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ON THE IMPLEMENTATION OF A PRIMAL-DUAL ALGORITHM FOR
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Abstract. We study a numerical approximation of a time-dependent Mean Field Game (MFG) sys-
tem with local couplings. The discretization we consider stems from a variational approach described
in [14] for the stationary problem and leads to the finite difference scheme introduced by Achdou
and Capuzzo-Dolcetta in [3]. In order to solve the finite dimensional variational problems, in [14] the
authors implement the primal-dual algorithm introduced by Chambolle and Pock in [20], whose core
consists in iteratively solving linear systems and applying a proximity operator. We apply that method
to time-dependent MFG and, for large viscosity parameters, we improve the linear system solution by
replacing the direct approach used in [14] by suitable preconditioned iterative algorithms.

Résumé. Nous étudions une approche numérique pour un système de jeu à champ moyen avec cou-
plage local. La discrétisation que nous considérons résulte d’une approche variationnelle décrite, pour
le problème stationnaire, dans [14] et mène au schéma aux différences finies introduit par Achdou
et Capuzzo-Dolcetta dans [3]. Dans le but de résoudre des problèmes variationnels en dimension
finie, dans [14] les auteurs implémentent un algorithme primal-dual introduit par Chambolle et Pock
dans [20], dont l’essence consiste à résoudre itérativement des systèmes linéaires et à appliquer un
opérateur proximal. Nous appliquons cette méthode à un jeu à champ moyen dépendant du temps et,
lorsque le paramètre de viscosité est assez grand, nous améliorons la résolution du système linéaire en
remplaçant l’approche directe utilisée dans [14] par des algorithmes itératifs préconditionnés.
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1. Introduction

In this work we consider the following MFG system with local couplings
− ∂tu− ν∆u+H(x,∇u) = f(x,m(x, t)) in Td × [0, T ],

∂tm− ν∆m− div(∇pH(x,Du)m) = 0 in Td × [0, T ],

m(·, ·) = m0(·), u(·, T ) = g(·,m(·, T )) in Td.

(MFG)

In the notation above ν ≥ 0, d ∈ N, Td is the d-dimensional torus, H : Td × Rd → R is jointly continuous and
convex with respect to its second variable, f , g : Td×R→ R are continuous functions and m0 ∈ L1(Td) satisfies
m0 ≥ 0 and

∫
Td m0(x)dx = 1.

System (MFG) has been introduced by J.-M. Lasry and P.-L. Lions in [27, 28] in order to describe the
asymptotic behaviour of symmetric stochastic differential games as the number of players tends to infinity.
Several analytical techniques can be used to prove the existence of solutions to (MFG) under various assumptions
on the data. Despite the recent introduction of the MFG system, the literature dedicated to its theoretical
study is already too rich to be covered exhaustively in this introduction. The interested reader may refer to the
monographs [10,24], the surveys [16,25] and the references therein for the state of the art of the subject.

A useful approach that can be used to establish the existence of solutions to (MFG) is the variational one,
already presented in [28]. The main idea behind is that, at least formally, system (MFG) can be seen as the
first order optimality condition associated to minimizers of the following optimization problem

inf(m,w)

∫ T
0

∫
Td [b(x,m(x, t), w(x, t)) + F (x,m(x, t))] dx+

∫
Td G(x,m(x, T ))dx

subject to ∂tm− ν∆m+ div(w) = 0 in Td × (0, T ),

m(·, 0) = m0(·) in Td,

(P)

(provided that they exist). In (P), the functions b : Td ×R×Rd → R∪ {+∞} and F , G : Td ×R→ R∪ {+∞}
are defined as follows

b(x,m,w) :=

 mH∗(x,− w
m ) if m > 0,

0 if (m,w) = (0, 0),
+∞ otherwise,

F (x,m) :=

{ ∫m
0
f(x,m′)dm′ if m ≥ 0,

+∞ otherwise,
G(x,m) :=

{ ∫m
0
g(x,m′)dm′ if m ≥ 0,

+∞ otherwise,

(1.1)

where, in the definition of b, H∗(x, ·) denotes the Legendre-Fenchel conjugate of H(x, ·). Under the assumption
that f(x, ·) and g(x, ·) are non-decreasing, problem (P ) is shown to be a convex optimization problem and
convex duality techniques can be successfully applied in order to provide existence and uniqueness results to
(MFG). This argument has been made rigorous in several articles: let us mention [17,18] in the context of first
order MFGs (ν = 0), the paper [19] for degenerate second order MFGs, and finally [29, 30] for ergodic second
order MFGs.

The variational approach described above has also been successful in the numerical resolution of system
(MFG). In this direction, we mention the article [26] dealing with applications in economics, the paper [1]
concerned with the so-called planning problem in MFGs, the works [7, 9] focused on the resolution of a dis-
cretization of (P) by the Alternating Direction Method of Multipliers (ADMM) and [14] where several first
order methods are implemented and compared for the stationary version of (MFG). Let us mention that the
variational approach is closely related to the so-called mean field optimal control problem, for which numerical
methods have been studied in [6, 15], among others.
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In this paper we consider a finite difference discretization of problem (P). Assuming that f(x, ·) and g(x, ·) are
non-decreasing, the discretization that we consider is such that it preserves the convexity properties of problem
(P) and the first order optimality conditions for its solutions, which are shown to exist, coincide with the finite
difference scheme for MFGs introduced in [3]. A very nice feature of this approach is that the solutions of the
resulting discretized MFGs are shown to converge to the solutions of (MFG). We refer the reader to [2], where
the convergence result is obtained under the assumption that (MFG) admits a unique classical solution, and
to [5] in the framework of weak solutions (see [32] for the definition of this notion). We solve the discrete convex
optimization problem by using the primal-dual algorithm introduced in [20]. As was pointed out in [14] (see
also [31] in the context of transport problems), the primal-dual algorithm we consider seems to be faster than
the ADMM when ν in (MFG) is small (or null). On the other hand, the efficiency of both methods is arguable
when ν is large. This is due to the fact that, in both algorithms, at each iteration one has to invert a matrix
whose condition number importantly increases as the viscosity parameter increases. Naturally, preconditioning
strategies (see e.g. [11]) can then be used in order to improve the efficiency of both algorithms. This strategy
has been already successfully implemented in [7] for the ADMM.

Our main objective in the present work is to take a closer look at the phenomenon described at the end
of previous paragraph when considering the primal-dual algorithm. Therefore, we focus our analysis in the
case where ν > 0. We have implemented standard indirect methods for solving the linear systems appearing
in the computation of the iterates of the primal-dual algorithm. As our numerical results suggest, it is very
important to design suitable preconditioning strategies in order to be able to find solutions of the discretization
of problem (P ) efficiently, and in a robust way with respect to the viscosity parameter. For this, we explore
different preconditioning strategies, and in particular, multigrid preconditioning (see also [4,7], where multigrid
strategies have been implemented for other solution methods).

