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Q-balls are nontopological solitons that coherently rotate in field space. We show that these coherent
rotations can induce superradiance for scattering waves, thanks to the fact that the scattering involves two
coupled modes. Despite the conservation of the particle number in the scattering, the mismatch between the
frequencies of the two modes allows for the enhancement of the energy and angular momentum of incident
waves. When the Q-ball spins in real space, additional rotational superradiance is also possible, which can
further boost the enhancements. We identify the criteria for the energy and angular momentum
superradiance to occur.
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Q-balls arise as solitonic solutions [1–3] in a variety of
field theories that admit attractive nonlinear interactions
[4]. The attractive nature of the interactions allows charges
to condense into a localized object, which however is not a
static field configuration, as the phase of the field evolves in
time, so as to evade Derrick’s theorem [5].Q-balls may spin
and become hollow in the center after acquiring some
angular momentum [6–10], which may happen when
forming from a system with nonzero angular momentum
or in a Q-ball collision [11]. Q-balls may naturally arise in
the early Universe [11–21] and are a candidate for dark
matter [22–30]. In the presence of strong gravity effects, the
Q-ball counterparts are known as boson stars [31–33],
which are another candidate for dark matter [32,34].
Q-balls can also be made in laboratories [35,36] and can
have composite charge structures [37–39].
Superradiance, coined by Dicke [40] originally for

emission enhancement in a coherent medium, is a col-
lection of phenomena where radiation is amplified during
a physical process; see Refs. [41,42] for a review. The
well-known Cherenkov radiation is an example of inertial
motion superradiance [43]. Later, Zel’dovich pointed out
that rotating objects, such as a radiation-absorbing cyl-
inder or a Kerr black hole, can also superradiate [44,45]
(also Ref. [46] independently for black holes). Black hole
superradiance has since been extensively studied [42],
thanks to its relevance to gravitational theories, astro-
physics, and particle physics (see, e.g., Refs. [47–71]).

Also, several novel superradiance effects have recently
been observed in laboratories [72–76].
In this Letter, we shall point out that Q-balls can also

superradiate, a property unknown so far, despite the long
history of Q-balls. Q-ball superradiance originates from
the fact that a Q-ball field is complex, having two
components, and that the phase of the Q-ball solution
evolves in time. Indeed, a Q-ball can be viewed as a
localized Bose-Einstein condensate of particles that oscil-
late coherently and, as we shall see, enhances scalar waves
incident on it, somewhat parallel to Dicke’s original
scenario. If the Q-ball acquires some angular momentum
and spins, additional rotational superradiance can provide
further enhancement. Interestingly, Q-ball superradiance
occurs despite the fact that the particle number is con-
served in the scattering. The mass gap required for a
Q-ball to exist splits the superradiance spectrum into two
separate parts.
We will take the U(1) symmetric theory

L ¼ −ημν
∂Φ̄�

∂x̄μ
∂Φ̄
∂x̄ν

− VðjΦ̄ðx̄ÞjÞ ð1Þ

with potential VðjΦ̄jÞ ¼ μ2jΦ̄j2 − λjΦ̄j4 þ ḡjΦ̄j6 as the
fiducial example. Requiring Φ̄ ¼ 0 to be the true vacuum
imposes the following conditions: λ > 0 and μ2ḡ ≥ λ2=4 [3].
Upon using the dimensionless variables x ¼ μx̄, Φ ¼
λ1=2Φ̄=μ, and g ¼ μ2ḡ=λ2, the model can be rewritten as

L ¼ −∂μΦ�
∂
μΦ − VðjΦjÞ; V ¼ jΦj2 − jΦj4 þ gjΦj6:

ð2Þ

This may be viewed as a low energy truncation of an
effective field theory expansion for a generic U(1) scalar
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field (and is renormalizable in 2þ 1D). In the following, we
will for simplicity mainly focus on the 2þ 1D case, except
toward the end where the 3þ 1D case is briefly discussed.
In polar coordinates, a generalQ-ball configuration takes

the form

ΦQðt; r;φÞ ¼
1ffiffiffi
2

p fðrÞe−iωQtþimQφ ð3Þ

where ωQ is the oscillation frequency of the Q-ball in field
space, φ is the azimuth angle, and the (real space) angular
phase velocity of this configuration is ΩQ ¼ ωQ=mQ if mQ

is nonzero. The (2D) nonrotating Q-ball is the special case
where mQ ¼ 0, in which case fðrÞ peaks at r ¼ 0 and falls
off quickly to zero at spatial infinity. For mQ ≠ 0, fðrÞ will
peak at some finite r and asymptotes to zero both when
r → 0 and r → ∞. The regularity condition at the origin
requires that fðr → 0Þ ∝ rjmQj. Without loss of generality,
we assume that ωQ > 0 (and also mQ > 0 for a spinning
Q-ball). For a Q-ball to exist, ωQ must be in the range of
½1 − ð4gÞ−1�1=2 ≲ ωQ < 1 (see Supplemental Material
[77]). Q-balls in isolation are classically stable against
small perturbations [3,8]. However, in this Letter, we will
show that in “dirty” environments where waves are
scattered around, energy can actually be extracted from
a Q-ball via superradiant scattering.
To this end, let us look at the perturbative equations of

motion around the Q-ball solution Φ ¼ ΦQ þ ϕðt; r;φÞ:

□ϕ −UðrÞϕ − e−2iðωQt−mQφÞWðrÞϕ� ¼ 0; ð4Þ

whereU ¼ 1
2
f½ðd2VÞ=ðdf2Þ� þ ½ð1=fÞðdV=dfÞ�g andW ¼

1
2
f½ðd2VÞ=ðdf2Þ� − ½ð1=fÞ=ðdV=dfÞ�g. We see that the

perturbative field ϕ interacts with the coherent background
of the Q-ball that oscillates temporally and angularly.
Indeed, as we shall see later, the Q-ball condensate can
enhance the energy, angular momentum, and charge of
waves incident on it, giving rise to superradiance.
However, U and W depend on r, preventing a straightfor-
ward spatial Fourier decomposition.
To proceed, we restrict to the minimal case where the

field has only two frequencies

ϕ ¼ ηþðω; m; rÞe−iωþtþimþφ þ η−ðω; m; rÞe−iω−tþim−φ; ð5Þ

where ω� ¼ ωQ � ω and m� ¼ mQ �m. The general
solution is a linear superposition of this case. The reason
why two modes are needed is due to the coupling between
ϕ and ϕ�, unlike the case of superradiance with a real scalar
where a single frequency suffices. The mode functions
satisfy the following equations:

η00� þ 1

r
η0� þ

�
ω2
� − U −

m2
�

r2

�
η� −Wη�∓ ¼ 0; ð6Þ

where the prime is a derivative with respect to r.
Since fðr → ∞Þ ¼ 0, we have Uðr → ∞Þ ¼ 1,
Wðr → ∞Þ ¼ 0. At large r, the above equations reduce
to η00� þ 1

r η
0
� þ ðω2

� − 1Þη� → 0, which are solved by

η�ðω; m; r → ∞Þ → A�ffiffiffiffiffiffiffiffi
k�r

p eik�r þ B�ffiffiffiffiffiffiffiffi
k�r

p e−ik�r; ð7Þ

where wave numbers k� ¼ ðω2
� − 1Þ1=2. Here we are

interested in waves scattering on and off the Q-ball.
Assuming both of the two modes are propagating waves
imposes the reality conditions on k�: jωQ � ωj > 1. The 1
on the rhs of this inequality is due to the mass gap in the
scalar theory (essentially in our units the scalar mass
μ ¼ 1). Since we have assumed that ωQ > 0, this implies
that the physical boundary of ω is

jωj > ωQ þ 1: ð8Þ

As shown in Fig. 1, ifω > 0, the A− and Bþ terms represent
ingoing waves and the Aþ and B− terms outgoing waves,
where the subscript þ (−) indicates positive (negative)
charge; if ω < 0, the wave directions flip, and − (þ)
indicates positive (negative) charge.
With these set up, we solve Eq. (6) by treating it as an

initial value problem in r. That is, we can prepare the values
of ηþ and η− near r ¼ 0 and evolve Eq. (6) to a large r to
obtain A� and B�. Regularity near the origin requires that
η�ðω; m; r → 0Þ → F�ðk�rÞjm�j, F� being complex con-
stants, which provides the “initial” conditions to solve the
system. Additionally, since the system is linear, if ðηþ; η−Þ
is a solution, so is ðζηþ; ζ�η−Þ, where ζ is a complex
constant. This means that we can scale one of the constants
(say Fþ) to unity, and choose the following “initial
condition” as r → 0:

ηþðm; rÞ ¼ ðkþrÞjmþj; η−ðm; rÞ ¼ F−ðk−rÞjm−j: ð9Þ

For every F−, the initial value problem gives a set of Aþ,
A−, Bþ, B−. Thus, generically, we have two waves coming
in and two going out. If we want to have one ingoing wave,
we can use a shooting method to tune F− so as to make

FIG. 1. Ingoing and outgoing waves scattering on and off a
Q-ball [cf. Eqs. (4), (5), and (7)]. Solid (dashed) lines represent
positive (negative) charge.
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A− vanish if ω > 0 or to make B− vanish if ω < 0. (Making
the ingoing ηþ mode vanish at large r does not produce new
results due to the symmetry of the equations.) The
numerical schemes used to solve the equations are detailed
in the Supplemental Material [77].
To monitor how the Q-ball alters incident waves, let us

define a few quantities. Firstly, we can look at the average
energy in an annular region (from r1 to r2) far away from
the origin (r → ∞):

E⊚ ¼ 1

r2 − r1

Z
r2

r1

rdrhj∂tϕj2 þ j∂rϕj2 þ jϕj2i;

¼ 2
ω2þ
kþ

ðjAþj2 þ jBþj2Þ þ 2
ω2
−

k−
ðjA−j2 þ jB−j2Þ; ð10Þ

where r2 − r1 includes at least a full spatial oscillation of
the longest wave, hi is the time average over a few
oscillations, and we have only kept the leading order
terms. We used the perturbative field to calculate the
energy because the Q-ball profile falls off exponentially
at large r. An amplification factor may be defined as the
ratio of energy in the outgoing field, compared to the
ingoing,

