: procedure findPairings(𝑃𝑎𝑖𝑟,𝐷𝑢𝑡𝑖𝑒𝑠,𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛)
17: for all 𝐷𝑢𝑡𝑦 in 𝐷𝑢𝑡𝑖𝑒𝑠 that are addable to 𝑃𝑎𝑖𝑟 towards 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 do
18: if 𝐷𝑢𝑡𝑦 has no deadheads then
19: Pair ← Pair + Duty
20: if 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = fw then
21: if 𝐷𝑢𝑡𝑦 ends at the home base then
22: decLegState(Pair)
23: else
24: findPairings(Pair, Duties, fw)
25: else
26: if 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = bw then
27: if 𝐷𝑢𝑡𝑦 starts from the home base then
28: decLegState(Pair)
29: else
30: findPairings(Pair, Duties, bw)
31: Pair ← Pair - Duty
32: procedure decLegState(𝑃𝑎𝑖𝑟)
33: for all 𝐿𝑒𝑔 in 𝑃𝑎𝑖𝑟 do
34: nop[Leg]← nop[Leg] - 1

3.6. Solution generation

Solution generation is a common phase for both of the approaches.
At each iteration of the score based approach (SBH), a complete set of
crew pairings that constitutes a complete solution to the crew pairing
problem is generated. Similarly in the 𝐺𝐴 based approach, complete
solution instances for each newly generated chromosome is built and
therefore fitness calculation is done.

As illustrated in Fig. 3, solution generation phase is started with the
leg list provided and process is triggered with the selection of a flight
leg.

In the score-based approach, this flight leg selection procedure
was accomplished using dynamically calculated difficulty scores. An
uncovered leg with the highest difficulty score is selected first for the
pairing generation. After generation of a pairing for the selected flight
leg, all the related leg states and therefore difficulty scores are updated.
After leg states were updated, a new uncovered leg is selected using
updated difficulty scores and same procedures are applied until no leg
left remains uncovered.
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Fig. 3. Typical solution generation flow.

Fig. 4. Typical pairing generation flow.

In the GA based approach, leg ordering is determined by the chro-
osomes and there is no dynamic component that updates the order.
he rest of the procedure is like the score based approach as described
bove.

.7. Pairing generation

Pairing generation is the most important component of the solution
eneration phase. As can be seen from Fig. 4, pairing generation is
riggered with a leg. The input leg is chosen according to the difficulty
cores in the (SBH) approach or the leg ordering in chromosomes for
he 𝐺𝐴 based approach. Then RCSP is solved over the sub network that
as extracted by exploring the full duty network. And finally the best
airing that would give best 𝑁𝑜𝑃 values for the rest of the solution is
elected.

The first step of the pairing generation is the network explore to find
est paths that eventually would generate best pairings for the selected
eg. As can be seen from Fig. 5, first, all root duties that include selected
eg are fetched. Then they are ordered according to their position to the
ome base. First, one day duties (SE) and home base departed duties (S)
re ordered and placed on the first positions. Then connection duties
C) that neither start nor end at the home base are placed. And finally
6

ome base arrival duties (E) are placed to the last positions.
Fig. 5. Flow of network explore.

First, the duty network is explored towards forward direction in
the time line starting from non home base arrival duties (S + C) that
constitute the first part of the root duties. During this search, dept-first-
search (DFS) algorithm was used and the best possible paths for all duty
nodes were stored in a data structure. For each duty node, maximum
three ‘‘3’’ (maximum pairing day limit - 1) paths were stored as to
include best alternatives for all length combinations of pairings. These
paths include all the connected duties starting from the node owner to
home base arrival duties (E). At the end of DFS phase, many paths that
would generate complete pairings (S→E) and incomplete paths (C→E,
E) that would generate incomplete pairings those starting duties have
not been found yet are found.