The article is organized as follows. In section 2 we introduce some standard notation and we recall the finite
difference scheme for (MFG) introduced in [3]. The variational interpretation of this finite difference scheme is
discussed in section 3. Next, in section 4, we recall the primal-dual algorithm introduced in [20] and we consider
its application to the discretization of (P). In section 5, we summarize the preconditioning strategies that we
consider and we discuss a numerical example, which is the time-dependent version of one of the examples treated
in [3, 14].

2. Preliminaries and the finite difference scheme in [3]

In this section we introduce some basic notation and present the finite difference scheme introduced in [3],
whose efficient resolution will be the main subject of this article. For the sake of simplicity, we will assume that
d = 2 and that given q > 1, with conjugate exponent denoted by q′ = q/(q−1), the Hamiltonian H : T2×R2 → R
has the form

H(x, p) =
1

q′
|p|q

′
∀ x ∈ T2, p ∈ R2.

In this case the function b defined in (1.1) takes the form

b(x,m,w) =


|w|q
qmq−1 if m > 0,

0 if (m,w) = (0, 0),
+∞ otherwise.

Let NT , Nh be positive integers and set ∆t = T/NT , the time step, and h = 1/Nh, the space step. We associate
to these steps a time grid T∆t := {tk = k∆t ; k = 0, . . . , NT } and a space grid T2

h := {xi,j = (ih, jh) ; i, j ∈ Z}.
Since T2

h intends to discretize T2, we impose the identification zi,j = z(i mod Nh),(j mod Nh), which allows

to assume that i, j ∈ {0, . . . , Nh − 1}. A function y := T2 × [0, T ] → R is approximated by its values at
(xi,j , tk) ∈ T2

h × T∆t, which we denote by yki,j := y(xi,j , tk). Given y : T2
h → R we define the first order finite

difference operators



ESAIM: PROCEEDINGS AND SURVEYS 333

(D1y)i,j :=
yi+1,j − yi,j

h
, and (D2y)i,j :=

yi,j+1 − yi,j
h

,

[Dhy]i,j := ((D1y)i,j , (D1y)i−1,j , (D2y)i,j , (D2y)i,j−1),

[̂Dhy]i,j = ((D1y)−i,j ,−(D1y)+
i−1,j , (D2y)−i,j ,−(D2y)+

i,j−1),

(2.1)

where, for every a ∈ R, we set a+ := max(a, 0) and a− := a+−a. The discrete Laplacian operator ∆hy : T2
h → R

is defined by

(∆hy)i,j := − 1

h2
(4yi,j − yi+1,j − yi−1,j − yi,j+1 − yi,j−1).

For y : T∆t → R we define the discrete time derivative

Dty
k :=

yk+1 − yk

∆t
.

The Godunov-type finite difference discretization of (MFG) introduced in [3] is as follows: find u, m : T2
h×T∆t →

R such that for all 0 ≤ i, j ≤ Nh − 1 and 0 ≤ k ≤ NT − 1 we have
−Dtu

k
i,j − ν(∆hu

k)i,j + 1
q′ |̂[Dhuk]i,j |q

′
= f(xi,j ,m

k+1
i,j ),

Dtm
k
i,j − ν(∆hm

k+1)i,j − Ti,j(uk,mk+1) = 0,

m0
i,j = m̄i,j , uNT

i,j = g(xi,j ,m
NT
i,j ),

(MFGh,∆t)

where

m̄i,j :=

∫
|x−xi,j |∞≤h

2

m0(x)dx ≥ 0, (2.2)

and the operator T (u′,m′) : T2
h → R, with u′,m′ : T2

h → R, is defined by

Ti,j(u′,m′) := 1
h

(
−m′i,j 1

q′ |[̂Dhu′]i,j |
2−q
q−1 (D1u

′)−i,j +m′i−1,j
1
q′ |[̂Dhu′]i−1,j |

2−q
q−1 (D1u

′)−i−1,j

+m′i+1,j
1
q′ |[̂Dhu′]i+1,j |

2−q
q−1 (D1u

′)+
i,j −m′i,j 1

q′ |[̂Dhu′]i,j |
2−q
q−1 (D1u

′)+
i−1,j

−m′i,j 1
q′ |[̂Dhu′]i,j |

2−q
q−1 (D2u

′)−i,j +m′i,j−1
1
q′ |[̂Dhu′]i,j−1|

2−q
q−1 (D2u

′)−i,j−1

+m′i,j+1
1
q′ |[̂Dhu′]i,j+1|

2−q
q−1 (D2u

′)+
i,j −m′i,j 1

q′ |[̂Dhu′]i,j |
2−q
q−1 (D2u

′)+
i,j−1

)
,

with the convention:

|[̂Dhu′]i,j |
2−q
q−1 [̂Dhu′]i,j = 0 if q > 0 and [̂Dhu′]i,j = 0. (2.3)

The existence of a solution (uh,∆t,mh,∆t) of system (MFGh,∆t) is proved in [3, Theorem 6] as a consequence
of Brouwer fixed point theorem. Furthermore, if we assume that f and g are increasing with respect to
their second argument, and one of them is strictly increasing, this solution is unique when h is small enough
(see [3, Theorem 7]). As we will see in the next section, these results can also be obtained by variational
arguments. The convergence, as h and ∆t tend to 0, of suitable extensions of uh,∆t and mh,∆t to T2 × [0, T ] to
a solution (u,m) of (MFG) is proved in [2] under the assumption that (u,m) is unique and sufficiently regular.
The later smoothness assumption has been relaxed in [5].
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3. The finite dimensional variational problem and the discrete MFG system

Following [14] in the stationary case and [1] for the planning problem, we introduce some finite-dimensional
operators that will allow us to write easily a finite dimensional version of problem (P). Denoting by R+ the set of
non-negative real numbers and by R− the set of non-positive real numbers, we define K := R+×R−×R+×R−
and for v = (v(1), v(2), v(3), v(4)) ∈ R4 we denote by PK(v) = ((v(1))+,−(v(2))−, (v(3))+,−(v(4))−) its orthogonal
projection onto K. Let M := R(NT +1)×Nh×Nh , W := (R4)NT×Nh×Nh and U := RNT×Nh×Nh . Let A :M→ U
and B :W → U be the linear operators defined by

