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Abstract

Centralized machine learning methods for device-to-device (D2D) link scheduling may lead to a

computing burden for a central server, transmission latency for decisions, and privacy issues for D2D

communications. To mitigate these challenges, a federated learning (FL) based method is proposed

to solve the link scheduling problem, where a global model is distributedly trained at local devices,

and a server is used for aggregating model parameters instead of training samples. Specially, a more

realistic scenario with limited channel state information (CSI) is considered instead of full CSI. Despite

a decentralized implementation, simulation results demonstrate that the proposed FL based approach

with limited CSI performs close to the conventional optimization algorithm. In addition, the FL based

solution achieves almost the same performance as that of the centralized training.
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I. INTRODUCTION

In the emerging Internet of Things (IoT) ecosystem, device-to-device (D2D) communication

becomes an important technology which enables direct communications between devices [1].

One of the challenging problems in the D2D networks is the link scheduling problem, however,

such problem is a tricky combinatorial and nonconvex optimization problem [2]. Conventional

algorithms usually cannot meet the increasingly stringent time requirements in wireless networks.
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The state-of-the-art machine learning (ML) methods such as [3], [4], and [5] have made great

efforts to solve the D2D link scheduling problem. These works not only achieve performance

close to the conventional optimization algorithms but also accelerate the approximation of

this link scheduling problem. Nevertheless, these methods require centralized implementations

where massive training samples, e.g., channel state information (CSI) of all D2D pairs, are

transmitted from distributed devices to a central server and trained there. This could lead to a

huge computational burden, especially for large-scale networks. CSI is of paramount importance

from the perspective of physical layer security [6]. If CSI is obtained by eavesdroppers, they can

exploit it to decode the confidential transmitted data [7] and perform various attacks. Moreover,

sending the scheduling decisions from a central server to local devices may result in transmission

delay. Due to the increasing computing power of IoT devices, the workload of the centralized

training is promising to be moved to edge devices. Federated learning (FL) has emerged as a

distributed ML solution, wherein clients train their models locally, and a server aggregates the

local model parameters instead of their raw training data [8]. Therefore, the FL can alleviate the

workload of the central server by moving model training to local devices and preserve the data

privacy by keeping it locally which will also reduce the security risk induced by CSI exposure.

Besides, decisions can be made locally hence reducing latency.

Regarding FL related scheduling, existing works mainly focus on device scheduling policies for

facilitating the convergence of the FL, e.g., [9], rather than using the FL to solve the optimization

problem itself. Besides, the FL approach [8] adopts the stochastic gradient descent (SGD) as the

optimizer for updating local models in parallel at clients, which is usually difficult to tune and

results in undesirable convergence performance [10]. Moreover, it is assumed that the channel

matrix of all D2D pairs is available in [3], which is difficult to acquire in practical wireless

networks.

To mitigate the aforementioned challenges, the FL is used to tackle the D2D link scheduling

problem in a distributed manner under the assumption of limited CSI instead of full CSI. The

contributions of this work are summarized as follows,

• An FL based method is proposed to facilitate distributed training for D2D link scheduling

in the presence of only limited CSI. To the best of our knowledge, this is the first work to

provide a distributed implementation of this problem.

• Compared to the conventional centralized training, the FL based approach has great fea-

tures including computing offloading, local decision-making and privacy issue mitigation.
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Simulation results demonstrate that the proposed decentralized solution achieves almost the

same performance as that of the centralized training method.

The remainder of this paper is organised as follows. Section II presents the system model

and the problem formulation for the D2D link scheduling problem. An FL enabled D2D link

scheduling is introduced in Section III. Section IV evaluates the proposed approach via numerical

results followed by conclusions in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A D2D wireless network with L unidirectional pairs in a shared channel is considered as the

system model. The set of all D2D pairs is represented by D = {D1,D2, . . . ,DL}, and the set

of their indexes is denoted by L = {1,2, . . . , L}. Besides, the transmitter and receiver of Dl are

denoted by Tl and Rl , respectively. The transmit power of Dl is denoted by pl . The locations

of all D2D pairs are randomly generated in a square area with an edge length of darea, and the

distance between Tl and Rl is randomly selected within a pairwise distance between dmin and

dmax.