The last step of the network explore phase is completing the incom-
plete paths by directing the search procedure in the backward direction
in the time line. During the backward search breath-first-search (BFS)
algorithm was used and home base departed duties (S) were searched
for the incomplete paths found. At the end of BFS phase, best possible
paths of all combinations possible starting from all home base departed
duties (S) are found. As shown in Fig. 5, {𝑆𝐸0,… , 𝑆𝑖,… , 𝑆𝑗 ,… , 𝑆𝑘} are
the starting nodes of paths that would yield possible pairings.

During the DFS and BFS phases, paths and their quality are checked
and best ones are stored. Eq. (6) was used to compare qualities of two
paths of the same length met on the same node. The first term Eq. (4)
calculates the difference of number of already covered legs (𝑁𝑜𝐶) of
the path candidates. Higher numbers would mean more deadheads
generated. Therefore the path with the small 𝑁𝑜𝐶 value is preferred in
first two lines of Eq. (6). If 𝑁𝑜𝐶 values of the paths were equal, Eq. (5)
is calculated. Eq. (5) gives the difference of total block time (𝑏𝑡) of
active legs (𝑙act legs that are not deadheads) of the paths. Higher values
of active block time (𝑎𝑏𝑡) is preferable because duties and pairings with
higher (𝑏𝑡) values would cover more legs and eventually would help
to decrease number of duties (total man day) of the solution. Total
man day is considered as one of the most important cost factors in
crew pairing generation. Therefore the path with the higher 𝑎𝑏𝑡 value
is preferred in 3th and 4th lines of Eq. (6).

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒dh(𝑝1, 𝑝2) =
∑

𝑙 in 𝑝1

𝑁𝑜𝐶𝑙 -
∑

𝑙 in 𝑝2

𝑁𝑜𝐶𝑙 . (4)

𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒act(𝑝1, 𝑝2) =
∑

𝑏𝑡𝑙 -
∑

𝑏𝑡𝑙 . (5)

𝑙act in 𝑝1 𝑙act in 𝑝2
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𝑝

𝑔𝑒𝑡𝐵𝑒𝑠𝑡(𝑝1, 𝑝2) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑝1, if (𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒dh(𝑝1, 𝑝2) < 0).

𝑝2, if (𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒dh(𝑝1, 𝑝2) > 0).

𝑝1, if (𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒act(𝑝1, 𝑝2) > 0).

𝑝2, if (𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒act(𝑝1, 𝑝2) < 0).

𝑝1, otherwise.

(6)

During the DFS and BFS phases, some tree pruning techniques were
employed for performance improvement purposes. First, all the nodes
visited during the DFS and BFS are marked and if search algorithm
revisits that node later, all the sub tree calculations that has already
been done starting from that node would be prevented. The second
strategy is based on doing quality checks with the paths that already
found. If a node would not yield a better path in terms of quality
metrics, that node would be disregarded and sub tree search from that
node would be prevented.

At the end of the pairing generation phase a list of best paths
𝑆𝐸0,… , 𝑆𝑖,… , 𝑆𝑗 ,… , 𝑆𝑘 (Fig. 5) are found. From this list, best paths
that can generate valid crew pairings are selected using Eq. (6). And
finally four ‘‘4’’ best valid crew pairings are generated with different
lengths (1d, 2d, 3d, 4d). At the last step one of these four pairings is
selected for adding to the generated solution.

To decide which pairing to add Eq. (7) was used in both approaches.
In Eq. (7) algorithm calculates how 𝑁𝑜𝑃 would change for all the
uncovered legs (𝑙ucvr) in the system and chooses the pairing that would
generate the maximum 𝑁𝑜𝑃 value at the end.

max
1d,2d,3d,4d

[min
𝑙ucvr

[𝑁𝑜𝑃 (𝑙)]]. (7)

In this strategy it was aimed to keep the amount of diversity high
in search space and not stuck with less quality options and more
deadheads in early stages during the optimization.

4. Proposed approaches

As already outlined before there are two high level heuristics were
developed and compared in this study (Fig. 1).

4.1. Score-based adaptive greedy heuristic

The main difference of the score based heuristic is that it controls
optimization’s direction based on the difficulty scores calculated adap-
tively for each leg in the system as a solution is constructed. Difficulty
score was calculated as described in Eq. (8).