(Am)ki,j := Dtm
k
i,j − ν(∆hm

k+1)i,j ,

(Bw)ki,j := (D1w
k,(1))i−1,j + (D1w

k,(2))i,j + (D2w
k,(3))i,j−1 + (D2w

k,(4))i,j ,
(3.1)

for all 0 ≤ i, j ≤ Nh − 1 and 0 ≤ k ≤ NT − 1. One can easily check (see e.g. [3]) that the corresponding dual
operators are given by

(B∗u)ki,j = −[Dhu
k]i,j for all 0 ≤ k ≤ NT − 1,

(A∗u)ki,j = −Dtu
k−1
i,j − ν(∆hu

k−1)i,j , if 1 ≤ k ≤ NT − 1,

(A∗u)0
i,j = − 1

∆t
u0
i,j ,

(A∗u)NT
i,j =

1

∆t
uNT−1
i,j − ν(∆hu

NT−1)i,j ,

(3.2)

for all u ∈ U . For later use, notice that

Ker(B∗) = {u ∈ U | ∀ k = 0, . . . , NT − 1 there exists ck ∈ R such that uki,j = ck ∀ i, j},

and so

Im(B) = Ker(B∗)⊥ =
{
u ∈ U

∣∣ ∑
i,j

uki,j = 0 ∀ k = 0, . . . , NT − 1
}
. (3.3)

Let us define b̂ : R× R4 → R ∪ {+∞}

b̂(m,w) :=


|w|q
qmq−1 , if m > 0, w ∈ K,

0, if (m,w) = (0, 0),

+∞, otherwise,

(3.4)

and the functions B, F :M×W → R, G :M×W →M× RNh×Nh as

B(m,w) :=
∑

1≤k≤NT ,
0≤i,j≤Nh−1

b̂(mk
i,j , w

k−1
i,j ),

F(m) :=
∑

1≤k≤NT ,
0≤i,j≤Nh−1

F (xi,j ,m
k
i,j) +

1

∆t

∑
0≤i,j≤Nh−1

G(xi,j ,m
NT
i,j ),

G(m,w) := (Am+Bw,m0).

(3.5)

Note that if (m,w) ∈M×W is such that G(m,w) = (0, m̄), where we recall that m̄ is defined in (2.2), then

h2
∑
i,j

mk
i,j = 1 ∀ k = 0, . . . , NT . (3.6)
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Indeed, by periodicity, −
∑
i,j(∆hm

k+1)i,j = 0 and
∑
i,j(Bw)ki,j = 0 for all k = 0, . . . , NT −1. This implies that

0 =
∑
i,j

(Am+Bw)ki,j =

∑
i,jm

k+1
i,j

∆t
−
∑
i,jm

k
i,j

∆t
,

and so h2
∑
i,jm

k
i,j = h2

∑
i,j m̄i,j = 1 for all k = 0, . . . , NT .

The discretization of the variational problem (P) that we consider is

inf
(m,w)∈M×W

B(m,w) + F(m), subject to G(m,w) = (0, m̄), (Ph,∆t)

where we recall that F and G in (3.5) are defined in (1.1).
We have the following result

Theorem 3.1. For any ν > 0 problem (Ph,∆t) admits at least one solution (mh,∆t, wh,∆t) and associated
to it there exists uh,∆t : M × W → R such that (MFGh,∆t) holds true. Moreover, (mh,∆t)ki,j > 0 for all
k = 1, . . . , NT , i, j = 0, . . . , Nh − 1.

In order to prove the result above, let us first show a lemma that implies the feasibility of the constraints in
(Ph,∆t).

Lemma 3.1. There exists (m̃, w̃) ∈M×W such that

G(m̃, w̃) = (0, m̄), w̃ki,j ∈ int(K) ∀ i, j = 1, . . . , Nh − 1, k = 1, . . . , NT − 1,

m̃k
i,j > 0, ∀ i, j = 1, . . . , Nh − 1, k = 1, . . . , NT .

(3.7)

Proof. Let us define m̃0
i,j := m̄i,j and m̃k

i,j := 1 for all k = 1, . . . , NT and i, j. Since h2
∑
i,j m̃

k
i,j = 1 for all

k = 0, . . . , NT , by (3.3) and the definition of A we easily get that Am̃ ∈ Im(B). Therefore, there exists ŵ ∈ W
satisfying G(m̃, ŵ) = (0, m̄). Then, given δ > 0, we set for all k = 0, . . . , NT − 1 and i, j

w̃k
i,j :=

(
ŵk,(1) + max

i,j
ŵ

k,(1)
i,j + δ, ŵk,(2) − max

i,j
ŵ

k,(2)
i,j − δ, ŵk,(3) + max

i,j
ŵ

k,(3)
i,j + δ, ŵk,(4) − max

i,j
ŵ

k,(4)
i,j − δ

)
,

which satisfies w̃ki,j ∈ int(K) and (Bw̃)k = (Bŵ)k. The result follows. �

Now, we prove the existence of solutions to (Ph,∆t).

Lemma 3.2. Problem (Ph,∆t) admits at least one solution (mh,∆t, wh,∆t) and every such solution satisfies
(mh,∆t)ki,j > 0 for all k = 1, . . . , NT , i, j = 0, . . . , Nh − 1.

Proof. Let (mn, wn) be a minimizing sequence for (Ph,∆t). Lemma 3.1 implies that B(m̃, w̃) + F(m̃) < +∞.
Therefore, there exists a constant C1 > 0 such that

B(mn, wn) + F(mn) ≤ C1 for all n ∈ N. (3.8)

As a consequence, by definition of b̂, (mn)ki,j ≥ 0 for all i, j and k and (wn)k ∈ K for all k. Since Amn+Bwn = 0,

relation (3.6) implies that h2
∑
i,j(m

n)ki,j = 1. In particular, there exists C2 > 0 (independent of n) such that

supi,j,k(mn)ki,j ≤ C2. Using that, if (mn)ki,j > 0,

b̂((mn)ki,j , (w
n)ki,j) ≥

|(wn)ki,j |q

qCq−1
2

,

and that F(mn) is uniformly bounded (because F and G are continuous and mn is bounded), relation (3.8) yields
the existence of C3 > 0 (independent of n) such that supi,j,k |(wn)ki,j | ≤ C3. Thus, there exists (mh,∆t, wh,∆t) ∈
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M×W such that, up to some subsequence, mn → mh,∆t and wn → wh,∆t as n→∞. Since G(mn, wn) = (0, m̄)
we obtain that G(mh,∆t, wh,∆t) = (0, m̄), The lower semicontinuity of B + F implies that

B(mh,∆t, wh,∆t) + F(mh,∆t) ≤ lim
n→∞

B(mn, wn) + F(mn),

which implies that (mh,∆t, wh,∆t) solves (Ph,∆t). Finally, if (m,w) ∈ M×W solves (Ph,∆t) and mk
i,j = 0 for

some i, j and k = 1, . . . , NT , then, by the definition of B, we must have that wk−1
i,j = 0. Thus, the constraint

(Am+Bw)k−1
i,j = 0 can be written as

−m
k−1
i,j

∆t −
ν
h2 (mk

i+1,j +mk
i−1,j +mk

i,j+1 +mk
i,j−1)

=
w

k−1,(1)
i−1,j

h − w
k−1,(2)
i+1,j

h +
w

k−1,(3)
i,j−1

h − w
k−1,(4)
i,j+1

h .