AE ¼
 ω2

þ
kþ

jAþj2 þ ω2
−

k−
jB−j2

ω2
þ

kþ
jBþj2 þ ω2

−
k−
jA−j2

!signðωÞ

: ð11Þ

Secondly, we can also monitor how the angular momentum
of the wave changes in the scattering. The angular
momentum density is Tt

φ ¼ −∂tΦ�
∂φΦ − ∂φΦ�

∂tΦ.
After taking the average over an annular region at large
r and the time average, to leading order we have

L⊚ ¼ −1
r2 − r1

Z
r2

r1

rdrh∂tϕ�
∂φϕþ ∂φϕ

�
∂tϕi;

¼ 2ðjAþj2 þ jBþj2Þ
ωþmþ
kþ

þ 2ðjA−j2 þ jB−j2Þ
ω−m−

k−
:

ð12Þ

The amplification factor for the angular momentum is then

AL ¼
�ωþmþ

kþ
jAþj2 þ ω−m−

k−
jB−j2

ωþmþ
kþ

jBþj2 þ ω−m−
k−

jA−j2
�signðωÞ

: ð13Þ

One may also want to see how the particle flux changes
during the scattering. The particle flux averaged over
time and an annular region at large r is given by N⊚ ¼
2ðjAþj2 þ jBþj2 þ jA−j2 þ jB−j2Þ, and the amplification
factor is AN ¼ ððjAþj2 þ jB−j2Þ=ðjBþj2 þ jA−j2ÞÞsignðωÞ.
However, due to a U(1) symmetry for the ηþ and η− mode
in Eq. (6), we always have AN ≡ 1. To see this, note that
the equations of motion [Eq. (6)] can be obtained from the
Lagrangian

Lðη; η0Þ ¼
X
s¼�

�
jð ffiffiffi

r
p

ηsÞ0j2 − r

�
ω2
s − U −

4m2
s − 1

4r2

�
jηsj2

�

þ rWðη�þη�− þ ηþη−Þ ð14Þ

if r is viewed as “time.” This Lagrangian is invariant under
the U(1) symmetry

ηþ ¼ eiαηþ; η− ¼ e−iαη−; α ¼ const: ð15Þ
The “Noether charge” associated with this U(1) symmetry is

Mη ¼ irðη�0þηþ − η�þη0þÞ − irðη�0−η− − η�−η0−Þ; ð16Þ

which satisfies ∂rMη ¼ 0, meaning that Mη is independent
of r. At large r, plugging in the asymptotic solution
[Eq. (7)], we get, to leading order, Mη ¼ 2ðjAþj2 − jBþj2−
jA−j2 þ jB−j2Þ. On the other hand, since η� are regular at
the origin r ¼ 0, we have Mη ¼ 0. This implies conserva-
tion of the particle number in the scattering for generic
ingoing and outgoing waves:

jAþj2 þ jB−j2 ¼ jBþj2 þ jA−j2: ð17Þ

Although the particle number is conserved in the
scattering, we can still have amplification or absorption
of the wave energy, depending on the frequency ω as well
as the Q-ball frequency ωQ. In fact, combining the
constraint [Eq. (17)] and Eq. (11), we see that the threshold
frequency ωE that delineates the amplification and the
absorption of the energy, i.e., the case of AE ¼ 1, is given
by ω2þ=kþ ¼ ω2

−=k−, or explicitly,

ðωQ þ ωEÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωQ þ ωEÞ2 − 1

q ¼ ðωQ − ωEÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωQ − ωEÞ2 − 1

q : ð18Þ

FIG. 2. Amplification of the energy in the scattering for a
nonspinning Q-ball with only ηþðm ¼ 0Þ as the ingoing mode.
The coupling is g ¼ 1=3. The vertical dashed lines indicate the
boundary values of the reality conditions [Eq. (8)], due to the
mass gap. The threshold frequency ωE for energy superradiance
is given by Eq. (18).
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That is, this is the criterion for energy superradiance to
appear at ωE. Similarly, from Eq. (13), we see that, for an
angular momentum mode mL, the threshold frequency ωL
that delineates the amplification and the absorption of the
angular momentum, i.e., the case of AL ¼ 1, is given by

ðωQ þ ωLÞðmQ þmLÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωQ þ ωLÞ2 − 1

q ¼ ðωQ − ωLÞðmQ −mLÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωQ − ωLÞ2 − 1

q : ð19Þ

Nonspinning Q-ball.—Let us see how the energy ampli-
fication factor AE varies for incident frequency ω and for a
few background ωQ for the case with only an ingoing
ηþðm ¼ 0Þwave; see Fig. 2. (If we only have an ingoing η−
wave, the amplification curves will just be the ω → −ω flip
of Fig. 2.) From the criterion [Eq. (18)], we know that
superradiance can occur when

