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The Allerton Park workshop essentially defined landscape ecology as a field of study that cuts across 

multiple natural and social sciences (Wu, 2013). The report on the workshop (Risser et al., 1984) 

highlighted landscape ecology to have a core focus on spatiotemporal patterns that exist in the 

landscape and to be highly inter-disciplinary. A key focus of the field is on spatial heterogeneity, 

including how it emerges and evolves, how this spatial heterogeneity influences processes, and how 

humans manage the landscape. Scale and scaling issues were also emphasised in the report. In 

particular, it was highlighted that the relationships between ecological processes and the spatial 

patterns in a landscape are not confined to a particular scale and so there is often a desire to study 

over a range of scales. It was also recognised that there was a need to acquire, manage, and use 

large data sets. This pointed to the need for adequate computing facilities and also awareness of the 

potential of remote sensing as a source of relevant spatiotemporal data and Geographical 

Information Systems (GIS) as a tool to allow landscape ecology to progress (Risser et al., 1984). 

These various issues clearly indicate that remote sensing and allied technologies are viewed as an 

important component of the subject. Indeed, remote sensing is seen as a foundation of landscape 

ecology (Wickham and Riitters, 2019). Now, 40 years after the workshop, the key aim here is explore 

recent trends in the use of remote sensing in landscape ecology.  

 

Uses of remote sensing in landscape ecology 

Wiens (2008) commented on the vast progress made in the first 25 years since the workshop. In 

particular, it was noted that remote sensing was offering data at levels that would have been 

unimaginable at the time of the workshop in 1983. Additionally, the associated toolbox for analysing 

geospatial data sets had vastly expanded to help address key questions of interest (Wiens, 2008). 

Technological developments in remote sensing and GIS have continued and were highlighted in a 

later editorial in this journal by Risser and Iverson (2013). It is now 40 years since the Allerton Park 

workshop, and the place and role of remote sensing in landscape ecology has continued to evolve. 

These developments are evident in the content published in Landscape Ecology since the last 

relevant commentary by Wu (2013).  

As  expected, the core focus of recent articles in the journal that used remote sensing remains on 

spatial patterns and issues of heterogeneity with scaling issues often of considerable interest 

(Frazier, 2014; Luan et al., 2018; Egerer et al., 2020; Rudge et al., 2022; Mondal and Jeganathan, 

2022; Gann and Richards, 2023). Many articles have made use of Landsat sensor data (Moris et al., 

2022; Hopkins et al., 2022) notably taking advantage of the relatively long time series of data that 

has now been formed (Zhao et al., 2015; Bost et al., 2019; Jung et al., 2020; Fisher et al., 2021; Yu et 

al., 2021). But numerous other sources of image data have been used. These include images from 

major space agency programmes such as the sensors carried on-board the Sentinel satellites 

(Mercier et al., 2021; Rasanen et al., 2021) as well as imagery from MODIS and ASTER sensors 

(Mondal and Jeganathan, 2022). There has also been growth in other sources of data. One major 



growth area has been the use of sensors carried on unoccupied aerial vehicles (UAVs) or drones 

which offer considerable flexibility for focused data acquisition (Egerer et al., 2020; Duffy et al., 

2021; Borja-Martinez et al., 2022; Rudge et al., 2022; van Blerk et al., 2022). Use has also been made 

of data from fine spatial resolution commercial satellites such as WorldView-2 (Gann and Richards, 

2023). While much of the research has used relatively conventional optical multispectral sensors, 

there have been studies taking advantage of developments in remote sensing technologies. These 

include studies that exploit the rich spectral information content that is available through 

hyperspectral sensing (Donovan et al., 2023).  

Other parts of the electromagnetic spectrum have also been used, including active radar systems 

(Betbeder et al., 2017). Studies have also exploited the potential of LiDAR and hence expanded from 

2D to 3D (Kedron et al., 2019; Hall et al., 2022). The addition of a temporal dimension is also possible 

and even global scale studies can now be undertaken at a fine temporal resolution (Pazur et al., 

2021). In addition, the research community has gained from parallel developments in other subject 

areas. For example, advances in machine learning (Portelli, 2020; Stupariu et al., 2022; Theron et al., 

2022), formation of new data streams such as citizen science (Callaghan et al., 2019), developments 

in positioning technology (Hadjikyriakou et al., 2020), and access to relevant and often free geo-data 

(Mercier et al., 2021; Piedallu et al., 2023) many of which are systematically collected in space and 

time (Santos et al., 2016). Moreover, the generation of a plethora of mapping software (Rudge et al., 

2022) and provision of algorithmic code act to reduce the technical skill set required by researchers 

(Buettel et al., 2018).  From these various developments it is evident that the subject is vibrant and 

remains interdisciplinary with much still to gain from development elsewhere, such as in engineering 

and computer science (Gann and Richards, 2023). 