Since the left hand side above is non-positive and the right hand side is non-negative (by definition of K), we
deduce that all the terms above are zero. By repeating the argument at the indexes neighboring (i, j), we deduce
that mk ≡ 0 and so h2

∑
i,jm

k
i,j = 0 which, by (3.6), contradicts G(m,w) = (0, m̄). The result follows. �

Remark 3.1. Notice that the proof of the existence of a solution to (Ph,∆t) also works when ν = 0.

Proof of Theorem 3.1. By Lemma 3.2 we know that there exists a solution (mh,∆t, wh,∆t) to (Ph,∆t) and

mh,∆t
i,j > 0 for all i, j. Thus, in order to conclude it suffices to show the existence of uh,∆t such that

(MFGh,∆t) holds true. For notational convenience we will omit the superindexes h and ∆t. Define the La-
grangian L :=M×W ×U × RNh×Nh → R ∪ {+∞}, associated to (Ph,∆t), as

L(m,w, u, λ) := B(m,w) + F(m)− 〈u,Am+Bw〉 − 〈λ,m0 − m̄〉

= B(m,w) + F(m)− 〈A∗u,m〉 − 〈B∗u,w〉 − 〈λ,m0 − m̄〉.
(3.9)

Note that the linear mapping M3 m 7→ (Am,m) ∈ U × RNh×Nh is invertible as it is shown by its matrix rep-
resentation (see (4.7) in the next section). As a consequence G is surjective and, hence, by standard arguments,
there exists (u, λ) ∈ U × RNh×Nh such that

0 = ∂mk
i,j
L(m,w, u, λ) = − 1

q′
|wk−1

i,j |
q

(mk
i,j)q

+ f(xi,j ,m
k
i,j)− [A∗u]ki,j ∀ k = 1, . . . , NT − 1, ∀ i, j,

0 = ∂m0
i,j
L(m,w, u, λ) = −λi,j − [A∗u]0i,j ∀ i, j,

0 = ∂
m

NT
i,j

L(m,w, u, λ) = − 1
q′
|wNT−1

i,j |q

(m
NT
i,j )q

+ f(xi,j ,m
NT
i,j ) + 1

∆tg(xi,j ,m
NT
i,j )− [A∗u]NT

i,j ∀ i, j,

0 ∈ ∂wk−1
i,j
L(m,w, u, λ) = |wk−1

i,j |q−2 wk−1
i,j

(mk
i,j)q−1 − [B∗u]k−1

i,j +NK(wk−1
i,j ) ∀ k = 1, . . . , NT , ∀ i, j,

(3.10)

where we have used definition (3.4) and that mk
i,j > 0 for all k = 1, . . . , NT and all i, j. Defining uNT

i,j :=

g(xi,j ,m
NT
i,j ), by the last relation in (3.2), the third relation in (3.10) can be rewritten as

−Dtu
NT−1
i,j − ν(∆hu

NT−1)i,j +
1

q′
|wNT−1
i,j |q

(mNT
i,j )q

= f(xi,j ,m
NT
i,j ),

and hence, by the second relation in (3.2) and the first relation in (3.10), we have that

−Dtu
k
i,j − ν(∆hu

k)i,j +
1

q′
|wki,j |q

(mk+1
i,j )q

= f(xi,j ,m
k+1
i,j ) ∀ k = 0, . . . , NT − 1, ∀ i, j. (3.11)
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The last relation in (3.10) yields that for all k = 1, . . . , NT and all i, j
(mk

i,j)q−1

|wk−1
i,j |q−2

[B∗u]k−1
i,j ∈ w

k−1
i,j +NK(wk−1

i,j ) if wk−1
i,j 6= 0,

[B∗u]k−1
i,j ∈ NK(0) if wk−1

i,j = 0,

which, by (3.2) and under the convention (2.3), is equivalent to

wk−1
i,j = mk

i,j |PK(−[Dhu]k−1
i,j )|

2−q
q−1PK(−[Dhu]k−1

i,j ) = mk
i,j | ̂[Dhuk−1]i,j |

2−q
q−1 ̂[Dhuk−1]i,j . (3.12)

Shifting the index k, the expression above yields

1

q′
|wki,j |q

(mk+1
i,j )q

=
1

q′
|̂[Dhuk]i,j |

q′ ∀ k = 0, . . . , NT − 1, ∀ i, j,

which, combined with (3.11), implies the first equation in (MFGh,∆t). The second equation in (MFGh,∆t) is a
consequence of Am+Bw = 0 and the fact that (3.12) provides the identity

(Bw)ki,j = −Ti,j(uk,mk+1) ∀ k = 0, . . . , NT − 1, ∀ i, j.

The result follows. �

Remark 3.2. (i) The proof of the existence of solutions to (MFGh,∆t) in Theorem 3.1 provides an alternative
argument to the one in [3], based on Brouwer fixed-point theorem.

(ii)(Uniqueness) If f(x, ·) and g(x, ·) are increasing, with one of them being strictly increasing, then (MFGh,∆t)
has a unique solution. Indeed, under this assumption, the cost functional in (Ph,∆t) is convex w.r.t. (m,w) and
strictly convex w.r.t. m. It is easy to check that this implies that if (m1, w1) and (m2, w2) are two solutions

of (Ph,∆t) then m1 = m2. Using this fact and the definition of b̂ (see (3.4)), we also get that w1 = w2. Thus,
under this monotonicity assumption, the solution (mh,∆t, wh,∆t) to (Ph,∆t) is unique. Having this result, the
uniqueness of uh,∆t follows directly from [3, Lemma 1].