𝑑𝑖𝑓𝑓𝑆𝑐𝑜𝑟𝑒𝑙(𝑡) = 𝑤CD × 𝑛𝑜𝑟𝑚(𝐶𝐷𝑙)

= 𝑤DHM × 𝑛𝑜𝑟𝑚(𝐷𝐻𝑀𝑙(𝑡))

= 𝑤AHM × 𝑛𝑜𝑟𝑚(𝐴𝐻𝑀𝑙(𝑡)).

(8)

where,

𝑛𝑜𝑟𝑚(𝐶𝐷𝑙) =
𝐶𝐷𝑙

𝐶𝐷max

𝑛𝑜𝑟𝑚(𝐷𝐻𝑀𝑙(𝑡)) =
𝐷𝐻𝑀𝑙(𝑡)

𝐷𝐻𝑀max(𝑡)

𝑛𝑜𝑟𝑚(𝐴𝐻𝑀𝑙(𝑡)) =
𝐴𝐻𝑀𝑙(𝑡)

𝐴𝐻𝑀max(𝑡)
𝑤CD +𝑤DHM +𝑤AHM = 1

(9)

As seen in Eq. (8), difficulty score used in this study has three
components. All of the components contribute to the difficulty score
with the associated weights. The first component is 𝐶𝑜𝑣𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐷𝑒𝑔𝑟𝑒𝑒
(𝐶𝐷) which is a dynamic component that is based on 𝑁𝑜𝑃 values
of the legs and updated after each pairing addition to the solution.
However this component is not enough for managing the direction of
7

the optimizer. Other two components are used to manage optimization
direction and avoid generating same or similar pairings/solutions.
𝐷𝑒𝑎𝑑ℎ𝑒𝑎𝑑𝑖𝑛𝑔𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑟 (𝐷𝐻𝑀) and 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐
𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑟 (𝐴𝐻𝑀) are the components that are updated at the end of
each iteration based on deadheading and pairing quality metrics. All
these terms are also normalized as seen in Eq. (9) with the maximum
values of the values obtained at the current solution step.

• Coverabilty Degree (𝐶𝐷)
𝐶𝑜𝑣𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐷𝑒𝑔𝑟𝑒𝑒 (𝐶𝐷) of a leg and its maximum value to
calculate the final normalized 𝐶𝐷 (𝑛𝑜𝑟𝑚(𝐶𝐷𝑙)) was calculated
using Eq. (10). As can be seen from the formula, higher values of
(𝐶𝐷) mean existence of less number of pairings and high difficulty
score for an associated leg.

𝐶𝐷𝑙 = 𝑁𝑜𝑃max −𝑁𝑜𝑃𝑙

𝐶𝐷max = 𝑁𝑜𝑃max
(10)

• Heuristic Modifiers
Heuristic modifiers are the main factor that drives the opti-
mization direction with the associated weights. Without heuristic
modifiers optimization would generate the same solution at each
iteration. They also can be considered as a learning mechanism
where outputs of the important KPIs (Key Performance Indicators)
(𝐷𝐻𝑀 , 𝐴𝐻𝑀) are updated in each iteration and used to form
new solutions. There are two heuristic modifier terms in the main
difficulty score equation (Eq. (8)). These terms are updated at
the end of each iteration after solution generation phase was
completed.

– Deadheading Heuristic Modifier (𝐷𝐻𝑀)
In the beginning of the optimization this value equals to
zero ‘‘0’’ for all legs. After each solution generation during
the optimization, legs’ 𝐷𝐻𝑀 values are increased if any
associated leg had deadhead repetitions in the solution.
𝐷𝐻𝑀 was updated using Eq. (11).

