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Abstract: Objectives

Prevalence of Lewy body dementias (LBD) is second only to Alzheimer's disease (AD)
among people with neurodegenerative dementia. LBD cause earlier mortality, more
intense neuropsychiatric symptoms, more caregivers’ burden, and higher costs than
AD. The molecular mechanisms underlying LBD are largely unknown. As advancing
molecular level mechanistic understanding is essential for identifying reliable peripheral
biomarkers and novel therapeutic targets for LBD, we aimed to identify differentially
expressed genes (DEG), and dysfunctional molecular networks in post-mortem LBD
brains.

Methods

We investigated the transcriptomics of post-mortem anterior cingulate and dorsolateral
prefrontal cortices of people with pathology-verified LBD using next-generation RNA-
sequencing. We verified the identified DEG using high-throughput quantitative
polymerase chain reactions. Functional implications of identified DEG, and the
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consequent metabolic reprogramming were evaluated by Ingenuity pathway analyses,
genome-scale metabolic modelling, reporter metabolite analyses, and in-silico gene
silencing.

Results

We identified and verified 12 novel DEGs (MPO, SELE, CTSG, ALPI, ABCA13,
GALNT6, SST, RBM3, CSF3, SLC4A1, OXTR, and RAB44) in LBD brains with
genome-wide statistical significance. We documented statistically significant
downregulation of several cytokine genes. Identified dysfunctional molecular networks
highlighted the contributions of mitochondrial dysfunction, oxidative stress, and
immunosenescence towards neurodegeneration in LBD.

Conclusion

Our findings support that chronic microglial activation and neuroinflammation, well-
documented in AD, are notably absent in LBD. The lack of neuroinflammation in LBD
brains were corroborated by statistically significant downregulation of several
inflammatory markers. Identified DEGs, especially downregulated inflammatory
markers, may aid distinguishing LBD from AD, and their biomarker potential warrant
further investigation.
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Highlights 

 

What is the primary question addressed by this study? 

 What are the differentially expressed genes and dysfunctional molecular networks in 

post-mortem brains of people with Lewy body dementia (LBD)? 

 

What is the main finding of this study? 

 This study has identified and verified 12 novel differentially expressed genes in LBD 

brains. Downregulation of several inflammatory markers revealed the absence of chronic 

neuroinflammation in LBD. 

 

What is the meaning of the finding? 

 The findings advance molecular level mechanistic understanding and indicate potential 

biomarkers for LBD that warrant further investigation. 
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Abstract: 

Objectives: Prevalence of Lewy body dementias (LBD) is second only to Alzheimer's disease 

(AD) among people with neurodegenerative dementia. LBD cause earlier mortality, more 

intense neuropsychiatric symptoms, more caregivers’ burden, and higher costs than AD. The 

molecular mechanisms underlying LBD are largely unknown. As advancing molecular level 

mechanistic understanding is essential for identifying reliable peripheral biomarkers and novel 

therapeutic targets for LBD, we aimed to identify differentially expressed genes (DEG), and 

dysfunctional molecular networks in post-mortem LBD brains. 

Methods: We investigated the transcriptomics of post-mortem anterior cingulate and 

dorsolateral prefrontal cortices of people with pathology-verified LBD using next-generation 

RNA-sequencing. We verified the identified DEG using high-throughput quantitative 

polymerase chain reactions. Functional implications of identified DEG, and the consequent 

metabolic reprogramming were evaluated by Ingenuity pathway analyses, genome-scale 

metabolic modelling, reporter metabolite analyses, and in-silico gene silencing.  

Results: We identified and verified 12 novel DEGs (MPO, SELE, CTSG, ALPI, ABCA13, 

GALNT6, SST, RBM3, CSF3, SLC4A1, OXTR, and RAB44) in LBD brains with genome-wide 

statistical significance. We documented statistically significant downregulation of several 

cytokine genes. Identified dysfunctional molecular networks highlighted the contributions of 

mitochondrial dysfunction, oxidative stress, and immunosenescence towards 

neurodegeneration in LBD.  

Conclusion: Our findings support that chronic microglial activation and neuroinflammation, 

well-documented in AD, are notably absent in LBD. The lack of neuroinflammation in LBD 

brains were corroborated by statistically significant downregulation of several inflammatory 

markers. Identified DEGs, especially downregulated inflammatory markers, may aid 

distinguishing LBD from AD, and their biomarker potential warrant further investigation.  
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Key words: Lewy body dementia; High-Throughput RNA sequencing; Systems biology; 

Parkinson disease; Mitochondria 

 

Introduction: 

 Lewy body dementia (LBD) is a major public health problem worldwide. Prevalence 

of Lewy body dementia (LBD) is second only to Alzheimer’s disease (AD) among people with 

neurodegenerative dementia (1). LBD cause earlier mortality (2), earlier nursing home 

admissions, poorer quality-of-life, higher costs (3), more frequent falls, and more caregivers’ 

burden than AD. LBD include two overlapping clinical syndromes, dementia with Lewy bodies 