4. A primal-dual algorithm to solve (Ph,∆t)

As discussed in [14], for solving the optimization problem

min
y∈RN

ϕ(y) + ψ(y), (4.1)

and its dual

min
σ∈RN

ϕ∗(−σ) + ψ∗(σ), (4.2)

where ϕ : RN → R ∪ {+∞} and ψ : RN → R ∪ {+∞} are convex l.s.c. proper functions, methods in [13,20–23]
can be applied with guaranteed convergence under mild assumptions. In [14], devoted to the stationary case, the
method proposed in [20] has the best performance when the viscosity parameter is small or zero. This method
is inspired by the first-order optimality conditions satisfied by a solution (ŷ, σ̂) to (4.1)-(4.2) under standard
qualification conditions, which reads (see [34, Theorem 8]){

−σ̂ ∈ ∂ϕ(ŷ)

ŷ ∈ ∂ψ∗(σ̂)
⇔

{
ŷ − τ σ̂ ∈ τ∂ϕ(ŷ) + ŷ

σ̂ + γŷ ∈ γ∂ψ∗(σ̂) + σ̂
⇔

{
proxτϕ(ŷ − τ σ̂) = ŷ

proxγψ∗(σ̂ + γŷ) = σ̂,
(4.3)
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where γ > 0 and τ > 0 are arbitrary and, given a l.s.c. convex proper function φ : RN → ]−∞,+∞],

proxγφ x := argminy∈RN

{
φ(y) +

|y − x|2

2γ

}
= (I + ∂(γφ))−1(x) ∀ x ∈ RN .

Given θ ∈ [0, 1], τ and γ satisfying τγ < 1, and starting points (y0, ỹ0, σ0) ∈ RN × RN × RM , the iterates
{(yk, σk)}k∈N generated by

σk+1 := proxγψ∗(σ
k + γỹk),

yk+1 := proxτϕ(yk − τσk+1),

ỹk+1 := yk+1 + θ(yk+1 − yk)

(4.4)

converge to a primal-dual solution (ŷ, σ̂) to (4.1)-(4.2) (see, e.g., [20]).
In the case under study, the equations of the time-dependent discretization are very similar to their sta-

tionary counterparts (see [14]). Specifically, the discrete linear operators A and B defined in (3.1), by an
abuse of notation, are represented by real matrices A and B, of dimensions (NT ×N2

h)× ((NT + 1)×N2
h) and

(NT ×N2
h)× (NT × 4N2

h), respectively, given by

A :=


− 1

∆t IdN2
h

νL+ 1
∆t IdN2

h
0 · · · 0

0 − 1
∆t IdN2

h
νL+ 1

∆t IdN2
h

. . .
...

...
. . .

. . .
. . . 0

0 · · · 0 − 1
∆t IdN2

h
νL+ 1

∆t IdN2
h

 , (4.5)

and

B :=


M 0 · · · 0
0 M · · · 0
...

. . .
...

0 · · · 0 M

 , (4.6)

where L ∈ MN2
h , N

2
h
(R) is the matrix that represents −∆h on the torus T2

h and M ∈ MN2
h , 4N2

h
(R) is the

matrix representing the discrete divergence. Denoting by Ã and B̃ the ((NT + 1)×N2
h)× ((NT + 1)×N2

h) and
((NT + 1)×N2

h)× (NT × 4N2
h) real matrices

Ã :=

(
IdN2

h
0 · · · 0

A

)
and B̃ :=

(
0 · · · 0

B

)
, (4.7)

the constraint G(m,w) = (0, m̄) in (Ph,∆t) can be rewritten as C(m,w) = (m̄, 0), where C := [Ã | B̃].

Remark 4.1. (i) The matrix Ã is block lower triangular with invertible diagonal blocks and, hence, it is
invertible. Indeed, the first diagonal block IdN2

h
is obviously invertible and the other blocks, given by

νL+ 1
∆t IdN2

h
, are also invertible because they are strictly diagonally dominant.

(ii) Since Ã is invertible, the matrix

Q := CC∗ = ÃÃ∗ + B̃B̃∗ (4.8)

is positive definite and, hence, invertible.

Therefore, (Ph,∆t) is a particular instance of (4.1) with

ϕ(m,w) := B(m,w) + F(m), ψ(m,w) := ιkerC+{(mf ,wf )}(m,w),
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where (mf , wf ) is a feasible vector (provided for instance by Lemma 3.1), and ιkerC+{(mf ,wf )} is the function
defined as 0 for all (m,w) ∈ kerC + {(mf , wf )} and +∞, otherwise.

Since proxγψ∗ = Id− γ proxψ/γ ◦(Id/γ) = Id− γ proxψ ◦(Id/γ) (see e.g. [8, Section 24.2]) and

proxψ : (m,w) 7→ (m,w)− C∗Q−1(C(m,w)− (m̄, 0)),

we have

proxγψ∗ : (m,w) 7→ C∗Q−1(C(m,w)− γ(m̄, 0)),

where Q is defined in (4.8). By setting y0 = (m0, w0), ỹ0 = (m̃0, w̃0), σ0 = (n0, v0) ∈ RNT×N2
h × RNT (4N2

h),
(4.4) becomes 

z[l+1] = −Q−1
(
Ã(n[l] + γm̃[l]) + B̃(v[l] + γw̃[l])− γ(m̄, 0)

)
,(

n[l+1]

v[l+1]

)
=

(
Ã∗z[l+1]

B̃∗z[l+1]

)
,(

m[l+1]

w[l+1]

)
= proxτϕ

(
m[l] + τn[l+1]

w[l] + τv[l+1]

)
,(

m̃[l+1]

w̃[l+1]

)
=

(
m[l+1] + θ(m[l+1] −m[l])
w[l+1] + θ(w[l+1] − w[l])

)
,

(4.9)

and, if γτ < 1, the convergence of (m[l], w[l]) to a solution (m̂, ŵ) to (Ph,∆t) is guaranteed together with the

convergence of (n[l], v[l]) to some (n̂, v̂) as l → ∞. In order to compute the Lagrange multiplier û ∈ U , which
solves the first equation in (MFGh,∆t), note that (3.9) can be written equivalently as

L(m,w, u, λ) := ϕ(m,w)− 〈(λ, u), Ãm+ B̃w〉+ 〈λ, m̄〉

= ϕ(m,w)−
〈(

Ã∗

B̃∗

)
(λ, u),

(
m
w

)〉
+ 〈λ, m̄〉,

(4.10)

and the optimality condition yields (
Ã∗

B̃∗

)
ẑ ∈ ∂ϕ(m̂, ŵ), (4.11)

where (m̂, ŵ) is the primal solution and ẑ = (λ̂, û). Therefore, in order to approximate ẑ, note that from (4.9)
we have (

m[l]−m[l+1]

τ + Ã∗z[l+1]

w[l]−w[l+1]

τ + B̃∗z[l+1]

)
∈ ∂ϕ(m[l+1], w[l+1]) (4.12)

and, hence, since the algorithm generates converging sequences m[l] → m̂ and w[l] → ŵ and z[l] → ẑ :=
−Q−1(Ã(n̂+ γm̂) + B̃(v̂+ γŵ)− γ(m̄, 0)), the closedness of the graph of ∂ϕ [8, Proposition 20.38] yields (4.11)

and, hence, a good approximation of ẑ is z[l] for l large enough. For obtaining [u∗]NT
i,j , a good approximation is

[u[l]]NT
i,j = g(xi,j , [m

[l]]NT
i,j ).