Let hll denote the communication channel between the Tl and Rl , and hkl denote the in-

terference channel from Tk to Rl , where l, k ∈ L and l , k. Additionally, let xl denote the

binary decision variable of Dl indicating the on and off status of the D2D pair. If Dl is active,

xl = 1, otherwise xl = 0. Let σ2 denote additive white Gaussian noise power level. The signal-

to-interference-plus-noise ratio (SINR) of Dl denoted by ξl is written as

ξl =
|hll |

2pl xl∑L
k=1,k,l |hkl |

2pk xk + σ2
. (1)

The objective of the D2D link scheduling problem is to maximize the sum rate of the entire

system via optimizing the binary scheduling decisions, which can be formulated as

max
x

L∑
l=1

log2(1 + ξl(x)), s. t. xl ∈ {0,1}, ∀l ∈ L , (2)

where x = [x1, x2, . . . , xL]
T denotes the binary scheduling vector. The data rate is normalized by

the channel bandwidth.

III. FEDERATED LEARNING FOR D2D LINK SCHEDULING

In this section, an FL based approach is presented for learning the mappings from the channel

vectors to the binary scheduling decisions in D2D wireless networks.
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A. Federated Learning for D2D Link Scheduling

For the implementation of the FL based method in D2D networks, each D2D pair is treated

as a client. The FL [8] is employed to learn the input-output mapping of the link scheduling

problem in the D2D wireless networks, which works as follows. Firstly, the parameters of the

global model are randomly generated as the initial state at the server. Hereafter, at each round of

the training, a fraction of clients are randomly selected, then the server sends its current model

parameters to the selected clients. After this, each of the selected clients trains its local model

using its local dataset based on the global parameters, and then transmits the updated local model

parameters back to the server which will compute the average values based on the models of the

clients and update its global model. The aforementioned steps are repeated until convergence.

The FL over a D2D network is illustrated in Fig. 1, where wt
l, l ∈ L and wt denote the local

and the global model parameters of the t-th round, respectively.

……

���

……

……

Local Model Local Model

Global Model

Average Selected

Local Models

Dataset �

Server

�
�

��
�

ω
�

ω
�

Dataset ��

Fig. 1 Illustration of the FL over a D2D wireless network.

In the state-of-the-art works, it is common to assume that the full CSI of the entire D2D

networks are available. For each D2D pair, it is difficult to acquire all CSI including the

communication channel of itself, the communication channels of other D2D pairs, the interference

channels from a particular D2D pair to other devices and vice versa. In this work, it is assumed

that each D2D pair knows only its direct channel and the interference channels from itself to

other devices. Let hl = [hl1, hl2, . . . , hlL]
T ∈ RL×1 denote the channel vector from Tl to Rk ,

k ∈ L, and H = [h1,h2, . . . ,hL]
T ∈ RL×L denote the channel matrix of a D2D network. For
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the centralized training, {H,x} is a training sample. For the FL based solution, {hT
l , xl} is a

training sample for the client Dl , ∀l ∈ L, since each client can only access to its local data.

In practical applications, each client collects its local CSI from the real world and generates

simulated CSI for other pairs to make up full CSI, and runs the cross-entropy (CE) algorithm [3]

to get scheduling decisions. Local training can be conducted on each client and more samples

can be collected to join the training. Let Ml denote the total number of samples that the client Dl

generated. The local CSI and the corresponding decisions are selected as the local training dataset

for Dl , i.e., Dl = {(h
T
l )

j, x j
l }

Ml

j=1. For Dl , Y j
l = {y

j
lc}

1
c=0 denotes the one-hot representation of x j

l ,

where c = {0,1} because the D2D scheduling problem can be treated as a binary classification

problem. Besides, y j
l0 = 1 and y

j
l1 = 0 if x j

l = 0, otherwise y
j
l0 = 0 and y

j
l1 = 1. Let Ỹl

j
= { ỹlc

j}1c=0

denote the activation probabilities generated by the local model for the j-th sample of client Dl .