(DLB) and Parkinson’s disease (PD) dementia (PDD). They cause more frequent and more 

intense neuropsychiatric symptoms including visual hallucinations, delusions, agitation, and 

depression than AD (4). Antipsychotic medications should be avoided in all people with 

dementia whenever possible, and there is an urgent clinical need for diagnosing LBD early, 

because treating neuropsychiatric symptoms, common in LBD, with any antipsychotic 

medication risks potentially fatal adverse effects in people with LBD (5). However, the 

molecular mechanisms underlying neurodegeneration in LBD remain largely unknown, and 

prior research that focused mainly on known AD and PD biomarkers have not identified any 

reliable genetic markers for LBD (6). Moreover, there are no disease-modifying treatment for 

LBD (7). Hence, advancing molecular level mechanistic understanding is urgently needed for 

facilitating discovery of multimodal biomarkers and novel therapeutic targets for LBD (7,8).  

 A few candidate-gene association studies and a genome-wide association study 

(GWAS) have associated LBD with polymorphisms in APOE, SNCA, GBA, STX1B, GABRB3, 

CNTN1, and SCARB2 (9-11), but they could not ascertain functional implications of identified 

genetic associations. As a definite DLB diagnosis can be confirmed only by post-mortem (12), 
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genetic studies investigating people living with LBD are prone for misclassification bias. 

Hence, transcriptomic studies that identify differentially expressed ribonucleic acids (RNA) in 

post-mortem LBD brains are essential for understanding functionally relevant gene expression 

changes, and their dysfunctional molecular networks (13-15). Moreover, further research on 

the transcriptomics of LBD brains is needed for clarifying their neuroimmunology. Chronic 

microglial activation and neuroinflammation contribute to neurodegeneration in AD (16), but 

recent immunohistochemical studies have documented absence of neuroinflammation in LBD 

(17,18). Immunosenescence and consequent impaired neuronal survival are hypothesized to 

contribute to LBD pathology (17,18). Hence, we aimed to identify differentially expressed 

genes (DEG), dysfunctional molecular networks, and metabolic reprogramming in post-

mortem anterior cingulate (ACC), and dorsolateral prefrontal (DLPFC) cortices of people with 

pathology-verified LBD.  

Methods:  

Post-mortem brain tissue:  

 The Brains for Dementia Research (BDR) network of brain banks (19), UK, provided 

necessary post-mortem brain tissue, and ethical approval for this study. We obtained frozen 

sections of ACC (Brodmann area 24), and DLPFC (Brodmann area 9) of people with 

pathology-verified DLB (n=7), PDD (n=7), and of older people without dementia or PD (NDC) 

(n=7). The groups did not differ significantly on their age (F=0.88;df=2,18;p=0.43), and on 

their post-mortem intervals (F=0.04;df=2,18;p=0.96). We could not get ACC tissue of one 

person with DLB, and DLPFC tissue of one NDC person was not available (Supplemental 

digital content (SDC)-1). ACC is known to have high levels of Lewy body pathology in LBD 

(15), and Lewy body densities in ACC can predict cognitive impairment in PD (20). People 

with DLB have greater impairment of executive functions, regulated by DLPFC, than people 

with AD (21). Hence, we investigated the transcriptomics of these two cortical regions. 
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RNA extraction:  

 50mg of brain tissue per sample were excised on dry ice. Excised tissue was 

homogenized using the T10-basic ultra-turrax, and disposable dispersing element S10D-7G-

KS-110 (Ika works, Wilmington, USA). Total RNA was extracted using the RNeasy plus 

universal mini kit (Qiagen, Hilden, Germany). Quantity and quality of RNA were assessed 

using the NanoDrop ND-1000 (Thermo Fisher Scientific, Waltham, USA). Mean 260/280 and 

260/230 spectrophotometer absorbance ratios of purified RNA were 2.06 (95%CI 2.05-2.07), 

and 1.56 (95%CI 1.48-1.64), respectively.  

Next-generation RNA-sequencing (RNA-Seq):  

 cDNA libraries were prepared from RNA samples using TruSeq RNA sample 

preparation kit (Illumina, San Diego, USA). The cDNA libraries underwent paired-end 

sequencing (75 base pairs/read) using the Illumina HiSeq-4000 (Illumina, San Diego, USA) in 

the Wellcome Centre for Human Genetics (WHG), Oxford, UK. We obtained a minimum of 

30 million clean reads/sample. 

