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Abstract

We develop a model of sluggish firm entry to explain short-run labor responses to
technology shocks. We show that the labor response to technology and its persis-
tence depend on the degree of returns to labor and the rate of firm entry. Existing
empirical results support our theory based on short-run labor responses across US in-
dustries. We derive closed-form transition paths that show the result occurs because
labor adjusts instantaneously whilst firms are sluggish, and closed-form eigenvalues
show that stricter entry regulation results in slower convergence to steady state. Fi-
nally we show that our theoretical results hold in a quantitative model with capital
accumulation and interest rate dynamics.
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The short-run response of labor hours to technology shocks has been widely debated
in macroeconomics. Empirical studies, such as Chang and Hong 2006, show that labor
responses to technology shocks differ across U.S. manufacturing industries. Using 4-digit
manufacturing sector data, Chang and Hong show that while some industries exhibit a
temporary reduction in employment in response to a permanent increase in technology,
many more industries exhibit a short-run increase in both employment and hours per
worker. However, the theory underlying these responses is not fully understood. In this
paper, we identify a novel mechanism based on dynamic firm entry to explain short-run
labor responses and subsequent persistence. Cross-industry data supports our theory.
Additionally, we show that persistence of labor responses depends on firm sluggishness,
which regulation affects through endogenous entry costs.

Our mechanism focuses on endogenous variation in labor per firm, which occurs when
firm creation is sluggish but labor adjusts instantaneously. Endogenous variation in labor
per firm is important for aggregate labor responses except in the special case of a constant
marginal product of labor (MPL) in the firm’s production function. For example, if a
positive technology shock increases hours, but the stock of firms is fixed, hours per firm
increase. With short-run increasing MPL, the rise in hours per firm increases MPL,
increases wages and increases hours. Subsequent firm entry decreases hours per firm,
decreases MPL, decreases wage, and decreases labor to its long-run level.1 This channel
is typically overlooked because either labor per firm is fixed (due to instantaneous free
entry) or the MPL is constant.2

We develop a DGE small open economy (SOE) model in continuous time extended
to include dynamic firm entry. Output is produced with labour, and there is an inter-
nationally traded bond with world interest rates equal to the household discount rate.
Hence the household perfectly smooths utility, so consumption dynamics do not play a
role, which allows a closed-form analysis of firm dynamics. Households can invest in new
firms by paying an endogenous entry cost. Once operational, firms compete under mo-
nopolistic competition and pay a fixed overhead cost each period. The restriction to one
state variable (number of firms) keeps eigenvalues tractable, so we can study persistence
and short-run versus long-run effects analytically.

To model dynamic entry we assume that the entry costs depend on the flow of entry
due to a congestion effect caused by red tape (Datta and Dixon 2002). As a result,
output per firm and operating profits vary in the short run, whilst in the long run firms
fully adjust so that there is a free-entry, zero-profit steady-state. In steady state average

1With decreasing MPL, the signs are reversed.
2In principle, other mechanisms that cause variation in employment at the firm-level could cause

similar effects. We focus on the sluggishness of firm entry, but equally slow aggregate labor adjustment
could also affect employment at the firm level – providing the adjustment of firms is not exactly propor-
tional to the adjustment of labor, such that labor per firm does not vary, which is the case in zero-profit,
free-entry models.
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firm size is independent of technology. The speed of convergence captured in the stable
eigenvalue depends on the flow of firm creation, which in turn depends on the level
of regulation in an economy. We characterize deregulation as cut in red tape, which
causes less congestion in the entry process decreasing the endogenous sunk entry cost
and speeding-up business churn. Our model is parsimonious in order to derive general
analytic results and provides testable implications consistent with empirical literature.

We also consider a quantitative RBC model with capital and a variable interest rate,
keeping sluggish firm entry and allowing for variation in the slope of the marginal cost
curve. We find very similar results to our simple SOE model, which shows that the
simplifying assumptions we make for an analytical solution are not necessary for our
results to hold in larger quantitative models.