ω < −jωEj or ωQ þ 1 < ω < jωEj ð20Þ

with jωEj ¼ ½1þ ω2
Q þ ð1þ 4ω2

QÞ1=2�1=2, which is consis-
tent with Fig. 2 (see Fig. 8 in Supplemental Material [77]
for a more careful verification). The gaps between the
positive and negative ω curves originate from the fact that
the scalar has a nonzero mass, and they are different for
different ωQ [see Eq. (8)]. Since we send in an ηþ wave, the
positive (negative) ω branch of the amplification curve is
when the frequency of the ingoing wave ωþ ¼ ωQ þ ω has
the same (opposite) sign as the Q-ball frequency ωQ

(remember ωQ > 0). We see that when the sign of ωþ is
the same as ωQ, greater superradiance can be achieved, and
the greatest superradiance is obtained when the incident
wave has the lowest frequency or longest wavelength, that
is, when the frequency ω approaches the mass gap in that
branch. Typically, the peak amplification factor increases

as we lower the value of ωQ, which corresponds to a bigger
Q-ball. Another interesting observation is that for some ωQ

(say ωQ ¼ 0.58) there is an intriguing multipeak structure
in the amplification spectrum.
Generally, we may have both the ηþ and η− wave

ingoing, which presumably is a typical case in a “dirty”
environment. This mixing can be parametrized by the F−
parameter. The amplifications of the energy for different
mode mixings are shown in Fig. 3. We see that allowing
both ingoing modes in the scattering often significantly
enlarges the energy amplification factor. As mentioned, this
might be what one would expect, as Q-ball superradiance
really arises from the interplay between the two modes of
the complex scalar.
SpinningQ-ball.—When theQ-ball spins in real space, the

additional component of rotational superradiance can also be
activated, which can often enhance the energy amplification
when the ηþ mode rotates in the same direction as theQ-ball
[i.e., signðωþ=mþÞ ¼ signðωQ=mQÞ], as shown in the rhs of
Fig. 4. On the other hand, for the opposite cases, we can see
slight reductions in energy enhancement. Note that the

FIG. 3. Amplification of the energy AE for a nonspinning
Q-ball with both ηþ and η− as the ingoing modes (mQ ¼ m ¼ 0).
For the F− “initial” parameter, see Eq. (9). The other parameters
are g ¼ 1=3 and ωQ ¼ 0.7; ω ¼ 1.71(top left), 2.2(top right), 4.2
(bottom left), 8.0(bottom right). Asterisks denote the case with
only ηþ as the ingoing mode.

FIG. 4. Amplification of the energy with only ηþ as the ingoing
mode. All theQ-balls have frequency ωQ ¼ 0.7, and the coupling
is g ¼ 1=3. The threshold frequency ωE is still given by Eq. (18).

FIG. 5. Amplification of the angular momentum with only ηþ
as the ingoing mode. The frequencies of Q-balls are ωQ ¼ 0.7
and the coupling is g ¼ 1=3. The threshold frequency ωL for
angular momentum superradiance is given by Eq. (19), as marked
by the small circle.
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superradiance criterion for the energy is still Eq. (18), and a
nonspinning Q-ball can also induce angular momentum
superradiance.
In Fig. 5, we plot the superradiance of the angular

momentum with only the ηþ ingoing mode. We see that the
amplification criterion is not ω < mΩQ. This is not
surprising as there are two coupled modes involved in
the scattering and there isQ-ball coherent superradiance on
top of the rotational effects. Instead, as we have pointed out,
Eq. (19) is the correct criterion for the angular momentum
amplification. This is consistent with the case of mQ ¼ 1,
m ¼ 2 in Fig. 5; for the other two cases, the angular
momentum is either superradiantly enhanced or reduced
across the whole positive or negative ω branch, without
crossing the line ofAL ¼ 1, reflected in Eq. (19) by ωL not
having a real solution. See the Supplemental Material [77]
for additional results.
The 3þ 1D case.—Finally, we shall present some first

results about Q-ball superradiance in 3þ 1D, focusing on
spherical symmetry for both the Q-ball and the scattering
waves, which can be easily obtained by slightly modifying
the 2þ 1D equations above. In Fig. 6, we plot how the
energy amplification factor varies with the frequency ω. We
see that the 3þ 1D case is completely analogous to the
2þ 1D case, except that the 3þ 1D case has more multi-
peak structures in the superradiance spectra. The results of
spinning Q-balls, due to its numerical complexity, will be
presented elsewhere.
In summary, we have found that Q-balls can induce

superradiance for waves incident on them, thanks to the
coherent rotation of the Q-ball in field space. For spinning
Q-balls, the additional rotation in real space can further
enhance superradiant emissions. An important feature in a
Q-ball scattering is that it involves two coupled modes,
which is essential forQ-ball superradiance to occur. Because
of the presence of two coupled modes, the patterns of the
superrandiance spectra are rather rich. Both the energy and
angular momentum of the waves can be enhanced in the

scattering, drawing energy and angular momentum from the
Q-ball. However, the energy and angular momentum super-
radiance do not always occur simultaneously. When the
ingoing waves contain both positive and negative frequency
modes, the charge can also have superradiant enhancements
(see the Supplemental Material [77]). Thanks to the particle
number conservation in the Q-ball scattering, we have
analytically identified the superradiance criteria for the
energy and angular momentum.
These results imply that superradiant amplification can