RNA-Seq data analyses:  

 RNA-Seq reads passed quality control, if they did not include any ambiguous bases, 

and if more than 90% of bases had less than 1% sequencing error. Such reads were aligned to 

the human genome (Homo_sapiens.GRCh38) with corresponding gene model annotation 

(Homo_sapiens.GRCh38.88.gtf) using the HISAT2 (22). Aligned reads were counted using the 

featureCounts (23) (SDC-2; SDC-3). DEGs were identified by a previously experimentally 

validated (24) edgeR 3.18.1 algorithm employing tag-wise dispersion (25), and Benjamini-

Hochberg genome-wide false discovery rate (FDR) correction (5%). The edgeR algorithm 

calculated p-values by employing exact tests (no df) after fitting gene-specific quasi-negative 

binominal models and estimating dispersion using the quantile adjusted conditional maximum 

likelihood method. The LBD group including both DLB and PDD groups (n=14) was compared 
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with the NDC group for identifying DEGs in LBD brains. Later, pairwise subgroup analyses 

were conducted with FDR correction. 

Verification of identified DEGs:  

 Differential expression of 78 selected genes (SDC-4) including all protein coding FDR-

adjusted DEGs and 10 randomly selected DEGs (edgeR p<0.05; no df) in DLPFC of LBD 

brains were evaluated using high-throughput quantitative polymerase chain reactions (qPCR). 

One µg of RNA per sample from the aliquots of RNA that had been sequenced (N=40) were 

reverse transcribed using the iScript™ advanced cDNA synthesis kit (Bio-Rad, Hercules, 

USA). After 14 cycles of specific target amplification with the PreAmp master-mix (Fluidigm, 

San Francisco, USA), high-throughput qPCR was performed using the BioMark HD, GE 96.96 

dynamic arrays (Fluidigm, San Francisco, USA), and SsoFast EvaGreen low ROX kit (Bio-

Rad, Hercules, USA) (SDC-5). Verification of differential expression of a gene was defined by 

the following criteria (26), (i) Both RNA-seq and qPCR showed same direction of differential 

expression, (ii) Differential expression fold change, estimated by qPCR, was either above 1.25 

or below 0.80 (logarithmic cut-off was ±0.3219). 

Ingenuity Pathway Analysis (IPA):  

 Functional implications of identified DEGs (edgeR p<0.05; no df) were analyzed by 

the IPA using the Ingenuity knowledge base (Ingenuity, Redwood City, USA). The IPA helps 

identifying potential biomarkers within the context of biological systems. Our analysis settings 

included stringent filters with only experimentally observed relationships, and we identified 

dysfunctional molecular networks in LBD brains.  

Comparison with AD gene expression data:  

 We gathered all AD related gene expression data publicly available in the NCBI GEO 

database (27). A DEG was deemed to be specific to LBD, if the gene either was not altered in 

the AD gene expression profiles, or if it was reportedly altered in the opposite direction. 
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Brain-specific genome-scale metabolic model (GEM):  

 We used a previously generated brain-specific GEM (28).  The GEM includes 630 

metabolic reactions, controlled by 570 genes, within and between astrocytes and neurons, and 

the metabolites that exchange or transport through the blood-brain barrier. We have modified 

the lactate release from neurons, glycogen accumulation in astrocytes, glutamate cycling, 

GABA transfer direction, and pentose phosphate pathway, and have included the reaction of 

astrocyte lactate shuttle to the GEM based on our transcriptomic data. Glutamate/glutamine 

cycle and ATP demand were considered as objective functions. In order to generate tissue-

specific GEMs, we employed Metabolic Adjustment by Differential Expression (MADE) (29) 

and Toolbox for Integrating Genome scale metabolism, Expression, and Regulation (TIGER) 

(30) using logarithmic fold changes and p-values, obtained from the edgeR (25) analyses, as 

input. Flux balance analysis (FBA) was used as a mathematical constraint-based modelling 

approach for analyzing the flow of metabolites through a metabolic network, and it investigated 

the metabolic reprogramming in LBD brains.  

Reporter metabolite analyses:  

 We further investigated the metabolic reprogramming in LBD brains by reporter 

metabolite analyses using an updated human metabolic reactions model (31), the Platform for 

Integrated Analysis of Omics data (PIANO) (32), and gene-level logarithmic fold changes and 

the p-values, obtained from the edgeR analyses, with the Stouffer’s test (no df) employing a 

permutation (1000) approach. 

In-silico gene silencing:  

 The effects of silencing each of the 570 metabolic genes was simulated using the 

generated GEMs by removing reaction(s) associated with the gene. The reactions were 

retained, if another gene catalyzing the same reaction(s) is present. Then, FBA was performed 

for checking the effects of in-silico gene silencing on the functionality of models. When the 
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gene silencing decreased the flux of objective function, it was considered as an essential gene 

for that condition.  

 

Results: 

DEGs in LBD brains:  

 The LBD (DLB and PDD) and NDC groups did not differ significantly on their 

spectrophotometer mean absorbance ratios in both ACC (260/280 (t=0.74;df=18;p=0.47); 

260/230 (t=-2.02;df=18;p=0.06)) and DLPFC (260/280 (t=0.21;df=18;p=0.84); 260/230 

(t=1.48;df=18;p=0.16)). We identified 1464 upregulated, and 1652 downregulated DEGs 

(edgeR p<0.05; no df) in ACC (SDC-6), and 1233 upregulated and 1414 downregulated DEGs 

(edgeR p<0.05; no df) in DLPFC (SDC-7) of LBD brains, compared to NDC brains. After 

genome-wide FDR correction, we identified 12 protein coding DEGs in LBD brains (Table-1). 