Related Literature: Recent literature in macroeconomics has focused on the impor-
tance of firm entry dynamics for business cycle fluctuations. Bilbiie, Ghironi, and Melitz
2012 (BGM) developed a popular model of sluggish entry based on a fixed entry cost and
a time-to-build lag in discrete time. We extend the idea of sluggish entry adjustment to
a continuous-time model of endogenous entry costs. This has the benefit of allowing for
a tractable analysis and offers a new angle to study deregulation. The endogenous entry
cost creates an intertemporal zero-profit condition that equates the cost of entry in each
instant to the net present value of incumbency. This causes the number of firms to gradu-
ally adjust to its long-run value. Entry costs are endogenous because they depend on the
number of entering firms. Lewis 2009 shows that these so-called entry congestion effects
are important for macroeconomic propagation in empirical work, and recent theoretical
papers also include this mechanism (Bergin and Lin 2012).

Cantore, Ferroni, and Leon-Ledesma 2017 (Fig. 1, p.70) provide empirical evidence
that, at the aggregate level, short-run responses of labor to technology have reversed
over the past century in the US from decreasing to increasing, and that the deviation
now persists for longer. We show that increased persistence can occur because of slower
business churn caused by higher entry regulation. Our analysis contributes a novel angle
to existing studies of entry regulation. Most literature focuses on the effect of decreasing
fixed entry costs. This determines the stock of firms operating in the long-run which has
implications for static allocations (Barseghyan and DiCecio 2011). However, we analyze
deregulation of endogenous entry costs that affect the speed at which firms transition to
arbitrage profits, and therefore determine the persistence of aggregate variables. Cac-
ciatore and Fiori 2016 explore deregulation in goods and labor markets. They find that
reforms are beneficial in the long run, but can have short-run recessionary effects. Sim-
ilarly to our work, they include sluggish firm adjustment, but they also have sluggish
labor adjustment due to search frictions.

Our paper contributes to the debate on short-run labor responses to productivity
shocks. Gali 1999 found negative short-run labor responses to technology shocks which
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contradicted contemporary RBC theory.3 The result was disputed by Christiano, Eichen-
baum, and Vigfusson 2003 and has ignited a long-literature rationalising these opposing
results. Many papers attempt to establish empirical facts for different industries and
different countries (e.g. Ko and Kwon 2015), and a smaller literature provides theoret-
ical justifications. Theoretical papers typically extend an RBC model and analyze its
ability to match empirical labor responses for different model calibrations. Rebei 2014
compares six model extensions, and finds that the Francis and Ramey 2005 model of
habits in consumption and investment adjustment costs performs best. Cantore, Ferroni,
and Leon-Ledesma 2017 focus on variations in the capital-labor substitution parameter.
They argue that this varies due to biased technical change. Mandelman and Zanetti
2014 introduce labor market search and matching frictions based on Blanchard and Gali
2010. Their initial modification cannot replicate negative labor responses, but an exten-
sion to cyclical hiring costs performs well. Relative to existing theoretical literature our
mechanism is highly tractable. We analyze a deeply micro-founded parameter that is
present in all of these models, and can contribute positively or negatively to short-run
labor responses under the conditions we explain. From the empirical work on short-run
labor responses, Basu, Fernald, and Kimball 2006 and Chang and Hong 2006 are closely
related to our model predictions. Basu, Fernald, and Kimball 2006 estimate a returns-
to-scale parameter which proxies for our labor returns parameter. They show that in US
manufacturing industries (durable and non-durable) returns to labor (hour per worker)
are increasing, whereas in non-manufacturing returns are decreasing. Their goal is to
re-estimate the driving technology process and observe aggregate responses. Chang and
Hong 2006 adopt their regression technique in order to study more granular 4-digit in-
dustry responses – they find significant differences across industries. As a by-product
they estimate our parameter of interest at this level which allows us to match to industry
short-run labor responses and verify our model predictions.