take place in a “dirty” environment with scalar waves
scattering around Q-balls. It is an interesting question
whether this can be turned into spontaneous superradiant
instabilities. In any case, Q-balls have long been proposed
as a dark matter candidate [22–30], for which longevity is a
prerequisite.Q-balls have also been suggested to play other
interesting roles in cosmology. The existence of Q-ball
superradiance begs the question of how it will affect these
scenarios.
Also, note that boson stars are essentially Q-balls in the

presence of gravitational attractions. The finding in this
Letter hints that boson stars can also superradiate, the
implications of which are worth investigating in the era of
gravitational wave astronomy and other accurate gravita-
tional observations. Indeed, Ref. [78] has shown that the
same amplification mechanism also works for boson stars.
Additionally, since Q-balls have been made in laboratories,
it would be interesting to observe Q-ball superradiance in
condensed matter systems.

We would like to thank Stephen Green and Silke
Weinfurtner for helpful discussions. S. Y. Z. acknowledges
support from the National Natural Science Foundation of
China under Grants No. 12075233, No. 11947301, and
No. 12047502 and from the National Key R&D Program of
China under Grant No. 2022YFC220010, and is also
supported by the Fundamental Research Funds for the
Central Universities under Grant No. WK2030000036. The
work of P. M. S. was funded by STFC Consolidated Grant
No. ST/T000732/1.

*paul.saffin@nottingham.ac.uk
†xqx2018@mail.ustc.edu.cn
‡zhoushy@ustc.edu.cn

[1] G. Rosen, J. Math. Phys. (N.Y.) 9, 996 (1968).
[2] R. Friedberg, T. D. Lee, and A. Sirlin, Phys. Rev. D 13, 2739

(1976).
[3] S. R. Coleman, Nucl. Phys. B262, 263 (1985).
[4] T. D. Lee and Y. Pang, Phys. Rep. 221, 251 (1992).
[5] G. H. Derrick, J. Math. Phys. (N.Y.) 5, 1252 (1964).
[6] M. S. Volkov and E. Wohnert, Phys. Rev. D 66, 085003

(2002).
[7] L. Campanelli and M. Ruggieri, Phys. Rev. D 80, 036006

(2009).
[8] E. Radu and M. S. Volkov, Phys. Rep. 468, 101 (2008).

FIG. 6. Amplification of the energy for a 3D spherical Q-ball
with only s-wave ηþ as the ingoing mode. The coupling is
g ¼ 1=3. We see that the 3D case tends to have more multipeak
structures.

PHYSICAL REVIEW LETTERS 131, 111601 (2023)

111601-5

https://doi.org/10.1063/1.1664693
https://doi.org/10.1103/PhysRevD.13.2739
https://doi.org/10.1103/PhysRevD.13.2739
https://doi.org/10.1016/0550-3213(86)90520-1
https://doi.org/10.1016/0370-1573(92)90064-7
https://doi.org/10.1063/1.1704233
https://doi.org/10.1103/PhysRevD.66.085003
https://doi.org/10.1103/PhysRevD.66.085003
https://doi.org/10.1103/PhysRevD.80.036006
https://doi.org/10.1103/PhysRevD.80.036006
https://doi.org/10.1016/j.physrep.2008.07.002


[9] H. Arodz, J. Karkowski, and Z. Swierczynski, Phys. Rev. D
80, 067702 (2009).

[10] V. Benci and D. Fortunato, Commun. Math. Phys. 295, 639
(2010).

[11] S. Y. Hou, P. M. Saffin, Q. X. Xie, and S. Y. Zhou, J. High
Energy Phys. 07 (2022) 060.

[12] I. Affleck and M. Dine, Nucl. Phys. B249, 361 (1985).
[13] K. Enqvist and J. McDonald, Phys. Lett. B 425, 309 (1998).
[14] K. Enqvist and J. McDonald, Nucl. Phys. B538, 321 (1999).
[15] K. Enqvist and J. McDonald, Nucl. Phys. B570, 407 (2000);

B582, 763(E) (2000).
[16] S. Kasuya and M. Kawasaki, Phys. Rev. D 61, 041301(R)

(2000).
[17] S. Kasuya and M. Kawasaki, Phys. Rev. D 62, 023512

(2000).
[18] S. Kasuya and M. Kawasaki, Phys. Rev. D 64, 123515

(2001).
[19] T. Multamaki and I. Vilja, Phys. Lett. B 535, 170 (2002).
[20] K. Harigaya, A. Kamada, M. Kawasaki, K. Mukaida, and

M. Yamada, Phys. Rev. D 90, 043510 (2014).
[21] S. Y. Zhou, J. Cosmol. Astropart. Phys. 06 (2015) 033.
[22] A. Kusenko and M. E. Shaposhnikov, Phys. Lett. B 418, 46

(1998).
[23] K. Enqvist and J. McDonald, Phys. Lett. B 440, 59 (1998).
[24] R. Banerjee and K. Jedamzik, Phys. Lett. B 484, 278 (2000).
[25] A. Kusenko and P. J. Steinhardt, Phys. Rev. Lett. 87, 141301

(2001).
[26] L. Roszkowski and O. Seto, Phys. Rev. Lett. 98, 161304

(2007).
[27] I. M. Shoemaker and A. Kusenko, Phys. Rev. D 80, 075021

(2009).
[28] S. Kasuya and M. Kawasaki, Phys. Rev. D 84, 123528

(2011).
[29] S. Kasuya, M. Kawasaki, and M. Yamada, Phys. Lett. B

726, 1 (2013).
[30] M. Kawasaki and H. Nakatsuka, J. Cosmol. Astropart. Phys.