𝐷𝐻𝑀𝑙(𝑡 + 1) = 𝐷𝐻𝑀𝑙(𝑡) +𝑁𝑜𝐶𝑙 − 1. (11)

– Activity Heuristic Modifier (AHM)
In the beginning of the optimization this value equals to
zero ‘‘0’’ for all legs. After each solution generation during
the optimization, legs’ 𝐴𝐻𝑀 values are increased if any as-
sociated leg was covered by a duty that has less active block
time (𝐴𝐵𝑇𝑑𝑙 ) than a specified threshold (𝐴𝐵𝑇th). 𝐴𝐻𝑀 was
updated using Eq. (12). 𝐴𝐵𝑇th value used in this study was
4 h.

𝐴𝐻𝑀𝑙(𝑡+1) =

{

𝐴𝐻𝑀𝑙(𝑡) + 𝐴𝐵𝑇th − 𝐴𝐵𝑇𝑑𝑙 , if (𝐴𝐵𝑇𝑑𝑙 < 𝐴𝐵𝑇th)
𝐴𝐻𝑀𝑙(𝑡), otherwise.

(12)

4.2. GA-based hyper-heuristic

GA is a widely studied technique used to solve wide range of
optimization problems. In this study, GA was used to solve crew pairing
problem which is a well known combinatorial optimization problem.
As seen in Fig. 1, in this approach, GA is used as an ordering opti-
mizer. It basically sequences the legs in the chromosomes to produce
high quality solutions running the solution generation procedure ex-
plained earlier using those ordered legs. The operators employed in this
approach were as follows:

• Row based chromosome design
In this study row-based chromosome design was used. As can be
seen from Fig. 6, in this design each gene in the chromosome
represents a different leg. During the fitness calculation (solution
generation) of each newly generated chromosome, leg orders
provided by chromosomes were used. Naturally, lengths of all
chromosomes generated were equal to number of legs in the
system.
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Fig. 6. Row based chromosome.

• Cycle crossover
Cycle crossover was used as a crossover operator. It first identifies
a number of cycles between two selected parent chromosomes
and then to form child chromosomes these cycles are copied from
parent chromosomes in turn. For more detail readers can consult
to Oliver et al. (1987).

• Swap mutation
In this approach, a straight-forward random gene swap operator
was used as a mutation operator. In this implementation, all the
genes are visited in a loop. For each gene, a random number is
generated between [0–1). If the number generated was below the
mutation rate chosen, swap operation is performed with another
randomly selected gene from the same chromosome. In this study
𝑚𝑟𝑎𝑡𝑒 = 0.02 was used as the mutation rate.

• Binary tournament selection
Parent chromosomes to put into crossover operation to generate
new chromosomes are selected using binary tournament selec-
tion. In this implementation two chromosomes are randomly
selected and the best one are chosen as the first parent. The same
selection is done to determine the second parent. And eventually
two selected parents are put into the cycle crossover operation to
generate new offsprings.

• Population and replacement
Because of the large size of the problems solved in this study, the
population size was limited to 20. Elitist strategy which always
keeps certain amount of best chromosomes in the population was
used. For doing that in each new generation two ‘‘2’’ of the best
chromosomes were fixed at the top of the next generation and the
rest of it was selected using the same binary tournament selection.

4.3. Solution evaluation

In both of the approaches Eq. (13) was used to compare qualities
of two solutions. Two main terms are used in Eq. (13). First one
is deadhead related term 𝑑ℎ𝐷𝑖𝑓𝑓 and the second one activity cost
related term 𝑎𝑐𝑡𝐷𝑖𝑓𝑓 . 𝑑ℎ𝐷𝑖𝑓𝑓 term basically calculates differences
of number of deadhead legs between two solutions. 𝑎𝑐𝑡𝐷𝑖𝑓𝑓 term
alculates total amount of difference in terms of active block time
hortage in all duties between two solutions. The first term penalizes
eadheads while the other one penalizes duties with less active block
ime than a specified threshold value (𝐴𝐵𝑇th) and helps to decrease
umber of duties needed and increases crew utilization. Both terms
ere multiplied by new weights that are calculated using 𝑤DHM and
AHM which were previously used in difficulty score calculations. Since
q. (13) does not include the other weight 𝑤𝐶𝐷 which exists in Eq. (9),

new weights were normalized with each other. Thus both, difficulty
score calculations and solution cost evaluation were linked with the
usage of the same weights.