MPO, SELE, CTSG, ALPI, and ABCA13 were significantly downregulated in both ACC and 

DLPFC. GALNT6 was significantly upregulated in DLPFC. RBM3, CSF3, SLC4A1, OXTR, 

and RAB44 were significantly downregulated in ACC, and SST was significantly 

downregulated in DLPFC of LBD brains. Differential expression levels of these 12 DEGs 

could be verified (26) by high-throughput qPCR (Table-1). Moreover, differential expression 

levels of 62.3% (38/61; 95%CI 50.1-74.5%) of other DEGs (edgeR p<0.05; no df) could be 

verified (26) by high-throughput qPCR (SDC-8). Cytokine gene IL1B, chemokine gene 

CXCL11, and neutrophil defensin genes, DEFA3 and DEFA4, were significantly 

downregulated (edgeR p<0.05; no df) in both ACC and DLPFC of LBD brains, and their 

differential expression levels could be verified by qPCR in both cortical regions. The 

statistically significant (edgeR p<0.05; no df) downregulated DEGs in LBD brains, verified by 

high-throughput qPCR, included VGF encoding a nerve growth factor, VCAM1 encoding a 

vascular cell adhesion molecule, and STX11 encoding a syntaxin (Table-2). 
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DEGs in DLB and PDD brains:  

 The subgroup analyses identified 735 upregulated, and 979 downregulated DEGs 

(edgeR p<0.05; no df) in ACC, and 973 upregulated and 1330 downregulated DEGs (edgeR 

p<0.05; no df) in DLPFC of DLB brains, compared to NDC brains (SDC-9). After FDR 

correction, CTSG, and SELE were significantly downregulated, and GIPR, and PSPHP1 were 

significantly upregulated in DLPFC of DLB brains. There was not any FDR-adjusted DEG in 

ACC of DLB brains. When we compared PDD brains with NDC brains, we identified 1764 

upregulated, and 2066 downregulated DEGs (edgeR p<0.05; no df) in ACC, and 1293 

upregulated and 1114 downregulated DEGs (edgeR p<0.05; no df) in DLPFC of PDD brains 

(SDC-10). ADAMTS2 was significantly upregulated, and MPO, and OXTR, were significantly 

downregulated in ACC, as well as GALNT6 was significantly upregulated, and CTSG, SST, and 

OR11H4 were significantly downregulated in DLPFC of PDD brains, compared to NDC, after 

FDR correction (SDC-10). While comparing with PDD brains, there were 1236 downregulated 

and 1043 upregulated DEGs (edgeR p<0.05; no df) in ACC of DLB brains, but none of them 

was significant after FDR correction. We identified 607 upregulated and 987 downregulated 

DEGs (edgeR p<0.05; no df) in DLPFC of DLB brains, compared to PDD brains. DLB could 

be differentiated from PDD by the downregulation of nine FDR-adjusted DEGs including 

PTGER3, and CRABP1 in their DLPFC (SDC-11) (SDC-12).  

Dysfunctional molecular networks:  

 The genes, associated with the agranulocytes adhesion and diapedesis, granulocytes 

adhesion and diapedesis, atherosclerosis signaling, and differential regulation of cytokine 

production in macrophages and T-helper cells by IL-17A and IL-17F pathways, were 

significantly enriched among the DEGs (edgeR p<0.05; no df) in both cortical regions of LBD 

brains after Benjamini-Hochberg FDR correction (Figure-1A&1B). Immune system related 

canonical pathways including IL-6 signaling, systemic lupus erythematosus signaling, 



11 
 

communication between innate and adaptive immune cells, and role of cytokines in mediating 

communication between immune cells were significantly enriched among the DEGs in DLPFC 

of LBD brains after FDR correction (Figure-1A). Downregulation of genome-wide significant 

DEGs, CSF3 and SST, and of qPCR-verified DEGs, IL1B and VGF, and their interactions with 

other identified DEGs (edgeR p<0.05; no df) form a molecular network that can impair 

neuronal development, maintenance, survival, and function in DLPFC of LBD brains (Figure-

1C). Furthermore, differential expression of CSF3, and of qPCR-verified DEGs,  IL1B, NOS3, 

VCAM1, and SPP1, and their interactions with other identified DEGs form a molecular network 

that can lead to cell-to-cell signaling, and cellular movement impairment, immune system 

dysfunction, and neurodegeneration in ACC of LBD brains (Figure-1D). 