04 (2020) 017.
[31] D. J. Kaup, Phys. Rev. 172, 1331 (1968).
[32] S. L. Liebling and C. Palenzuela, Living Rev. Relativity 26,

1 (2012).
[33] F. E. Schunck and E. W. Mielke, Classical Quantum Gravity

20, R301 (2003).
[34] A. Maselli, P. Pnigouras, N. G. Nielsen, C. Kouvaris, and

K. D. Kokkotas, Phys. Rev. D 96, 023005 (2017).
[35] K. Enqvist and M. Laine, J. Cosmol. Astropart. Phys. 08

(2003) 003.
[36] Y. M. Bunkov and G. E. Volovik, Phys. Rev. Lett. 98,

265302 (2007).
[37] R. Battye and P. Sutcliffe, Nucl. Phys. B590, 329 (2000).
[38] E. J. Copeland, P. M. Saffin, and S. Y. Zhou, Phys. Rev. Lett.

113, 231603 (2014).
[39] Q. X. Xie, P. M. Saffin, and S. Y. Zhou, J. High Energy

Phys. 07 (2021) 062.
[40] R. H. Dicke, Phys. Rev. 93, 99 (1954).
[41] J. D. Bekenstein and M. Schiffer, Phys. Rev. D 58, 064014

(1998).
[42] R. Brito, V. Cardoso, and P. Pani, Lect. Notes Phys. 906, 1

(2015).
[43] V. L. Ginzburg and I. M. Frank, J. Phys. (USSR) 9, 353

(1945), https://inspirehep.net/literature/45474.

[44] Ya. B. Zel’dovich, Zh. Eksp. Teor. Fiz. Pis’ma 14, 270
(1971) [JETP Lett. 14, 180 (1971)], https://ui.adsabs
.harvard.edu/abs/1971JETPL..14..180Z/abstract.

[45] Ya. B. Zel’dovich, Zh. Eksp. Teor. Fiz. 62, 2076 (1971)
[J. Exp. Theor. Phys. 35, 1085 (1971)], http://jetp.ras.ru/cgi-
bin/dn/e_035_06_1085.pdf.

[46] C. W. Misner, Phys. Rev. Lett. 28, 994 (1972).
[47] A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper,

and J. March-Russell, Phys. Rev. D 81, 123530 (2010).
[48] A. Arvanitaki and S. Dubovsky, Phys. Rev. D 83, 044026

(2011).
[49] P. Pani, V. Cardoso, L. Gualtieri, E. Berti, and A. Ishibashi,

Phys. Rev. Lett. 109, 131102 (2012).
[50] V. Cardoso and O. J. C. Dias, Phys. Rev. D 70, 084011

(2004).
[51] S. A. Hartnoll, C. P. Herzog, and G. T. Horowitz, Phys. Rev.

Lett. 101, 031601 (2008).
[52] S. R. Dolan, Phys. Rev. D 76, 084001 (2007).
[53] H. Witek, V. Cardoso, A. Ishibashi, and U. Sperhake, Phys.

Rev. D 87, 043513 (2013).
[54] M. Baryakhtar, R. Lasenby, and M. Teo, Phys. Rev. D 96,

035019 (2017).
[55] J. C. Degollado, C. A. R. Herdeiro, and H. F. Rúnarsson,

Phys. Rev. D 88, 063003 (2013).
[56] J. C. Degollado, C. A. R. Herdeiro, and E. Radu, Phys. Lett.

B 781, 651 (2018).
[57] V. Cardoso, Ó. J. C. Dias, G. S. Hartnett, M. Middleton, P.

Pani, and J. E. Santos, J. Cosmol. Astropart. Phys. 03 (2018)
043.

[58] R. Brito, V. Cardoso, and P. Pani, Classical Quantum
Gravity 32, 134001 (2015).

[59] S. Ghosh, E. Berti, R. Brito, and M. Richartz, Phys. Rev. D
99, 104030 (2019).

[60] S. Hod, Phys. Lett. B 758, 181 (2016).
[61] M. Casals, S. R. Dolan, P. Kanti, and E. Winstanley, J. High

Energy Phys. 06 (2008) 071.
[62] C. L. Benone and L. C. B. Crispino, Phys. Rev. D 93,

024028 (2016).
[63] W. E. East and F. Pretorius, Phys. Rev. Lett. 119, 041101

(2017).
[64] R. A. Konoplya and A. Zhidenko, J. Cosmol. Astropart.