𝑔𝑒𝑡𝐵𝑒𝑠𝑡(𝑠1, 𝑠2) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑠1, if
⎛

⎜

⎜

⎜

⎝

𝑤DHM
𝑤DHM +𝑤AHM

× 𝑑ℎ𝐷𝑖𝑓𝑓 (𝑠1, 𝑠2)

+
𝑤AHM

𝑤DHM +𝑤AHM
× 𝑎𝑐𝑡𝐷𝑖𝑓𝑓 (𝑠1, 𝑠2)

⎞

⎟

⎟

⎟

⎠

≤ 0

𝑠2, otherwise.

(13)

where,

𝑑ℎ𝐷𝑖𝑓𝑓 (𝑠1, 𝑠2) =

∑

𝑙 in 𝑠1
(𝑁𝑜𝐶𝑙 − 1) - ∑

𝑙 in 𝑠2
(𝑁𝑜𝐶𝑙 − 1)

max
[

∑

(𝑁𝑜𝐶 − 1), ∑

(𝑁𝑜𝐶 − 1)
] (14)
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𝑙 in 𝑠1 𝑙 𝑙 in 𝑠2 𝑙
Table 3
Test data sets.

Month Legs (fleet) Leg connections (valid/total) Duties

Jan 17 268 548 532/3 669 342 416 153
Feb 15 738 511 362/3 405 856 393 285
Mar 17 318 501 518/3 659 411 390 973
Apr 16 833 615 542/4 233 568 439 661
Jun 16 127 651 823/4 487 894 406 233
Jul 15 656 678 563/4 683 294 401 527

𝑎𝑐𝑡𝐷𝑖𝑓𝑓 (𝑠1, 𝑠2) =

∑

𝑑 in 𝑠1
𝐴𝑐𝑡𝑑 - ∑

𝑑 in 𝑠2
𝐴𝑐𝑡𝑑

max
[

∑

𝑑 in 𝑠1
𝐴𝑐𝑡𝑑 , ∑

𝑑 in 𝑠2
𝐴𝑐𝑡𝑑

] (15)

𝐴𝑐𝑡𝑑 =

{

𝐴𝐵𝑇th − 𝐴𝐵𝑇𝑑 , if (𝐴𝐵𝑇𝑑 < 𝐴𝐵𝑇th)
0, otherwise.

(16)

In Eqs. (14) and (15) calculation details including how they were
normalized of both terms are shown. And Eq. (16) shows how 𝐴𝑐𝑡𝑑 is
calculated using active block time threshold value 𝐴𝐵𝑇th for each duty
in solutions.

5. Experimental results

The timetable data used in this study obtained from Turkish Airlines
and it was extensively studied in Zeren and Özkol (2016). The same
rules were implemented and applied during this study.

5.1. Data

The timetable data used in this study covers period of first six
months of 2014. Therefore data of various seasons were used. Details
of the data used is presented in Table 3 where months, number of legs,
number of valid and total leg connections that were checked during
duty generation and total number of duties can be seen. Number of
legs information covers all the legs from the planning month and first
ten days of the following month that is added to the planning period to
be able to generate pairings which can touch to the following month.
Optimization runs performed for this study and the metrics given in
Table 3 cover only cockpit 320 fleet which is a typical large scale
fleet that is composed of narrow body aircrafts. The algorithm also
incorporates flight legs from other fleets into account and produces
mixed duties with deadhead legs from other fleets.

5.1.1. Home base
Mainly because of the rules and the network structure of the time

period and the data given, existence of single home base was consid-
ered. Therefore there is no term added to the equations for providing
workload distribution balance between different home bases. As can
be seen from the anonymized data, there are two airports at the home
base and pairings are allowed to start from one airport and to end at
the other one.