Outline: Section 1 presents the model; Section 2 summarizes equilibrium; Section
3 solves the steady-state and model dynamics; Section 4 analyzes labor responses and
empirical relevance; Section 5 shows that deregulation speeds-up convergence; Section 6
performs a quantitative exercise.

3Gali 1999 estimates an SVAR on US data which shows that hours worked fall while labor productivity
rises after a positive permanent shock to technology.
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1 Model

1.1 Household

There is a small open economy, with a world capital market interest rate r equal to the
discount rate ρ of the Ramsey household:

r = ρ (1)

The representative household has King, Plosser, and Rebelo 1988 preferences

U(C,H) = lnC − H1+η

1 + η
(2)

U denotes the the period utility function which is concave. It is increasing in consumption
C and decreasing in labor hours H.4 The parameter η ∈ (0,∞) is inverse Frisch elasticity
of labor supply to wages. The household earns income from three sources: supplying labor
at wage w, receiving interest income from foreign bonds rB and receiving profit income
Π from owning firms. The household treats profit income as given. The household can
spend income on consumption or foreign bond investment Ḃ. Therefore the household
solves:

max
C,H

∫ ∞
0

U(C,H)e−ρtdt

subject to

Ḃ = rB + wH + Π− C (3)

B(0) = B0 (4)

where (4) is the initial condition on wealth and (1) holds. In addition to (3) and (4), the
optimal solutions satisfy

λ̇ = 0 =⇒ λ = λ̄ (5)

C̄ =
1

λ̄
(6)

H = (λw)
1
η , η ∈ (0,∞) (7)

lim
t→∞

λBe−rt = 0 (8)

4Additive separability UCH = 0 is sufficient for our results to hold when there are increasing marginal
costs (decreasing returns to labor). But we require KPR preferences for the decreasing and constant
marginal cost cases.
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where we use bar notation for variables that are constant over time. (7) is the intratem-
poral labor supply condition. Given wage, labor supply H is increasing in the marginal
utility of consumption λ. A high λ means low consumption and vice versa.5 The as-
sumptions of perfect capital markets and additively separable utility simplify dynamics
to distill those arising from firm entry, which will affect wage.6 To ensure the private
agent satisfies the intertemporal budget constraint, the transversality condition (8) must
hold.

1.2 Firms

1.2.1 Firm Production

The aggregate consumption good C is either imported or produced domestically by a
perfectly competitive industry. The final goods production technology has constant re-
turns and employs intermediate inputs which are monopolistically supplied. The ag-
gregate price level is P . There is a continuum of possible intermediate products yi for
i ∈ [0,∞) with price pi. At instant t, there is a range of active products N(t) < ∞ so
that i ∈ [0, N(t)) are active and available, whilst i > N(t) are inactive and not produced.

Final Good Producer’s Problem: The final good producer solves

max
yi

PY −
∫ N

0

piyi di

subject to

Y ≡ N1− θ
θ−1

[∫ N

0

y
(θ−1)/θ
i di

]θ/(θ−1)

(9)

where θ > 1 is the elasticity of substitution between products. (9) is the aggregate
technology which relates total domestic output Y to inputs yi. The first-order conditions
for the final goods producer give input-demand for each available product i

yi =
(pi
P

)−θ Y
N

(10)

This is the well-known constant elasticity form. The corresponding price elasticity of
demand εpy ≡ dpi

dyi

pi
yi

is εpy = −1
θ
. Combining (9) with (10), yields the aggregate price

5 See supplementary Appendix B for full derivation of first-order conditions. If r 6= ρ then no interior
steady state exists. The trajectory of consumption will then be either increasing r > ρ or decreasing
r < ρ through time. This ‘knife-edge’ condition is a widely-discussed model closing device (Oxborrow and
Turnovsky 2017; Uribe and Schmitt-Grohé 2017). Under perfect foresight, this will cause steady-state
to depend on initial conditions.