Phys. 12 (2016) 043.
[65] J. G. Rosa and T.W. Kephart, Phys. Rev. Lett. 120, 231102

(2018).
[66] M. Richartz, A. Prain, S. Liberati, and S. Weinfurtner, Phys.

Rev. D 91, 124018 (2015).
[67] M. Wang and C. Herdeiro, Phys. Rev. D 93, 064066 (2016).
[68] H. Yoshino and H. Kodama, Prog. Theor. Exp. Phys. 2014,

043E02 (2014).
[69] C. Y. Zhang, S. J. Zhang, P. C. Li, and M. Guo, J. High

Energy Phys. 08 (2020) 105.
[70] N. Andersson and K. Glampedakis, Phys. Rev. Lett. 84,

4537 (2000).
[71] V. M. Mehta, M. Demirtas, C. Long, D. J. E. Marsh, L.

McAllister, and M. J. Stott, J. Cosmol. Astropart. Phys. 07
(2021) 033.

[72] F. Meinardi, M. Cerminara, A. Sassella, R. Bonifacio, and
R. Tubino, Phys. Rev. Lett. 91, 247401 (2003).

[73] T. Torres, S. Patrick, A. Coutant, M. Richartz, E. W.
Tedford, and S. Weinfurtner, Nat. Phys. 13, 833 (2017).

PHYSICAL REVIEW LETTERS 131, 111601 (2023)

111601-6

https://doi.org/10.1103/PhysRevD.80.067702
https://doi.org/10.1103/PhysRevD.80.067702
https://doi.org/10.1007/s00220-010-0985-z
https://doi.org/10.1007/s00220-010-0985-z
https://doi.org/10.1007/JHEP07(2022)060
https://doi.org/10.1007/JHEP07(2022)060
https://doi.org/10.1016/0550-3213(85)90021-5
https://doi.org/10.1016/S0370-2693(98)00271-8
https://doi.org/10.1016/S0550-3213(98)00695-6
https://doi.org/10.1016/S0550-3213(99)00776-2
https://doi.org/10.1016/S0550-3213(00)00304-7
https://doi.org/10.1103/PhysRevD.61.041301
https://doi.org/10.1103/PhysRevD.61.041301
https://doi.org/10.1103/PhysRevD.62.023512
https://doi.org/10.1103/PhysRevD.62.023512
https://doi.org/10.1103/PhysRevD.64.123515
https://doi.org/10.1103/PhysRevD.64.123515
https://doi.org/10.1016/S0370-2693(02)01730-6
https://doi.org/10.1103/PhysRevD.90.043510
https://doi.org/10.1088/1475-7516/2015/06/033
https://doi.org/10.1016/S0370-2693(97)01375-0
https://doi.org/10.1016/S0370-2693(97)01375-0
https://doi.org/10.1016/S0370-2693(98)01078-8
https://doi.org/10.1016/S0370-2693(00)00688-2
https://doi.org/10.1103/PhysRevLett.87.141301
https://doi.org/10.1103/PhysRevLett.87.141301
https://doi.org/10.1103/PhysRevLett.98.161304
https://doi.org/10.1103/PhysRevLett.98.161304
https://doi.org/10.1103/PhysRevD.80.075021
https://doi.org/10.1103/PhysRevD.80.075021
https://doi.org/10.1103/PhysRevD.84.123528
https://doi.org/10.1103/PhysRevD.84.123528
https://doi.org/10.1016/j.physletb.2013.08.008
https://doi.org/10.1016/j.physletb.2013.08.008
https://doi.org/10.1088/1475-7516/2020/04/017
https://doi.org/10.1088/1475-7516/2020/04/017
https://doi.org/10.1103/PhysRev.172.1331
https://doi.org/10.1007/s41114-023-00043-4
https://doi.org/10.1007/s41114-023-00043-4
https://doi.org/10.1088/0264-9381/20/20/201
https://doi.org/10.1088/0264-9381/20/20/201
https://doi.org/10.1103/PhysRevD.96.023005
https://doi.org/10.1088/1475-7516/2003/08/003
https://doi.org/10.1088/1475-7516/2003/08/003
https://doi.org/10.1103/PhysRevLett.98.265302
https://doi.org/10.1103/PhysRevLett.98.265302
https://doi.org/10.1016/S0550-3213(00)00506-X
https://doi.org/10.1103/PhysRevLett.113.231603
https://doi.org/10.1103/PhysRevLett.113.231603
https://doi.org/10.1007/JHEP07(2021)062
https://doi.org/10.1007/JHEP07(2021)062
https://doi.org/10.1103/PhysRev.93.99
https://doi.org/10.1103/PhysRevD.58.064014
https://doi.org/10.1103/PhysRevD.58.064014
https://doi.org/10.1007/978-3-319-19000-6
https://doi.org/10.1007/978-3-319-19000-6
https://inspirehep.net/literature/45474
https://inspirehep.net/literature/45474
https://ui.adsabs.harvard.edu/abs/1971JETPL..14..180Z/abstract
https://ui.adsabs.harvard.edu/abs/1971JETPL..14..180Z/abstract
https://ui.adsabs.harvard.edu/abs/1971JETPL..14..180Z/abstract
https://ui.adsabs.harvard.edu/abs/1971JETPL..14..180Z/abstract
https://ui.adsabs.harvard.edu/abs/1971JETPL..14..180Z/abstract
https://ui.adsabs.harvard.edu/abs/1971JETPL..14..180Z/abstract
https://ui.adsabs.harvard.edu/abs/1971JETPL..14..180Z/abstract
https://ui.adsabs.harvard.edu/abs/1971JETPL..14..180Z/abstract
https://doi.org/
https://doi.org/
http://jetp.ras.ru/cgi-bin/dn/e_035_06_1085.pdf
http://jetp.ras.ru/cgi-bin/dn/e_035_06_1085.pdf
http://jetp.ras.ru/cgi-bin/dn/e_035_06_1085.pdf
http://jetp.ras.ru/cgi-bin/dn/e_035_06_1085.pdf
http://jetp.ras.ru/cgi-bin/dn/e_035_06_1085.pdf
https://doi.org/10.1103/PhysRevLett.28.994
https://doi.org/10.1103/PhysRevD.81.123530
https://doi.org/10.1103/PhysRevD.83.044026
https://doi.org/10.1103/PhysRevD.83.044026
https://doi.org/10.1103/PhysRevLett.109.131102
https://doi.org/10.1103/PhysRevD.70.084011
https://doi.org/10.1103/PhysRevD.70.084011
https://doi.org/10.1103/PhysRevLett.101.031601
https://doi.org/10.1103/PhysRevLett.101.031601
https://doi.org/10.1103/PhysRevD.76.084001
https://doi.org/10.1103/PhysRevD.87.043513
https://doi.org/10.1103/PhysRevD.87.043513
https://doi.org/10.1103/PhysRevD.96.035019
https://doi.org/10.1103/PhysRevD.96.035019
https://doi.org/10.1103/PhysRevD.88.063003
https://doi.org/10.1016/j.physletb.2018.04.052
https://doi.org/10.1016/j.physletb.2018.04.052
https://doi.org/10.1088/1475-7516/2018/03/043
https://doi.org/10.1088/1475-7516/2018/03/043
https://doi.org/10.1088/0264-9381/32/13/134001
https://doi.org/10.1088/0264-9381/32/13/134001
https://doi.org/10.1103/PhysRevD.99.104030
https://doi.org/10.1103/PhysRevD.99.104030
https://doi.org/10.1016/j.physletb.2016.05.012
https://doi.org/10.1088/1126-6708/2008/06/071
https://doi.org/10.1088/1126-6708/2008/06/071
https://doi.org/10.1103/PhysRevD.93.024028
https://doi.org/10.1103/PhysRevD.93.024028
https://doi.org/10.1103/PhysRevLett.119.041101
https://doi.org/10.1103/PhysRevLett.119.041101
https://doi.org/10.1088/1475-7516/2016/12/043
https://doi.org/10.1088/1475-7516/2016/12/043
https://doi.org/10.1103/PhysRevLett.120.231102
https://doi.org/10.1103/PhysRevLett.120.231102
https://doi.org/10.1103/PhysRevD.91.124018
https://doi.org/10.1103/PhysRevD.91.124018
https://doi.org/10.1103/PhysRevD.93.064066
https://doi.org/10.1093/ptep/ptu029
https://doi.org/10.1093/ptep/ptu029
https://doi.org/10.1007/JHEP08(2020)105
https://doi.org/10.1007/JHEP08(2020)105
https://doi.org/10.1103/PhysRevLett.84.4537
https://doi.org/10.1103/PhysRevLett.84.4537
https://doi.org/10.1088/1475-7516/2021/07/033
https://doi.org/10.1088/1475-7516/2021/07/033
https://doi.org/10.1103/PhysRevLett.91.247401
https://doi.org/10.1038/nphys4151