Remark 4.2. (i) In order to obtain an efficient algorithm, the computation of proxτϕ in (4.9) should be fast. A
complete study of proxτϕ is presented in [14, Section 3.2] showing that its computation depends on the resolution
of a real equation, which can be efficiently solved.

(ii) An important step in (4.9) is the efficient computation of the inverse of Q. Different preconditioning
strategies to tackle this issue will be presented in the following section.
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5. Preconditioning strategies

At the beginning of each iteration of the primal-dual algorithm (4.9), we require the solution of a linear
system

Qz = b. (5.1)

The purpose of this section is to discuss preconditioning strategies for the solution of this linear system. For
the stationary setting discussed in [14], the solution of such a system via direct methods such as the backlash
(mldivide) command in MATLAB 1 was feasible for relatively fine meshes (up to the order of 100 nodes per
space dimension). However, as shown in Table 1, introducing a temporal dimension and thus increasing the
degrees of freedom to N2

h × NT significantly increases the computation time. Indeed, the use of backlash on
fine space and time grids – e.g. 1282 space grid points and 40 time steps – requires an amount of RAM that is
prohibitive on the machine used for our performance tests 2, leading to “out of memory” errors. We mitigate
this problem by exploring the solution of (5.1) via preconditioned iterative methods, which perform efficiently
for finer space and time subdivisions and different viscosities.

(a) NT = 10

ν
Nh 16 32 64 128

5× 10−4 7.12 62.7 452 4720
5× 10−3 6.29 60.6 345 3690
5× 10−2 1.96 18.3 113 1340

0.5 1.18 9.41 56.1 660

(b) NT = 40

ν
Nh 16 32 64 128

5× 10−4 24.2 569 15600 [OOM]
5× 10−3 18.8 496 14200 [OOM]
5× 10−2 8.10 145 5000 [OOM]

0.5 4.50 72.3 2510 [OOM]

Table 1. MATLAB’s backslash computation times (seconds) for a single linear system solved
in (4.9) within the Chambolle-Pock algorithm under a tolerance equal to 10−4 in in normalized
`2-norm. For fine meshes [OOM] indicates an out of memory error for the tested architecture.

We begin by illustrating the difficulties associated to the conditioning of the system in (5.1). Table 2 shows
the condition number of the system for different space-time discretizations and viscositiy values. Without any
precoditioner, the condition numbers of different discretizations scale up to 108. The same Table shows that
by selecting a suitable preconditioner, such as the modified incomplete Cholesky factorization [11] (michol in
MATLAB), the conditioning of the system is improved by 4 orders of magnitude.

We have tested different choices of preconditioners and iterative methods for our problem. Since the matrix
Q in our setting is sparse, symmetric, and positive-definite, we have implemented an incomplete Cholesky
factorization with diagonal scaling, a modified incomplete Cholesky factorization, and multigrid preconditioning.
As for the choice of the iterative method, our tests included both preconditioned conjugate gradient (pcg), and
the biconjugate gradient stabilized method (BiCGStab). The interested reader will find in [36, Chapters 6 and 8]
a thorough description of the aforementioned methods, and in the Appendix of this article performance tables
for the different methods.

Our findings suggest that the use of an iterative pcg method, preconditioned by modified incomplete Cholesky
factorization is satisfactory for small viscosities (ν ≤ 0.05). However, this algorithm fails to converge for high
viscosity systems on refined grids (ν = 0.5, NT = 40, Nh ∈ {64, 128}). Exchanging the pcg method by a
BiCGStab algorithm preconditioned by modified incomplete Cholesky factorization slows down the process on
finer grids, but allows for convergence in the failure cases of pcg: ν = 0.5, NT = 40, Nh ∈ {64, 128}.

In order to deal with (and exploit) the anisotropy of the system introduced by high viscosities, we have
devised an algorithm consisting in a multigrid preconditioner with BiCGStab iterations akin to that described in

1http://uk.mathworks.com/help/matlab/ref/mldivide.html
2Intel Core i7-4600U @ 2.7GHz, 16GB RAM
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Algorithm 1. It is the only among the tested methods which performs consistently for different viscosities and
space-time discretizations. We discuss its implementation and assess its performance in the following section 5.1.

Table 2. Condition numbers for Q without preconditioning (a), and with modified incomplete
Cholesky factorization preconditioning (b).

(a) No preconditioner (scaling 104)

ν
DoF

322 × 1 322 × 10 322 × 20

5× 10−5 4.290 19.06 38.43
5× 10−4 4.296 19.25 39.10
5× 10−3 4.751 22.77 48.90
5× 10−2 48.43 227.7 466.0

0.5 4399 19250 36540

(b) michol preconditioning (scaling 104)

ν
DoF

322 × 1 322 × 10 322 × 20

5× 10−5 0.04217 0.08535 0.1361
5× 10−4 0.04218 0.08612 0.1370
5× 10−3 0.04272 0.09325 0.1446
5× 10−2 0.1025 0.2501 0.3579

0.5 1.255 2.743 3.770

Algorithm 1 Preconditioned BiCGStab

xl ←BiCGStab(Ql, bl, PL, PR, x0, tol)
procedure BiCGStab(Ql, bl, PL, PR, x0, tol)

r0 := p0 := Qlx0 − bl; r̂0 := p̂0 := Plr0; ρ̂0 := 〈r0, r0〉; k := 0
while ‖rk‖ ≥ tol do

vk := QPRp̂k
v̂k := PLvk
α̂k := ρ̂k/〈v̂k, r̂0〉
sk+1 := rk − α̂kvk
ŝk+1 := PLsk+1

tk+1 := APRŝk+1

t̂k+1 := PLtk+1

ω̂k+1 := 〈ŝk+1, t̂k+1〉/〈t̂k+1, t̂k+1〉
x̂k+1 := x̂k + α̂kp̂k + ω̂k+1ŝk+1

rk+1 := sk+1 − ω̂k+1tk+1

r̂k+1 := ŝk+1 − ω̂k+1t̂k+1

ρ̂k+1 := 〈r̂k+1, r̂0〉
β̂k+1 := (α̂k/ω̂k+1)(ρk+1/ρk)

p̂k+1 := r̂k+1 + β̂k+1(p̂k − ω̂k+1v̂k)
k := k + 1

return xk := PRx̂k

5.1. Multigrid preconditioner

We implement a multigrid preconditioned algorithm for solving (5.1). We refer the reader to [35] for an
introduction and an overview of multigrid methods. We briefly review the main concepts behind the method.
Consider two linear systems A1x̄1 = b1 and A0x̄0 = b0, stemming from two discretizations of a linear PDE over
the grids G1 and G0, respectively. Assume also that G1 is a refinement of G0. Loosely speaking, the main
idea of the method is that in order to find a good approximation of the solution x̄1 on the finer grid, we first
consider what is known as a smoothing step. This step consists in computing a few iterates x1