6Additive separability uCH = 0 creates the simple relationship between consumption and marginal
utility of consumption. Perfect international capital markets ρ = r imply the household can completely
smooth its consumption so λ̇ = 0 =⇒ λ = λ̄. In combination they imply the marginal utility of
consumption is unchanging over time.
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index that is consistent with zero-profits in the perfectly competitive final goods sector:

P ≡ N−(1− θ
θ−1)

(∫ N

0

p1−θ
i di

) 1
1−θ

(11)

Intermediate Good Producer’s Problem: There is a continuum of potential
firms, and each firm can produce one product. At time t, firm i ∈ [0, N(t)) has labor
demand hi to supply output yi using the technology:

yi =

Ahνi − φ, if Ahνi > φ,

0 else.
(12)

The parameter φ ≥ 0 is a fixed overhead cost denominated in output terms.7 A is
a technology parameter. The parameter ν > 0 captures whether an increase in labor
increases or decreases the marginal product of labor (MPL) – i.e. the slope of the MPL
– it represents whether an extra unit of labor will increase or decrease the efficiency at
which labor is employed at the firm. When ν < 1 there are decreasing returns to labor
(MPL slope is negative); ν = 1 implies constant returns (MPL slope is flat); ν > 1 implies
increasing returns (MPL slope is positive).

An individual firm maximizes profit, where w is the real wage, by solving

max
h

πi = piyi − Pwhi

subject to its production function (12) and the demand function (10).8 The factor market
is perfectly competitive meaning we assume that labor is homogeneous so the firm is a
price-taker in the input market. This yields the following optimizing choice of labor input

w =
pi
P

ν

µ
Ahν−1

i (13)

Where µ ≡ θ
θ−1
∈ [1,∞) is the markup of price over marginal cost. When products are

perfectly substitutable the markup tends to unity limθ→∞ µ = 1. If firms have U-shaped
average cost curves, which is one of the cases we study, a perfect competition equilibrium
will exist with µ = 1. Given (13), a firm’s maximized profit is:

πmax
i = pi

[(
1− ν

µ

)
Ahνi − φ

]
If marginal cost is decreasing ν > 1, the solution to (13) might not maximize profits.

7See supplementary Appendix B for a discussion of this production function with a fixed cost and
non-constant marginal costs.

8We solve the firm profit maximization problem in supplementary Appendix B and show the second-
order condition for profit maximization holds under our assumptions.
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We assume the degree of increasing returns to labor is bounded above by the degree of
monopoly power. This ensures the second-order condition for profit maximization holds.9

Lemma 1. µ ≥ ν is a sufficient condition for (13) to maximize profits.10

This implies that although the marginal cost curve can be downward sloping, the
slope must be shallower than the downward sloping marginal revenue curve to ensure
they intersect.

1.2.2 Firm Entry

What determines the number of firms operating at each instant t? We develop a con-
gestion effects model of firm entry which equates a time-varying cost of entry to the net
present value of a firm. A partial equilibrium version of the model is presented in Datta
and Dixon 2002. Entry and exit are symmetric in the sense that the two channels do not
operate independently – there is either entry following a positive shock or exit following
a negative shock.11 We shall focus on positive shocks and firm entry. At time t there is
a flow cost of entry q(t) which increases in net entry E(t).

E(t) ≡ Ṅ (14)

q(t) = γE(t) (15)

The sensitivity to congestion parameter γ ∈ (0,∞) represents red tape or regulation
in firm creation. Filing papers or gaining accreditation makes start-ups more sensitive
to flows of entry as regulator’s workflows become more congested (i.e. a queuing cost).
Aggregating across all entry in a period gives a quadratic firm entry adjustment cost
function

C(E) ≡
∫ E

0

q dE =
γ

2
E2 =

q2

2γ
(16)

C(E) is a non-negative, convex function of the rate of entry. With zero entry, the aggregate
cost and marginal cost of firm creation is zero C(0) = CE(0) = 0. The interpretation
of modelling the aggregate sunk cost as an adjustment cost is that firm creation and
destruction, whether positive (net entry) or negative (net exit), generates resource costs.