Comparing with AD gene expression data:  

 We investigated whether the identified DEGs are specific to LBD or they represent a 

non-specific dementia phenotype by reviewing the AD-related gene expression data available 

in the NCBI GEO database (27). Downregulation of RBM3 and SST, and upregulation of 

GALNT6 in LBD were consistent with their differential expression levels, reported by prior 

AD studies. Differential expression levels of at least seven genome-wide significant DEGs 

(SELE, CTSG, ALPI, ABCA13, CSF3, OXTR, and RAB44) in LBD brains were distinct from 

their reported levels in AD brains (SDC-13).  

Metabolic reprogramming in LBD brains:  

 The metabolic changes in the generated constraint-based flux balance LBD models 

(SDC-14) highlighted decreased mitochondrial respiratory chain activity by showing lower 

flux of tricarboxylic acid (TCA) cycle and oxidative phosphorylation for ATP-synthesis than 

those in NDC models. Reactive oxygen species (ROS), associated with neurodegeneration, 

were excessively produced in LBD reprogramed models. The glutathione peroxidase activity 

for scavenging ROS also was increased in the LBD reprogramed models, and the increased 
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flux for redox responses in LBD was dependent on NADPH-dependent hydrogen peroxide 

scavenging, catalyzed by isocitrate dehydrogenase (IDH) (Figure-2).  IDH deficiency induces 

sensitivity to oxidative stress that leads to neurodegeneration (33), and the LBD reprogramed 

models showed high sensitivity to in-silico gene silencing of IDH1 and IDH2. Moreover, the 

GEM demonstrated the importance of astrocytes releasing glutathione precursors. When we 

blocked astrocytes dependent reactions in the LBD models, the neurons could not handle the 

oxidative stress. Furthermore, we identified 84 reporter metabolites that displayed FDR-

adjusted statistically significant changes in LBD brains (SDC-15). The downregulated reporter 

metabolites included those related to TCA cycle, such as malate, α-ketoglutarate, acetyl-CoA, 

NAD(H), acetate, glutamate, ubiquinone, estradiols, isobutyryl-CoA, and homocysteine, and 

several metabolites involved in fatty acids and lipid metabolism (SDC-14). These findings 

corroborated the lower flux of TCA cycle, and mitochondrial dysfunction in LBD brains 

(Figure-2).  

 

Discussion: 

 Notwithstanding its small sample size, this is the hitherto largest RNA-Seq study 

investigating transcriptomics of LBD brains (13-15). Moreover, this is the first study evaluating 

the transcriptomic differences between DLB and PDD, and integrating LBD transcriptomic 

data into genome-scale metabolic modelling. We have identified 12 novel genome-wide 

significant DEGs, distinct from known genetic markers of AD and PD, in LBD brains, and 

have verified them using high-throughput qPCR. We identified specific dysfunctional 

molecular networks in LBD brains, and have added evidence for mitochondrial dysfunction 

and immunosenescence in LBD. The identified DEG, and their dysfunctional molecular 

networks advance molecular level mechanistic understanding of neurodegeneration in LBD, 

and they can facilitate identifying potential diagnostic biomarkers for LBD. Nevertheless, the 
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limitations of this study include its small sample size comprising mostly men, the lack of AD 

and PD comparison groups, not investigating cerebellum that does not typically have 

substantial α-synuclein pathology, and the lack of data on the use of dopaminergic medications. 

 Our GEM analyses have demonstrated how mitochondrial dysfunction and oxidative 

stress contribute towards neurodegeneration in LBD. Mitochondrial dysfunction can set off a 

vicious cycle by producing more ROS that lead to more mitochondrial oxidative damage (34). 

Consequent oxidative stress may lead to α-synuclein oligomerization worsening the vicious 

cycle by damaging more mitochondria (34). Oxidative stress has bidirectional causal 

relationship with hypoxia, and sustained hypoxia can lead to anti-inflammatory response in 

LBD brains (35). Moreover, the GEM demonstrated how astrocytes help neurons to cope with 

oxidative stress by releasing glutathione precursors. Hence, astrocytes dysfunction may 

contribute to neurodegeneration in LBD. Additionally, our findings indicate the need for 

further studies investigating IDH that catalyzes NADPH-dependent hydrogen peroxide 

scavenging as a potential therapeutic target that may modify the vicious cycle and the disease 

process. 

 Our results showed that the neuroimmunological profile of LBD brains differ widely 

from chronic neuroinflammation in AD (16). Prior evidence indicating neuroinflammation in 

LBD are weak, and they were principally derived from increased CD68 immunostaining that 

can be explained by impaired proteostasis and microglial dystrophy (17,18,36). 