At each client, the cross-entropy loss is adopted as the criterion to measure the distance between

the output of the local model and the target. The local model of each client is updated by

minimizing this loss function, which is written as follows,

`l = −

Ml∑
j=1

1∑
c=0

y
j
lc ln ỹlc

j . (3)

Let Bl denote the batch size for training at the client Dl . The number of local updates can be

denoted by G = Ml/Bl , which is indexed by g. Let Ct denote the set of the randomly selected

ρL clients at the t-th round, where ρ represents the quantile, and 0 < ρ 6 1. For the t-th round

of the FL, the global model parameters wt are broadcast to the selected clients who will update

their local models with wt
i,g=0 = wt , i ∈ Ct . Next, each client performs G updates for its local

model via gradient descent algorithms, which is written as

wt
i,g+1 = wt

i,g − λ
t
i∇ ì(w

t
i,g, ξ

t
n), g = 0, . . . ,G − 1, (4)

where λi denotes the learning rate for updating model at the Di. ξn ∈ Di,g represents a training

sample from the batch g of Di. After the local training at the selected clients, their local model

parameters are updated as wt+1
i = wt

i,G and they are sent to the central server where the Federated

Averaging (FedAvg) algorithm [8] is performed for aggregation, and the global model is updated

as

wt+1 =

∑
i∈Ct Miw

t+1
i∑

i∈Ct Mi
, (5)

where Mi denotes the number of training samples of the selected clients i ∈ Ct .
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To evaluate our proposed FL based method, a 4-layer feedforward deep neural network (DNN)

is employed as the shared model in this work, where a Softmax function is adopted as the

activation function at the last layer. Considering successful applications of adaptive moment

estimation (ADAM) [11] optimizer in non-federated scenarios [3] [5], it is adopted to update the

parameters of local models for faster convergence in this work. For each local model, the input

is the concatenation of the communication channel of the D2D pair and the interference channels

caused to other pairs. The output layer consists of two neurons which represent probabilities of

the binary status of the D2D pair.

B. Data Sharing Analysis

This section provides the analysis of the data sharing of the FL based method and the

centralized training. The total number of communication rounds is denoted by R. The number

of layers of the shared model is denoted by Q, which is indexed by q. The number of neurons

of the q-th layer is represented by Eq. Let MC denote the number of training samples for the

centralized learning.

For the FL based solution, the total number of parameters exchanged during the training is

WF = 2ρLR(
∑Q−1

q=1 EqEq+1 +
∑Q

q=2 Eq) + FρLR with the negligence of activation layers, where

F denotes the number of other parameters that each selected client sends to the server along

with the model parameters at each round. In this case, F = 1, i.e., the value of Mi, i ∈ Ct . The

centralized training requires WC = (L2+L)MC data to be shared with a central server due to CSI

and solution sharing. As observed from the two equations, the overall number of data shared by

the FL based approach mainly depends on the dimensions of the shared model and the number

of communication rounds, while the number of data shared by the centralized training is related

to the network scales and the number of training samples.

IV. NUMERICAL RESULTS

For fairness and convenience, the training data is generated by simulations to compare the

performance between different methods. The FL is implemented by the Flower framework [12].

Rayleigh fading channel with zero mean and unit variance is adopted to model the small scale

fading. The main system parameters and DNN parameters are given in Table I.
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TABLE I System and DNN parameters.

Parameters Values Parameters Values

Edge length 500 m Path loss model 148 + 40 log10(d[km])

Pairwise distance [2m, 65m] Dimensions of DNN {L+1, 50, 50, 2}

Transmit power of Dl 20 dBm Learning rate 0.0005

Noise density -174 dBm/Hz Batch size 10

Bandwidth 5 MHz Samples MC = Ml 2000

A. Benchmarks

The proposed FL based method with ADAM optimizer is compared with benchmarks as

follows:

• Cross-entropy (CE) Algorithm [3]: The performance of this conventional algorithm based

on importance sampling serves as an upper bound of the ML based methods in terms of

the accuracy and the sum rate. The simulation results are normalized with respect to the

CE algorithm to demonstrate the effectiveness of the proposed design.

• Centralized Training: This method trains a DNN model at a central server, where the

training dataset contains the CSI of all D2D pairs and their scheduling decisions, i.e.,

DC = {H
j,x j}

MC
j=1. For fair comparisons, it adopts the same DNN model as the FL based

method, and MC = Ml , ∀l ∈ L.