9In supplementary appendix B we provide a (weaker) necessary and sufficient condition for profit-
maximization. However it turns out this is redundant as µ ≥ ν is necessary and sufficient for steady
state existence.

10Hornstein 1993; Devereux, Head, and Lapham 1996 and Kim 2004 provide similar conditions in
instantaneous-entry, zero-profit models with returns to scale.

11Symmetry implies that in the case of a negative shock and net exit the entry cost becomes an exit
fee (severance payments or dismantling fee). Firms wishing to leave the market must pay a cost −q > 0,
where q < 0 so the double-negative makes the exit cost positive. This means in bad economic times
incumbent firms may have an incentive to delay their exit to a later date when the severance fees are
lower. This symmetry is not essential as we show in our quantitative exercise which has an exogenous
death rate.
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The flow of entry in each instant is determined by an arbitrage condition that equates
the return on bonds (opportunity cost of entry) with the return on setting up a new firm.
It is a differential equation in q, which determines the entry flow by (15).12

π

q
+
q̇

q
= r (17)

N(0) = N0 (18)

In equilibrium operating profits π depend on N which will make this a nonlinear second-
order differential equation in N .13 The first left-hand side term is the number of firms
per dollar (1/q) times the flow operating profits (dividends) the firm will make if it sets
up. The second term reflects the change in the cost of entry. If q̇/q > 0, then it means
that the cost of entry is increasing, so that there is a capital gain associated with entry at
time t if q̇/q < 0 it means entry is becoming cheaper, thus discouraging immediate entry.
The sunk cost q(t) represents the net present value of incumbency: it is the present value
of profits earned if you are an incumbent at time t.14 This arises since the entrants are
indifferent between entering and staying out. When q < 0, the present value of profits is
negative: in equilibrium this is equal to the cost of exit.

In steady state, we have E = q = 0, so that the entry model implies the zero-profit
condition. Entry costs only arise on convergence to steady state.

2 Equilibrium

Firms have identical production functions (12) so we can impose a symmetric equilibrium:

∀i ∈ [0, N(t)) : hi = h, yi = y, pi = p

Under symmetry (11) implies P = p and as we set the aggregate consumption good as
the numeraire P = p = 1. Under symmetry, (9) implies

Y = Ny (19)

12The arbitrage equation can be written in a way directly analogous to the user cost of capital π =

q
(
r − q̇

q

)
in capital adjustment cost models.

13Note that our entry model has the standard models as limiting cases: when γ = 0, we have instan-
taneous free entry so that (17) becomes π = 0 and there are zero profits each instant. If γ → +∞, then
changes in N become very costly and N moves little if at all which approximates the case of a fixed
number of firms.

14This is because of the free-entry assumption that sunk costs equal the net present value of the firm.
See Stokey 2008 for a general discussion.
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substituting in (12), the aggregate production function is

Y (N,H) = AHνN1−ν −Nφ (20)

Symmetry and perfectly competitive factor markets (homogeneous labor) imply labor is
divided equally among firms

H = Nh (21)

Therefore labor demand (13) relates wage to aggregate variables by

w =
ν

µ
AHν−1N1−ν (22)

Operating profits at their maximum are

π =

(
1− ν

µ

)
Ahν − φ =

(
1− ν

µ

)
AHνN−ν − φ (23)

This rearranges to give profit-maximizing firm size and equivalently the relationship be-
tween aggregate output, number of firms and operating profit

y =
µπ + νφ

µ− ν
, Y = N

(
µπ + νφ

µ− ν

)
(24)

In general equilibrium the household budget constraint becomes the aggregate account-
ing identity by substituting out aggregate profits. Aggregate profits returned to the
representative household are total operating profits (dividends) less total entry costs
Π ≡ Nπ−C(E) and under symmetry Nπ = N(y−wh) = Y −wH. Hence by subsitution
(3) yields the goods market clearing condition:

Y + rB = C + C(E) + Ḃ (25)

Definition 1. A decentralised equilibrium is defined by paths t ∈ [0,∞) of bonds {B(t)},
factor price {w(t)}, factor demands {H(t)}, firms’ operating decisions {y(t)}, measures
of the stock of firms and entry, {N(t), E(t)}, and consumption {C(t)}, given initial
conditions (4) and (18), such that

(i) consumers choose {C(t), H(t)} optimally according to (6) and (7) given factor prices,
and bonds {B(t)} satisfy the transversality condition (8);

(ii) incumbent firms choose {h(t)} and consequently {y(t)} to satisfy (13) which maxi-
mizes operating profits given factor price

(iii) entry and the number of firms {E(t), N(t)} equate the net present value of incum-
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bency to the entry cost through the arbitrage condition (17)

(iv) wage {w(t)} clears the labor market by equating labor supply (7) and demand (22)

(v) the goods market clears (25)

(vi) aggregate output and inputs are divided equally among firms following (19) and
(21).

2.1 General Equilibrium Existence

A sufficient condition for equilibrium existence is that there are decreasing or constant
returns to labor ν ≤ 1. However, in the case when there are increasing returns to labor
1 < ν equilibrium may not exist.

Proposition 1 (General Equilibrium Existence). A necessary and sufficient condition
for equilibrium existence is

ν < min [µ, 1 + η] (26)

Proof. Combine profit existence Lemma 1 and labor market existence Lemma 2.

The condition ensures equilibrium in the goods market and labor market respectively.
The ν < µ condition ensures when marginal cost is downward sloping it still intersects the
downward sloping marginal revenue curve, at a positive level of output. It is necessary and
sufficient to prevent the zero-profit output level being negative. Additionally it is sufficient
for the second-order profit maximization condition to hold. The second condition ensures
that when labor demand is upward sloping it still intersects the upward-sloping labor
supply curve. We discuss this below.

2.2 Labor Market Equilibrium

In labor market equilibrium labor supply (7) equals labor demand (22), giving:

H(λ̄, N) =

(
N1−νλ̄

νA

µ

) 1
1−ν+η

, 1− ν + η > 0 (27)

Lemma 2 (Labor Market Equilibrium Existence). To ensure that the labor market con-
dition is well-defined ν − 1 < η

The restriction ν < 1 + η ensures that labor demand and supply intersect. The labor
supply curve slope is dw

dH
H
w

= η, and the labor demand curve slope is dw
dH

H
w

= ν − 1. In
our model labor demand is upward sloping if returns to labor are increasing ν > 1. This
condition ensures that when labor demand is upward sloping, it is less steep than the
upward sloping labor supply curve, which ensures they intersect. Equation (27) shows
that the number of firms affects labor providing ν 6= 1.
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Proposition 2 (Equilibrium Labor-Entry Elasticity). The labor elasticity to number of
firms is

εHN ≡
dH

dN

N

H
=

1− ν
1− ν + η

(28)

Therefore, the response of hours to firm entry depends on ν:

εHN R 0 ⇐⇒ ν Q 1, where ν ∈ (0,∞)

Proof. Take the derivative of (27).

This result captures the importance of entry for labor responses when there are non-
constant returns to labor.15 In the status quo case of constant returns to labor, entry does
not affect labor. This is because N does not play a role in the aggregate labor demand
condition. However, when ν is able to diverge from unity entry affects the aggregate
demand condition through the MPL and consequently the wage. With decreasing returns
to labor at the firm level, entry decreases labor per firm, which increases its MPL at any
individual firm and in turn increases the real wage and hence labor supply. When there
are increasing returns to labor ν > 1 at the firm level, an extra firm dividing labor across
more units, decreases the efficiency at which it is employed (MPL) and consequently
decreases wage and labor in general equilibrium.