5.1.2. Costs, KPIs and weight sets
As described in previous sections, there are two main cost factors

(KPIs) considered. The first one is deadheads and the second one is
poor quality duties (duties with less active block time). In this study,
other non-significant cost factors were disregarded because of sake of
ease and to increase measurability of the system response of applying
different weights.

Indeed, ‘‘number of deadheads’’ and ‘‘total man day’’ are the most
important KPIs that crew planners pay attention the most. Number
of deadheads are critical especially in high seasons when existence
of available seats at aircrafts became extremely important. Number
of deadheads also decreases crew utilization by using crew in passive

flights that are also counted as regular duties even though the deadhead
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Table 4
Duty limits for NoP calculations and statistics.

Duty limit Pairings Deadheads Man day Avg. Time Per Itr.

1 26 073 192 15 702 3 min
2 781 483 87 15 354 4 min
3 26 843 846 81 15 311 8 min
4 352 554 711 72 15 306 13 min

Table 5
Scenarios and weights used.

Scenario Difficulty score Solution comparison

𝑤CD 𝑤DHM 𝑤AHM
𝑤DHM

𝑤DHM+𝑤AHM

𝑤AHM
𝑤DHM+𝑤AHM

𝑆dh 0.9 0.08 0.02 0.8 0.2
𝑆act 0.9 0.02 0.08 0.2 0.8

crew were not active. Total man day is an other KPI that determines
how many crew is needed to be able to operate properly one month
period of timetable. Its importance increases towards end of the year
and can be become extremely vital in last two months. The main reason
is decrease in total number of available crew because of annual flying
time limits.

In the score based approach, these two KPI values were optimized
using 𝐷𝐻𝑀 , 𝐴𝐻𝑀 and their associated weights 𝑤DHM and 𝑤AHM. 𝐶𝐷
and its weight 𝑤CD were used to manage search space’s diversity and
size. In the GA based approach, just 𝑤DHM and 𝑤AHM were used like
described in Eq. (13). To manage search space’s diversity and size 𝑁𝑜𝑃
values were used.

As described before, enumeration of all possible pairings to calculate
𝑁𝑜𝑃 values for each leg requires too much computational power. To
decide optimum limit a number of experimental runs performed as
seen in Table 4. These runs were performed using January data and
20 iterations completed for each setting. With the help of tests runs
performed in Table 4, number of duties limit per pairing for 𝑁𝑜𝑃
calculations was set to 2 by checking the trade-off between performance
and solution quality.

There were two scenarios determined: 𝑆dh was composed to see the
effect of increased 𝑤DHM and 𝑆act was composed to see the effect of in-
creased 𝑤AHM like shown in Eq. (13). Same values for 𝑤DHM and 𝑤AHM
were used in both approaches since these weights are normalized. After
extensive tuning runs the value for 𝑤CD was determined as 0.9 for score
based approach runs as can be seen in Table 5. It basically shows how
important keeping the search space diverse and giving high priority to
the legs that has less alternative pairs during the optimization.

5.2. Experiments

A Java library was developed for this study and a typical iteration
(solution generation procedure) takes around 4 min for all data sets
used. Proposed approaches were run for 100 iterations and each session
took around 6 h for each data and each scenario used.

Table 6 includes some of the important statistical and KPI values
obtained from the runs performed using score based approach. Columns
in Table 6 represent each month’s datasets and the first group of rows
that belong to scenario 𝑆dh runs represent number of pairings, number
of duties, number of active legs, number of man days and number of
deadheads respectively. Similarly the other group of rows represent the
same metrics that belong to scenario 𝑆act runs.

Unlike score based approach, because of the random nature of the
GA based approach, runs belong to that approach were performed 30
times for each scenario and data set separately. Similarly, Tables 7, 8
and 9 includes maximum, average and minimum values of the same
metrics belong to each scenarios and months sequentially.

Results shown in Tables 6, 7, 8 and 9 were comprehensively investi-
9

gated by planning specialists from Turkish Airlines and it was reported
Table 6
Statistics and KPI values of score based approach runs.