1, . . . , x
η1
1 with a

standard indirect method, such as Jacobi or Gauss-Seidel, and to define the residual r1 := b1 −A1x
η1
1 , which is

shown to be smoother (less oscillatory) than the first residual b1 −A1x
1. Then, we consider in the coarser grid
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G0 the second system A0x̄0 = b0 with b0 = r̂1, where r̂1 is the restriction of r1 to G0. Assuming that we can
compute a good approximation of x̄0, which we still denote by x̄0, we then extend this solution to G1 by using
a linear interpolation. Calling e1 the resulting vector, we update xη11 by redefining it as xη11 + e1 and we end the
procedure by applying again a few iterations, say η2, of a smoothing method initialized at xη11 . This last step
is called post smoothing.

The previous paragraph introduced what is known as a two grid iteration. If we consider more gridsG0, G1,. . .,
G`, where for each k = 0, . . . , ` − 1, Gk ⊆ Gk+1, we can proceed similarly and obtain a better approximation
of the solution to A`x̄` = b`. As in the previous case, we begin with the finest grid G` and we perform η1

smoothing steps to obtain the residual r` := b` − A`xη1` whose restriction to G`−1 is denoted by r̂`. In this
grid we consider the system A`−1x`−1 = r̂` and we perform again a smoothing step and a restriction of the
residual to G`−2. The procedure continues until we get to the coarsest grid G0, where the solution e0 to the
corresponding linear system can be found easily (typically using a direct method). Next, the solution e1 on
the grid G1 is corrected with the interpolation of e0. Another post smoothing is performed to the corrected
solution on G1 and using its interpolation in the grid G2 we correct the previous solution on this grid. The
smoothing, interpolation and correction iterations end once we arrive to the finest grid G` to obtain the final
approximation of x̄`. The previous procedure is called a multigrid method with a V -cycle. An alternative, to
obtain a more accurate solution, is to proceed as before going from G` to G`−1 and then for k = ` − 1, . . . , 1
to perform two consecutive coarse-grid corrections, instead of one as in the V -cycle. The resulting procedure
is known as multigrid with a W -cycle. Finally, in between the V -cycle and the W -cycle, we have the F-cycle,
where in the process of going from the coarsest grid to the finest one, if a grid has been reached for the first
time, another correction with the coarser grids using a V -cycle is performed.

In our context, we use one cycle of the multigrid algorithm, which is a linear operator as a function of the
residual on the finest grid, as a preconditioner for solving (5.1) with the BiCGStab method. Since Q is related
to the finite difference discretization of the operator −∂2

tt + ν2∆2 −∆ and ν is not necessarily small, as in [4],
it is natural to consider the refinements of the grid only in the space variable (we refer the reader to [35] for
semi-coarsening multigrid methods in the context of anisotropic operators). We suppose that the spatial mesh
is such that Nh = H2`, with H > 1 and ` is a positive integer (in the numerical example in the next section H
will be equal to 2 or 3, H2 being the number of spatial points in the coarsest grid).

Let us specify the main steps of the multigrid method we use as a preconditioner.

� Hierachy of Grids: Semi-coarsened grids Gk with size (NT + 1)H222k for all k = 0 . . . `.

� Cycle: We use the F-cycle.

� Restriction operator: As in [4], in order to restrict the residual on the grid Gk to the grid Gk−1, we use

the second-order operator Rk : R(2kH)2(NT +1) → R(2k−1H)2(NT +1) defined by

(RkX)ni,j :=
1

16

(
4Xn

2i,2j + 2(Xn
2i+1,2j +Xn

2i−1,2j +Xn
2i,2j+1 +Xn

2i,2j−1)

Xn
2i−1,2j−1 +Xn

2i−1,2j+1 +Xn
2i+1,2j−1 +Xn

2i+1,2j+1

)
,

for n = 0, . . . , NT , i, j = 1, . . . , 2k−1H.

� Interpolation operator: We denote by Ik : R(2k−1H)2(NT +1) → R(2kH)2(NT +1) the interpolation operator
from the grid Gk−1 to the grid Gk. We have chosen a standard bilinear interpolation operator in the
space variable, which is also a second-order operator and dual to the restriction operator (Ik = 4R∗k).
According to [12], the sum of the orders of Rk and Ik has to be at least equal to the degree of the
differential operator. In our context, both are equal to 4.

� Linear systems on the different grids: The linear systems are defined by the matrices

Qk := AkA
∗
k +BkB

∗
k , k = 0, . . . , `,
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where we recall that Ak and Bk are the finite difference discretizations of ∂t−ν∆ and div(·), respectively,
on the grid Gk (see (3.1)).

� Smoother: Here we have used Gauss-Seidel iterations in the lexicographic order. There is no reason for
choosing the lexicographic order, other than its simplicity.

� Solving the system on the coarsest grid G0: We can use an exact solver such as backlash in MATLAB.
Indeed, in G0 the size of the system is really small with respect to the size of the system on the grid G` (in
G0, we can even store the inverse of Q0 and inversion at this level just becomes a matrix multiplication).

The multigrid preconditoning procedure is summarized in Algorithm 2.

Algorithm 2 Multigrid Preconditioner for Q`x` = b`

PL : y 7→ MultigridSolver(`, 0, y,cycle)
xl ←BiCGStab(Q`, b`, PL, Id, x0, tol)
procedure MultigridSolver(k, xk, bk,cycle)

if k = 0 then
xk ← Q−1

0 bk
else

xk ←Perform η1 steps of Gauss-Seidel from xk with bk as second member.
xk−1 ← 0
xk−1 ←MultigridSolver(k − 1, xk−1, Rk(bk −Qkxk),cycle)
if cycle is W then

xk−1 ←MultigridSolver(k − 1, xk−1, Rk(bk −Qkxk),cycle)

if cycle is F then
xk−1 ←MultigridSolver(k − 1, xk−1, Rk(bk −Qkxk),V)

xk ← xk + Ikxk−1

xk ←Perform η2 steps of Gauss-Seidel from xk with bk as second member.
return xk

5.2. Numerical Tests

In this section we present a test case considered in [3], for which the stationary solution has been computed
numerically in [14] using the primal-dual algorithm presented above.