 

Reasons for the continued use of remote sensing in landscape ecology 

The situation outlined above reflects strongly on the foundations provided by the Allerton Park 

workshop but also on key trends in remote sensing since 1983. Over this period, the key attributes 

of remote sensing that make it attractive for use in ecology (Lechner et al., 2020) have been 

enhanced.  Indeed, trends since 1983 point to three somewhat inter-related reasons for the 

continued use of remote sensing in landscape ecology. These reasons are: (1) the research 

community is getting more of it, (2) it is getting easier to use it, and (3) it is often free or inexpensive. 

At the time of the Allerton Park workshop in April 1983 the research community had access to a 

limited range of remotely sensed data sets. At that time, researchers were essentially constrained to 

data acquired by airborne systems such as aerial photography and multispectral scanners together 

with only limited options for satellite sensor imagery, notably from Landsat sensors and the NOAA 

AVHRR. There is now a lot more remotely sensed data available, and it is more in many dimensions. 

For example, Landsat sensors have been in continuous operation since the summer of 1972. Much 

effort has been expended to ensure data continuity (Wulder et al., 2019), with broadly similar data 

available across the entire time period but also some major enhancements. Crudely, the spectral, 

spatial, temporal and radiometric resolutions of key Landsat sensor data have been enhanced. So 

not only is it possible to use broadly similar spectral bands over time, the data have been improved 

in a variety of ways allowing increasingly detailed characterisation of the Earth’s surface. This is 

further expanded by development of other satellite missions such as the constellation of Sentinel 

satellites. These too provide a wide range of data sets in optical to microwave wavebands which are 

free and openly available via Copernicus.  



A wide variety of other satellite systems are available offering different features. For example, 

recent Gaofen satellites carried a hyperspectral sensor, the Defence Meteorological Satellite 

Programme provides nighttime lights imagery and the third generation of Meteosat satellites 

provides imagery of approximately one third of the planet’s visible disc every 5 minutes. Large 

commercial constellations such as those operated by Planet or Capella Space offer high cadence 

data, allowing multiple observations per-day. The stream of data from spaceborne LiDAR systems 

such as GEDI flown on the International Space Station opens the door to routine study in 3 

dimensions, or 4 if the temporal dimension is exploited (Duncanson et al. 2022). Airborne systems 

also continue as a valuable data source. Airborne hyperspectral data have, for example, been used 

to acquire data at different spatial resolutions to study issues of scale (Dai et al., 2022). There have 

also been major developments in methods to aid the use different data sets especially if containing 

complementary information. This includes work on fusing hyperspectral and LiDAR data (Asner et al., 

2007) or to combine different data sets to get the best from each. For example, super-resolution 

analyses allow the formation of data series with fine spatial and temporal resolution (Li et al., 2020). 

In essence, it is now possible to work at spatial scales ranging from the sub-pixel to global and at a 

variety of temporal and spectral resolutions.  

It is much easier to use remote sensing now than it was in 1983. Today there is easy access to 

imagery over the internet. User friendly satellite data archives for a vast array of satellite systems, 

including commercial systems, are available. Moreover, resources such as Copernicus not only make 

access to imagery simple, but also provide analysis-ready data and even data products so that 

specialist knowledge on extracting information from the remotely sensed data is sometimes no 

longer necessary. Tools for information extraction have also developed and are also often openly 

available for free. For example, there has been parallel development of methods for use with 

remotely sensed data. Classifiers, for example, have been developed from basic statistical 

techniques used in the 1980s through methods suited to multi-source data (Peddle et al., 1994) to 

machine learning methods such as random forests, support vector machines and various types of 

neural network (Maxwell et al., 2018). Many of these methods are also available for free, notably as 

R packages or other resources for use in a variety of free and open source tools (Rocchini et al., 

2013; 2021).  In addition, there is also sometimes no need to physically handle data sets as resources 

such as Google Earth Engine allow cloud based processing of a wide variety of data sets for a vast 

array of applications (Gorelick et al., 2017; Zhao et al., 2021). Finally, good practice advice aids 

extraction of relevant information from remotely sensed data for popular applications (e.g. Penman 

et al., 2016).  