Scenario Jan Feb Mar Apr May Jun

𝑆dh

Pairs 5 254 4 700 5 263 4 893 4 793 4 626
Duties 6 079 5 371 6 069 5 941 5 865 5 645
LegsActive 13 780 12 314 13 851 13 308 12 962 12 414
ManDays 15 034 13 300 14 942 14 650 14 584 14 096
DH 66 54 78 79 93 99

𝑆act

Pairs 5 158 4 672 5 245 4 851 4 898 4 673
Duties 6 057 5 357 6 048 5 926 5 848 5 601
LegsActive 13 820 12 322 13 833 13 446 13 107 12 567
ManDays 14 990 13 272 14 904 14 632 14 538 14 018
DH 163 86 142 168 200 164

Table 7
Statistics and KPI values of GA based approach (Jan–Feb).

Scenario Jan Feb

Max Avg Min Max Avg Min

𝑆dh

Pairs 5 383 5 370 5 358 4 849 4 833 4 820
Duties 6 115 6 104 6 087 5 418 5 406 5 392
LegsActive 13 843 13 773 13 746 12 316 12 316 12 316
ManDays 15 580 15 558 15 522 13 812 13 787 13 760
DH 157 145 122 125 117 111

𝑆act

Pairs 5 356 5 340 5 316 4 822 4 809 4 799
Duties 6 085 6 075 6 063 5 393 5 377 5 365
LegsActive 13 792 13 778 13 764 12 254 12 254 12 254
ManDays 15 504 15 485 15 460 13 746 13 717 13 694
DH 252 238 208 196 193 184

Table 8
Statistics and KPI values of GA based approach (Mar–Apr).

Scenario Mar Apr

Max Avg Min Max Avg Min

𝑆dh

Pairs 5 414 5 394 5 374 5 088 5 074 5 062
Duties 6 100 6 088 6 072 6 124 6 102 6 085
LegsActive 13 874 13 873 13 864 13 433 13 423 13 412
ManDays 15 490 15 468 15 432 15 508 15 459 15 416
DH 145 138 130 134 124 113

𝑆act

Pairs 5 378 5 363 5 347 5 086 5 070 5 057
Duties 6 072 6 057 6 045 6 114 6 095 6 076
LegsActive 13 814 13 806 13 805 13 419 13 410 13 396
ManDays 15 422 15 390 15 370 15 506 15 443 15 396
DH 240 227 215 221 206 194

Table 9
Statistics and KPI values of GA based approach (May–Jun).

Scenario May Jun

Max Avg Min Max Avg Min

𝑆dh

Pairs 5 030 5 016 5 005 4 800 4 781 4 755
Duties 6 063 6 046 6 026 5 830 5 811 5 782
LegsActive 13 124 13 120 13 114 12 586 12 575 12 556
ManDays 15 468 15 431 15 366 14 950 14 899 14 840
DH 150 138 128 156 148 140

𝑆act

Pairs 5 025 5 011 4 997 4 792 4 775 4 763
Duties 6 057 6 041 6 023 5 833 5 803 5 785
LegsActive 13 110 13 107 13 101 12 573 12 563 12 547
ManDays 15 454 15 420 15 376 14 948 14 880 14 818
DH 246 228 213 253 242 221

that solution quality provided is very encouraging for further develop-
ments and comparable to current practices that are being carried out
by Turkish Airlines using state of the art planning systems. It is also
observed that especially score based approach is capable of generating
comparable but less number of deadheads than the heuristic approach
proposed by Erdogan et al. (2015) that used similar but smaller data
sets.