The setting is as follows: we consider system (MFG) with g ≡ 0 and

f(x, y,m) := m2 −H(x, y), H(x, y) = sin(2πy) + sin(2πx) + cos(2πx),

for all (x, y) ∈ R2 and m ∈ R+. This means that in the underlying differential game modelled by (MFG), a
typical agent aims to get closer to the maxima of H̄ and, at the same time, he/she is adverse to crowded regions
(because of the presence of the m2 term in f).

We first validate the dynamic behavior of our solution. Figure 1 shows the evolution of the mass at four
different time steps. Starting from a constant initial density, the mass converges to a steady state, and then,
when t gets close to the final time T , the mass is influenced by the final cost and converges to a final state. This
behavior is referred to as turnpike phenomenon in the literature [33]. It is illustrated by Figure 2, which displays
as a function of time t the distance of the mass at time t to the stationary state computed as in [14]. In other
words, denoting by m∞ ∈ RNh×Nh the solution to the discrete stationary problem and by m ∈M the solution to

the discrete evolutive problem, Figure 2 displays the graph of k 7→ ‖m∞−mk‖`2 =
(
h2
∑
i,j(m

∞
i,j −mk

i,j)
2
)1/2

,

k ∈ {0, . . . , NT }.
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Figure 1. Evolution of the density m obtained with the multi-grid preconditioner for ν =
0.5, T = 1, NT = 200 and Nh = 128. At t = 0.12 the solution is close to the solution of the
associated stationary MFG.

For the multi-grid preconditioner, Table 3 shows the computation times for different discretizations. It can
be observed that finer meshes with 1283 degrees of freedom are solvable within CPU times which outperfom
others methods shown in the Appendix and in [14]. Furthermore, the method is robust with respect to different
viscosities.

From Table 3 we observe that most of the computational time is used for solving the second proximal operator
(the third equality of (4.9)), which does not use a multigrid strategy but which is a pointwise operator (see
Proposition 3.1 of [14]) and thus could be fully paralellizable.

Unlike the stationary case, low viscosities seem to make the algorithm be slightly slower. However, Table 4
shows that the average number of iterations of BiCGStab stays low regardless of the viscosity. Indeed Table 3
shows that more Chambolle-Pock iterations are needed to converge. The same behavior happens when we use
a direct exact solver instead of the multi-grid preconditioned BiCGStab algorithm.

Concluding Remarks. In this work we have developed a first-order primal-dual algorithm for the solution
of second-order, time-dependent mean field games. The procedure consists of: a variational formulation for
the MFG, its discretization via finite differences, the application Chambolle-Pock algorithm to the resulting
minimization. While this method has been studied for stationary MFG in [14], its numerical realization for
time-dependent MFGs was prohibitive in terms of computing time, as the Chambolle-Pock iteration requires
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Figure 2. Distance to the stationary solution at each time t ∈ [0, T ], for ν = 0.5, T = 2, NT =
200 and Nh = 128. The distance is computed using the `2 norm as explained in the text. The
turnpike phenomenon is observed as for a long time frame the time-dependent mass approaches
the solution of the stationary MFG.

(a) Grid with 64× 64× 64 points.

ν Total time Time first prox Iterations
0.6 116.3 [s] 11.50 [s] 20
0.36 120.4 [s] 11.40 [s] 21
0.2 119.0 [s] 11.26 [s] 22
0.12 129.1 [s] 14.11 [s] 22
0.046 225.0 [s] 23.28 [s] 39

(b) Grid with 128× 128× 128 points.

ν Total time Time first prox Iterations
0.6 921.1 [s] 107.2 [s] 20
0.36 952.3 [s] 118.0 [s] 21
0.2 1028.8 [s] 127.6 [s] 22
0.12 1036.4 [s] 135.5 [s] 23
0.046 1982.2 [s] 260.0 [s] 42

Table 3. Time (in seconds) for the convergence of the Chambolle-Pock algorithm, cumulative
time of the first proximal operator with the multigrid preconditioner, and number of iterations,
for different viscoty values ν and two types of grids. Here we used η1 = η2 = 2, T = 1 and a
tolerance between two iterations of the Chambolle-Pock algorithm equal to 10−6 in normalized
`2-norm.

the solution of a large-scale linear system at each iteration. We have overcome this difficulty by studying dif-
ferent preconditioning strategies for the associated linear system. Overall, the multigrid preconditioner with a
BiCGStab iteration performs satisfactorily for different discretizations and viscosity values.
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(a) iterations to decrease the residual
by a factor 10−3.

ν 32 × 32 × 32 64 × 64 × 64 128 × 128 × 128

0.6 1.65 1.86 2.33
0.36 1.62 1.90 2.43
0.2 1.68 1.93 2.59
0.12 1.84 2.25 2.65
0.046 1.68 2.05 2.63

(b) iterations to solve the system with
an error of 10−8.

ν 32 × 32 × 32 64 × 64 × 64 128 × 128 × 128

0.6 3.33 3.40 3.38
0.36 3.10 3.21 3.83
0.2 3.07 3.31 4.20
0.12 3.25 3.73 4.64
0.046 2.88 3.59 4.67

Table 4. Average number of iterations of the preconditioned BiCGStab with η1 = η2 = 2, T =
1 and a tolerance between two iterations of the Chambolle-Pock algorithm equal to 10−6 in
normalized `2-norm.
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Appendix

(a) Unpreconditioned

ν
Nh 16 32 64 128

5× 10−4 18,5 87,6 448 1720
5× 10−3 22,1 98,6 392 1750
5× 10−2 20,7 93,4 607 8240

0.5 24,9 113 [X] [X]

(b) michol

ν
Nh 16 32 64 128

5× 10−4 15,8 77,8 346 1390
5× 10−3 12,4 80,9 325 1244
5× 10−2 5,47 26,3 138 636

0.5 3,69 16,5 [X] [X]

Table 5. Conjugate Gradient computation times (s). (a) Unpreconditioned. (b) Precondi-
tioned with modified incomplete Cholesky factorization. Time discretization: NT = 40. [X]
indicates no convergence.
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(a) Unpreconditioned

ν
Nh 8 16 32 64 128

5× 10−4 2.42 14.2 69.0 294 1210
5× 10−3 3.09 16.3 63.9 270 1210
5× 10−2 1.41 12.9 61.3 389 5470

0.5 3.41 16.5 98.9 [X] [X]

(b) michol

ν
Nh 16 32 64 128

5× 10−4 15.7 80.4 412 1890
5× 10−3 12.2 82.2 369 1650
5× 10−2 5.25 27.2 174 894

0.5 3.53 18.8 122 2120

Table 6. BiCGStab computation times (s). (a) Unpreconditioned. (b) Preconditioned with
modified incomplete Cholesky factorization. Time discretization: NT = 40. [X] indicates no
convergence.