Immunohistochemical staining with IBA1 and CD68 antibodies has demonstrated low 

microglia density, and increased microglial dystrophy in LBD brains (18). A recent 

transcriptomic and proteomic study has reported lack of evidence for microglia mediated 

neuroinflammation in post-mortem pulvinar of people with LBD (36). We have documented 

statistically significant downregulation of several cytokine and chemokine genes including 

IL1B, IL2, IL6, CXCL2, CXCL3, CXCL8, CXCL10, and CXCL11. Downregulation of MPO, 
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and of vascular cell adhesion molecules encoding SELE and VCAM1 add evidence for the 

absence of neuroinflammation in LBD brains. Optimal microglial activation is essential for 

neuronal survival, and the importance of neuroprotective and synaptic modulatory functions of 

microglia in adult brain is increasingly recognized (37). Hence, immune dysfunction leading 

to impaired neuronal protection and survival rather than chronic neuroinflammation may 

explain neuronal loss in LBD. The differential expression levels of these inflammatory markers 

and of the associated molecules may distinguish LBD from AD, and further research 

investigating their biomarker potential are warranted.  

 Neutrophil extravasation has been associated with AD pathology (38), but little is 

known about its role in LBD. We have verified downregulation of neutrophil defensin genes, 

and have highlighted the dysfunctional granulocyte adhesion and diapedesis pathway in LBD 

brains. CTSG encoding a neutrophil serine protease, Cathepsin G, was significantly 

downregulated in both cortical regions of LBD brains. Cathepsin G influences the permeability 

of blood brain barrier, and its downregulation can contribute to impaired proteostasis and 

neurodegeneration in LBD (39). Moreover, Granulocyte colony stimulating factor (GCSF), 

coded by CSF3, stimulates the proliferation and survival of neutrophils and it is a neurotrophic 

factor (40). GCSF may facilitate neuroplasticity, and can inhibit apoptosis (41). We have 

documented CSF3 downregulation in LBD brains, and have highlighted the importance of 

CSF3 associated molecular networks hindering neuronal survival, and leading to immune 

dysfunction, and neurodegeneration in LBD. Serum GCSF levels were significantly less in 

people with AD than cognitively-intact controls (41), and a pilot study has demonstrated the 

safety of GCSF in people with AD (42). However, the biomarker and therapeutic potential of 

GCSF has not been systematically evaluated in LBD so far.  

 MPO polymorphisms have been associated with sporadic and familial forms of AD. 

Myeloperoxidase co-localizes with β-amyloid deposits in AD brains (43), and increased plasma 
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myeloperoxidase levels have been reported in people with AD (44). As we documented 

significantly reduced MPO expression in LBD, peripheral biomarker potential of 

myeloperoxidase and its mRNA in people with LBD warrant further investigation. Moreover, 

synaptic loss leads to neurodegeneration, and downregulation of RBM3 reportedly leads to 

synaptic loss in mice (45). RBM3 modulates synaptic plasticity, and it can be a potential 

therapeutic target for LBD. Besides, our results rekindle the interest on somatostatinergic 

systems. Loss of somatostatin expressing interneurons (46), and consequent impairment of 

microglial migration and their target-specific phagocytosis (47) may contribute to cognitive 

impairment in LBD. Furthermore, downregulation of VGF may compromise neuronal survival 

and energy homeostasis in LBD brains. Increased expression of VGF in cerebrospinal fluid 

and peripheral lymphocytes has been detected in AD (48), but the biomarker potential of VGF 

has not been investigated in LBD. 

 As advanced stages of DLB and PDD are often clinically indistinguishable, the 

nosological validity and diagnostic boundaries of these disorders are continuously debated 

(49). We have documented the molecular differences between DLB and PDD, and more 

pronounced transcriptomic differences at earlier clinical stages can be hypothesized. Predicting 

early stage transcriptomic differences and their longitudinal changes from the findings of post-

mortem brain studies are difficult. However, circulating exosomes transporting RNA between 

brain and peripheral systems provide an opportunity for studying the molecular changes in 

living human brain (50). Hence, we are currently investigating serum and cerebrospinal fluid 

exosomal RNA profiles for understanding the molecular changes in LBD over its disease 

course, and for evaluating the biomarker potential of identified DEGs. 
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Figure-legends: 

Figure-1: Functional analyses of identified differentially expressed genes in post-mortem 

brains of people with Lewy body dementias 

A: Canonical pathways that were enriched among the statistically significant (edgeR p<0.05; 

no df) differentially expressed genes (DEGs) in dorsolateral prefrontal cortices (DLPFC) of 

people with Lewy body dementias (LBD); B: Canonical pathways that were enriched among 

the statistically significant (edgeR p<0.05; no df) DEGs in anterior cingulate cortices (ACC) 

of people with LBD; (A&B) Green represents downregulated genes, and red represents 

upregulated genes. Yellow line presents the p-values after Benjamini-Hochberg false discovery 

rate (5%) correction. 

C: A network of DEGs in DLPFC of people with LBD may impair neuronal development, 

maintenance, and survival; D: A network of DEGs in ACC of people with LBD may lead to 

cell-to-cell signaling impairment, and immune system dysfunction; (C&D) Green represents 

downregulated genes, and red represents upregulated genes. Solid lines represent direct 

interactions and dotted lines represent indirect interactions. 