[74] A. Angerer, K. Streltsov, T. Astner, S. Putz, H. Sumiya, S.
Onoda, J. Isoya, W. J. Munro, K. Nemoto, J. Schmiedmayer,
and J. Majer, Nat. Phys. 14, 1168 (2018).

[75] J. Kim, D. Yang, S. Oh, and K. An, Science 359, 662 (2018).
[76] Y. Luo, G. Chen, Y. Zhang, L. Zhang, Y. Yu, F. Kong,

X.Tian,Y. Zhang,C. Shan,Y.Luo, J.Yang,V. Sandoghdar, Z.
Dong, and J. G. Hou, Phys. Rev. Lett. 122, 233901 (2019).

[77] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.131.111601 for more
properties of Q-ball superradiance and the numerical setup
used in this Letter.

[78] H. Y. Gao, P. M. Saffin, Y. J. Wang, Q. X. Xie, and S. Y.
Zhou, arXiv:2306.01868.

PHYSICAL REVIEW LETTERS 131, 111601 (2023)

111601-7

https://doi.org/10.1038/s41567-018-0269-7
https://doi.org/10.1126/science.aar2179
https://doi.org/10.1103/PhysRevLett.122.233901
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.111601
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.111601
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.111601
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.111601
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.111601
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.111601
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.111601
https://arXiv.org/abs/2306.01868