Remote sensing systems can be expensive but that need not mean the imagery acquired is costly to 

users. For example, Landsat 8 cost approximately US$ 1 billion but the imagery is so useful to so 

many that it more than pays for itself (National Research Council, 2013). Indeed the value of the 

imagery to many is one of the reasons behind the opening up of the whole Landsat sensor data 

archive, making the data available to everyone for free (Zhu et al., 2019). Similarly other satellite 

data sets such as those from MODIS and Sentinel are freely available to all. Other sources of 

remotely sensed data can also be inexpensive. UAV based sensors put the researcher in control of 

the data acquisition and effective use can be made of inexpensive systems. Even data from 

commercial systems can be relatively inexpensive, especially if the data already archived and the 

test site small. The costs of activities such as ground data collection to inform image analyses can 

also be reduced by increasing use of crowdsourcing, with citizens often contributing for free (Fritz et 

al., 2017).  

 



Prospects of remote sensing in landscape ecology 

Remote sensing is likely to continue to play a major role in future research in landscape ecology. 

Satellite remote sensing systems, for example, are set to evolve further. This ranges from 

incremental advances associated with the continuation of the Landsat satellites with Landsat Next in 

development through new opportunities associated with the enhanced set of wavebands it will offer 

to the exploitation of data from completely new satellites such as Hotsat. The latter should offer 

relatively fine spatial resolution thermal infrared imagery providing the opportunity to expand the 

study of the thermal environment. There are many other satellite systems in development that 

should provide new data streams (e.g. video). Increasing use may be made of data from unusual 

sources. For example, vehicular dashcams and CCTV offer a rich source of local environmental 

information beyond their planned application (Morris et al., 2013: Boyd et al., 2022). The use of 

these different but often complimentary data streams may be enhanced by developments in 

techniques for the analysis of multi-modal data. Parallel developments in other diverse areas from 

artificial intelligence through quantum sensing and computing through to citizen science may also 

benefit studies that use remotely sensed data, especially if current challenges can be addressed 

(Basiri et al., 2019; Yuan et al., 2020; Claramunt and Lotfian, 2023). Developments in other forms of 

sensing, such as of sound and smell, may also help ensure richer characterisation of the 

environment. Current trends, such as the transition from change detection to near real time 

environmental monitoring (Woodcock et al., 2019) may be enhanced further by technological 

advances such as increased on platform data processing.  

The various exciting developments and opportunities may also come with some new challenges. 

These may range from methodological problems to concerns on ethical and legal issues. Also, while 

the requirement for specialist remote sensing expertise may be reduced, it is unlikely to disappear. 

For example, while UAVs have revolutionised much research activity some specialist knowledge may 

be useful. Much work with UAVs has, for example, focused on relatively simple applications such as 

target detection. However, if this extends to richer assessments, such as the biochemical and 

biophysical characterisation of vegetation, then there are issues a non-expert may not be aware of 

that could substantially degrade a study if not addressed. Detailed characterisation of vegetation by 

remote sensing requires care on key issues such as the planning of flight lines and timing of image 

acquisition especially with regard to the angular geometry between the Sun, target and sensor that 

modulates the spectral response. Also the spectral and radiometric properties of sensors carried on 

UAVs are a concern and impact greatly on issues such as estimation of a vegetation index and the 

radiometric calibration of the images that is often an essential pre-processing task (Coburn et al., 

2018). The fine spatial detail of imagery obtained from sensors carried by UAVs has been a virtue in 

many studies, but could turn into a vice.  For example, amateurs may not realise that spatially 

degrading the extremely fine spatial resolution imagery acquired could enhance the data for popular 

applications. It would, for example, act to reduce intra-class spectral mixing that could reduce the 

accuracy of some analyses. Specialists in remote sensing and other subject areas will, therefore, 

remain important to landscape ecology. Continued inter-disciplinarity will help ensure that 

landscape ecology can maximally gain from remote sensing.  
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