Figure-2: Flux balance analysis, performed on brain-specific genome scale metabolic models, 

highlighted the metabolic changes in LBD brains  

The flux of reactions related to oxidative stress response increase in LBD. Scavenging of 

hydrogen peroxide (H2O2) is done by glutathione peroxidase. Astrocytes release the precursors 

of Glutathione (GSH). The increased flux for Redox responses to hypoxia in LBD is related to 

NADPH-dependent H2O2 scavenging, catalyzed by isocitrate dehydrogenase (IDH), 

supporting the system through the NADPH production. Additionally, the activity of 

tricarboxylic acid cycle and mitochondrial respiratory chain are reduced in LBD. aKG: alpha 

ketoglutarate, GSH: Reduced Glutathione and GSSG: Oxidized Glutathione. 
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Supplemental digital content (SDC): 

1. SDC-1 presents the diagnosis, age, gender, post-mortem interval, and co-existent AD 

pathology of the brains that have been included in this study (.docx file). 

2. SDC-2 presents the expression count matrix of RNA-seq data from post-mortem anterior 

cingulate cortices (.xlsx file).  

3. SDC-3 presents the expression count matrix of RNA-seq data from post-mortem 

dorsolateral prefrontal cortices (.xlsx file).  

4. SDC-4 presents forward and reverse primer sequences that have been used for high-

throughput qPCR replication of 78 selected genes (first worksheet) and 7 reference (second 

worksheet) genes. It has two worksheets. (.xlsx file).  

5. SDC-5 presents an overview of RNA extraction, cDNA synthesis, specific target 

amplification and high-throughput qPCR replication procedures (.docx file) 

6. SDC-6 presents differential expression analyses of RNA-seq data from post-mortem 

anterior cingulate cortices of 13 Lewy body dementias, and 7 control brains without 

dementia and Parkinson’s disease (.xlsx file). 

7. SDC-7 presents differential expression analyses of RNA-seq data from post-mortem 

dorsolateral prefrontal cortices of 14 Lewy body dementias, and 6 control brains without 

dementia and Parkinson’s disease (.xlsx file). 

8. SDC-8 presents the results of high-throughput qPCR verification. It has two worksheets. 

First worksheet presents the results from anterior cingulate cortices, and the second 

worksheet presents the results from dorsolateral prefrontal cortices (.xlsx file). 

9. SDC-9 presents differential expression analyses comparing post-mortem dementia with 

Lewy bodies and control brains without dementia and Parkinson’s disease. It has two 

worksheets. First worksheet presents the results from anterior cingulate cortices, and the 

second worksheet presents the results from dorsolateral prefrontal cortices (.xlsx file). 
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10. SDC-10 presents differential expression analyses comparing post-mortem Parkinson’s 

disease dementia and control brains without dementia and Parkinson’s disease. It has two 

worksheets. First worksheet presents the results from anterior cingulate cortices, and the 

second worksheet presents the results from dorsolateral prefrontal cortices (.xlsx file). 

11. SDC-11 presents differential expression analyses comparing post-mortem Parkinson’s 

disease dementia and dementia with Lewy bodies brains. It has two worksheets. First 

worksheet presents the results from anterior cingulate cortices, and the second worksheet 

presents the results from dorsolateral prefrontal cortices (.xlsx file). 

12. SDC-12 presents differential expression analyses comparing Lewy body dementia brains 

with minimal or no co-existing Alzheimer's disease pathology (All ABC scores ≤ 1) and 

Lewy body dementia brains with more co-existing Alzheimer's disease pathology (at least 

one of the ABC scores ≥ 2). It has two worksheets. First worksheet presents the results from 

anterior cingulate cortices, and the second worksheet presents the results from dorsolateral 

prefrontal cortices (.xlsx file). 

13. SDC-13 presents differential expression fold changes, estimated by meta-analyses of prior 

gene expression studies investigating post-mortem Alzheimer's disease brains, of 26 

selected differentially expressed genes in LBD (.xlsx file). 

14.  SDC-14 presents the flux balance analysis investigating the metabolic reprogramming in 

brains of people with Lewy body dementias.  First worksheet presents the results from 

anterior cingulate cortices, and the second worksheet presents the results from dorsolateral 

prefrontal cortices (.xlsx file). 