Fig. 7a, b, c and d shows converge of KPI values for both scenarios.
Fig. 7a, b, c and d were generated using outputs of Jan runs and the
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Fig. 7. Convergence of KPIs.

other test periods show very similar behavior. As can be seen from
Fig. 7a, b, c and d; score based approach is far more successful on
reaching better KPI values. For most of the cases GA approach could not
produce results even at the final iteration better than the first iterations
of the score based approach. This situation shows that Coverability-
Degree(CD) which is the main metric used to decide which leg to be
covered first is a considerably important metric that helps to converge
better positions much earlier. Another important factor is score based
approach produced better results even though GA approach has four
times more number of evaluations because of four child chromosome
evaluation in each iteration.
10
Fig. 8a shows visual comparison of number of deadhead differences
between two approaches for the scenario 𝑆dh which gives higher pri-
ority to minimizing number of deadheads. It is obviously seen that
score based approach performs around two times better especially for
the data that belongs to the first three months and it is significantly
outperforms on the rest of the test period. According to results GA based
approach generated around 60 more deadhead legs than score based
approach and this situation could cause profit loss especially in high
seasons when empty seats could be very valuable.

Similarly, Fig. 8b shows visual comparison of number of dead-
head differences between two approaches for the scenario 𝑆act which
gives higher priority to minimizing number of mandays. Score based
approach again outperforms for all months in the test period.

Fig. 8c and d show visual comparison of number of manday differ-
ences between two approaches for the scenario 𝑆dh and scenario 𝑆act
respectively. Score based approach produced solutions of higher quality
in terms of number of mandays as well. The values of these runs could
be thought close to each other but the average difference 650 man day
means significant amount of over utilization of crew and can lead to
lack of available crew if the GA based schedules are taken into practice.

Obviously, the score based approach is capable of generating solu-
tions of higher quality than the GA approach for all test cases. With
the usage of additional KPI based sub-heuristics 𝐷𝐻𝑀 and 𝐴𝐻𝑀 , it
much more efficiently explores the problem search space than the GA
approach.

Nevertheless, the new GA approach proposed in this study is capable
of generating high quality solutions for large instances of the crew
pairing problems compared to classical models like studied in Zeren and
Özkol (2012) which was successful only on small and mid size fleets.

6. Conclusion

In this research study, widely known airline crew pairing problem
was revisited and a comprehensive research was carried out on al-
ternative solution approaches that can handle large scale instances of
the problem. Two different solution approach based on leg orderings
(priorities) were developed. The first approach developed is a score
based adaptive greedy method which is inspired from squeaky-wheel
optimization technique. It calculates difficulty scores for each leg and
updates the leg orderings based on these difficulty scores during op-
timization. A resource constrained shortest path implementation was
also developed to generate high quality crew pairings. This procedure
searches for high quality pairings with high active block time and less
deadheads in a greedy way. Besides, among the best alternative crew
pairings with different lengths found, it selects the crew pairing that
would keep rest of the search space as wide as possible. Score based
approach produced solutions of considerably high quality for all six
monthly timetables used. The second approach developed is a GA based
heuristics that manages and optimizes leg orderings through genetic
operators. This approach also produced comparably high quality solu-
tions with the row based chromosome and same resource constrained
shortest path procedure.

This study also shows importance of the metric called Coverability-
Degree(CD) that constitutes the main component of the difficulty score
calculation and the decision mechanism that is carried out at the end of
the shortest path procedure developed. Besides shortest path procedure,
score based approach that additionally uses 𝐶𝑜𝑣𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐷𝑒𝑔𝑟𝑒𝑒 (𝐶𝐷)
metric in difficulty score calculations compared to GA approach is
capable of generating solutions of considerably higher quality.

Promising solution qualities obtained in this study show that a
well designed heuristics/meta-heuristics could generate high quality
solutions even for large scale problem instances. Besides, proposed
approaches open new doors for further developments in the field of
heuristics for the large scale problems. They could be hybridized with
current practices like column generation heuristics to improve their
performance, solution quality and stabilization characteristics further.
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Fig. 8. Key performance indicators.

They can also be further developed by introducing new well designed
sub-heuristics, KPIs and also significant performance improvements can
be achieved with parallelization of the algorithm.

Contributing to the literature and to further developments by mak-
ing the timetable data used public is an other desired output of this
study. This situation could cause more publications and more op-
portunities for healthy comparison of different studies done in the
field.
11
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