• FL with SGD: This method simply changes the ADAM optimizer of the FL based approach

to the SGD.

Unless specifically stated otherwise, the proposed FL based method adopts the ADAM optimizer

in the simulations. The global model is evaluated with 1000 test samples at the server.

B. The Number of D2D Pairs

The performance of the FL based method and the benchmark with L ∈ {5,10,15,20} is

presented in Fig. 2.
As indicated in Fig. 2, the FL based method achieves almost identical performance as that

of the centralized training method. When L increases from 5 to 20, the accuracy generated by

the FL based solution degrades from 89% to 83%, and the sum rate increases from 43 to 103

bits/s/Hz approximately which is close to the conventional CE algorithm, e.g., for L = 20, it is

around 94% of the CE algorithm.
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Fig. 2 Performance with different numbers of D2D pairs.

C. Convergence

The convergence performance of the FL based method is compared between the ADAM and

the SGD optimizers, and the results are presented in Fig. 3. The learning rates for the FL with the

SGD optimizer ranges from 0.0002 to 0.001 for networks with different L for better performance.

For the FL based method with the ADAM as shown in Fig. 3a, the global models converge

to their best performance within dozens of communication rounds for all the tested cases. As a

comparison, the FL based approach with the SGD takes several hundred of rounds to converge

as demonstrated in Fig. 3b. In this case, the FL with the ADAM is favorable in applications

in wireless networks since it requires less communication rounds between the server and the

clients than that with the SGD, thus the former is more efficient.

D. The Fraction of Selected Clients

The performance of the FL based method with different proportions of clients sampled

randomly at each round is evaluated on L = 10 as shown in Table II.

TABLE II Performance with different ρ of selected clients.

ρ 0.2 0.4 0.6 0.8 1

Accuracy 0.8505 0.8520 0.8453 0.8507 0.8484

Sum Rate 0.9519 0.9520 0.9524 0.9524 0.9527

As shown in Table II, when the server sampled different numbers of clients for parameter

aggregation during training, the performance remains stable where all tested cases achieve an

accuracy of around 0.85 and a sum rate of over 0.95. Consequently, it is recommended to select

a small fraction of clients at each round of training for efficiency.
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Fig. 3 Convergence performance of the FL based method with different optimizers at clients.

E. Running Time

The time performance of the proposed approach is evaluated on the pretrained models with the

processor Intel Core i5-9600KF CPU. It is compared to the conventional CE algorithm as shown

in Table III, where the time performance of the model trained by the FL approach is ranging from

0.44 µs to 1.23 µs for increasing L from 5 to 20. The proposed approach significantly decreases

the running time of the CE algorithm from second level to microsecond level. Therefore, it is a

potential candidate for real-time applications in D2D networks.

TABLE III Comparisons of the average running time in µs.

L 5 10 15 20

CE 1.6070×105 9.4370×105 2.3110×106 4.7089×106

FL 0.4387 0.9430 0.9456 1.2319
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F. Data Sharing Comparison

The equations of the data sharing for the FL based solution and the centralized training are

given in Section III. B. Let us assume MC = 2000, ρ = 0.1, and R = 30. The parameters

of the local model shown in Table I are adopted for data sharing calculations. For L = 20,

WF ≈ 4.5 × 105, and WC = 8.4 × 105. In this case, the FL based method reduces nearly half of

the data to be shared compared to the centralized training. The FL based approach will achieve

greater advantages in some scenarios, e.g., larger system scales, more training samples, and faster

convergence. On the opposite, the FL based method cannot outperform the centralized training

in some cases, e.g., small scale networks or small training datasets.

V. CONCLUSION

This work proposes an FL based method to approximate the D2D link scheduling problem

with limited CSI. This decentralized approach not only mitigates the computing burden of a

central server via local training, but also reduces transmission delay via local decision-making, as

well as avoids exposing CSI to eavesdroppers. Simulation results demonstrate that the proposed

federated learning method achieves almost the same performance as that of the centralized

training. Additionally, the data sharing comparison between the FL and the centralized training

has been analyzed. Improving scalability and generalizability will be studied in future works.
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