15. SDC-15 presents the reporter metabolite analysis investigating the metabolic 

reprogramming in brains of people with Lewy body dementias. It has six worksheets.  The 

first three worksheets present the results from anterior cingulate cortices, and the next three 

worksheets present the results from dorsolateral prefrontal cortices (.xlsx file). 
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Table 1: 12 genome-wide significant differentially expressed genesa in post-mortem brains of people with Lewy body dementias 

Gene  Gene name LFC b qPCR LFC p c q d 

MPO myeloperoxidase -4.49 -3.58 5.43E-11 3.07E-06 

SELE selectin E -3.64 -2.47 2.90E-09 8.19E-05 

ABCA13 ATP binding cassette subfamily A member 13 -3.63 -2.36 8.85E-08 0.0017 

ALPI alkaline phosphatase, intestinal -6.69 -1.17 4.36E-07 0.0054 

SLC4A1 solute carrier family 4 member 1 -2.61 -1.55 4.80E-07 0.0054 

OXTR oxytocin receptor -1.08 -0.94 6.93E-07 0.0065 

CSF3 colony stimulating factor 3 -4.14 -5.57 9.06E-07 0.0073 

CTSG cathepsin G -6.75 -7.61 4.56E-06 0.0286 

RAB44 RAB44, member RAS oncogene family -3.88 -1.92 4.26E-06 0.0286 

RBM3 RNA binding motif protein 3 -1.03 -2.17 5.74E-06 0.0303 

GALNT6 polypeptide N-acetylgalactosaminyltransferase 6 1.35e 0.95e 4.33E-07 0.0049 

SST somatostatin -2.27e -1.61e 8.89E-07 0.0072 

 

a Differentially expressed genes that were identified by RNA-seq and were verified by high-throughput quantitative polymerase chain reaction 

(qPCR); b Logarithmic (base 2) fold change, measured by RNA-seq; c RNA-seq p value that was estimated using the edgeR algorithm. The edgeR 

algorithm employed exact tests (no df) for calculating p-values after fitting gene-specific quasi-negative binominal models and estimating 

dispersion using the quantile adjusted conditional maximum likelihood method; d RNA-seq q value after Benjamini-Hochberg false discovery rate 

(5%) correction; e in dorsolateral prefrontal cortex. 

Table 1
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Table 2: Other verified differentially expressed genes a in post-mortem brains of people with Lewy body dementias 

Anterior Cingulate Cortex Dorsolateral Prefrontal Cortex 

Gene LFC b qPCR LFC p c q d Gene LFC b qPCR LFC p c q d 

ADAMTS2 1.05 1.23 1.15E-05 0.0521 CXCL11 -3.72 -2.35 1.14E-05 0.0682 

UTF1 -3.73 -1.53 1.22E-05 0.0521 VGF -1.79 -0.79 4.73E-05 0.2058 

DEFA4 -6.15 -2.37 2.91E-05 0.0897 ADAMTS2 1.02 2.15 0.0001 0.3372 

CXCL11 -3.19 -1.91 7.43E-05 0.1399 LDHC 4.16 5.49 0.0002 0.4165 

XIST 8.56 1.43 0.0002 0.2581 GIPR 2.30 1.18 0.0004 0.4165 

DEFA3 -5.34 -2.64 0.0004 0.3266 XIST 8.75 1.83 0.0006 0.4652 

GBP6 -1.18 -2.52 0.0013 0.4438 ADRA2B 1.48 -0.86 0.0009 0.5467 

STX11 -1.24 -1.03 0.0015 0.4701 DEFA4 -4.95 -3.91 0.0010 0.5467 

GRK7 1.64 2.01 0.0015 0.4725 GBP6 -1.42 -1.30 0.0015 0.6017 

GIPR 1.60 0.84 0.0020 0.4911 REG4 -4.15 -1.19 0.0019 0.6017 

ABCD2 -0.59 -0.70 0.0020 0.4911 SBSN 1.84 0.39 0.0036 0.7670 

IL1B -1.68 -1.49 0.0050 0.6213 DEFA3 -3.77 -2.62 0.0076 0.8123 

SPP1 1.40 0.95 0.0053 0.6213 SPP1 0.96 0.80 0.0102 0.8329 

VCAM1 -1.18 -1.32 0.0124 0.7229 IL1B -1.41 -1.01 0.0103 0.8335 

VGF -0.91 -2.64 0.0230 0.7684 CPA3 -3.77 -2.17 0.0142 0.8849 

CP -0.93 -1.12 0.0257 0.7764 GRK7 1.24 1.97 0.0201 0.9649 

CRABP1 1.57 0.78 0.0265 0.7767 WISP1 1.11 1.11 0.0275 1.0000 

LDHC 2.37 2.78 0.0395 0.8274 CP -0.91 -1.34 0.0277 1.0000 

NOS3 -1.08 -1.20 0.0454 0.8274 GPR50 -2.04 -1.93 0.0412 1.0000 

OR11H4 -1.26 -1.35 0.0471 0.8274 ABCD2 -0.43 -0.57 0.0463 1.0000 
a Differentially expressed genes that were identified by RNA-seq and were verified by high-throughput qPCR; b Logarithmic (base 2) fold change, 

measured by RNA-seq; c RNA-seq p value that was estimated using edgeR algorithm. The edgeR algorithm employed exact tests (no df) for 

calculating p-values after fitting gene-specific quasi-negative binominal models and estimating dispersion using the quantile adjusted conditional 

maximum likelihood method; d RNA-seq q value after Benjamini-Hochberg false discovery rate (5%) correction. 

Table 2