3 Model Solution

3.1 Reduced-form Equilibrium

The equilibrium conditions reduce to a five-dimensional system {λ,N, q, B,H} with four
differential equations and one static equation. The static intratemporal condition (27)
implies H(λ,N), so the system can be reduced to four differential equations in four un-
knowns, and since the consumption differential equation implies consumption is constant
λ(t) = λ̄, we have three dynamic equations in N, q,B:

Ṅ =
q

γ
(29a)

q̇ = rq − π(N,H(λ̄, N)) (29b)

Ḃ = rB + Y (N,H(λ̄, N))− C(q)− C̄(λ̄) (29c)

15See supplementary Appendix B for a discussion of bounds on the labor elasticity to entry.
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where the endogenous functions C, C̄, Y are specified in (5), (16),(20) and substituting
(27) into (23) gives

π(N,H(λ̄, N)) =

(
A1+η(νλ)ν

µ1+ηNην

) 1
1−ν+η

(µ− ν)− φ (30)

Accompanying the differential equations in system (29) there are three boundary con-
ditions: the household transversality (8); the initial condition on bonds (4); the initial
condition on number of firms (18). Industry dynamics (N, q) form an independent, two-
dimensional, subsystem of the three-dimensional system, where bonds are determined
through (29c) alone. Therefore we shall solve recursively: first solving the industry dy-
namics subsystem for N(t), q(t), then solve for bonds B(t) based on these solutions.

3.2 Steady-state

Steady state is non-standard because there are three steady state conditions Ṅ = q̇ =

Ḃ = 0 but four unknowns λ̄, q, N,B.16 In order to get an extra equation to solve this
system for steady state, first we find a solution to the dynamic system for its timepaths
of N(t, λ̄), q(t, λ̄), B(t, λ̄) conditional on knowing one steady-state variable λ̄. Second we
use the limit of the bond solution and transversality to acquire an extra steady state
condition, allowing us to solve for steady state. It is this procedure which causes steady
state to depend on initial conditions N0, B0, so-called path dependency or hysteresis.17

We use a tilde to denote a steady state variable. The Ṅ = 0 differential equation
immediately implies that steady-state sunk costs are zero, which equivalently implies the
net present value of a firm in steady state is zero:

q̃ = 0 (31)

This leaves two steady-state conditions q̇ = Ḃ = 0 in three unknowns Ñ , λ̄, B̃. Through
the arbitrage condition (29b), zero sunk costs (31) imply operating profits are zero

π̃ = 0 (32)

The zero profit condition determines labor per firm (or aggregate labor as a linear function
of number of firms H̃(Ñ))

h̃ =

(
µφ

A(µ− ν)

) 1
ν

(33)

16This occurs because the consumption differential equations is always in steady-state (λ̇ = 0) due to
perfect consumption smoothing from r = ρ which implies consumption is fixed λ = λ̄, but it does not
relate to other variables in the system.

17An implication of this feature is that temporary shocks may have permanent effects.
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Labor per firm determines output per firm and wage18

ỹ =
νφ

µ− ν
(34)

w̃ =

(
A

µ

) 1
ν

ν

(
φ

µ− ν

)1− 1
ν

(35)

With h̃ and w̃ determined by the free entry arbitrage condition π̃ = 0, then the labor
market equilibrium condition (27) determines the number of firms as a function of the
consumption index, and therefore labor as a function of consumption index:

Ñ(λ̄) =
(λ̄w̃)

1
η

h̃
(36)

H̃(λ̄) = (λ̄w̃)
1
η (37)

In order to find λ̄, we are left with one steady-state condition Ḃ = 0 that we have not
used: the output market clearing condition (steady-state bond accumulation equation).

C̄(λ̄)− w̃H̃(λ̄)− rB̃ = 0 (38)

This is an excess demand function for the steady state in terms of the price of marginal
utility λ̄. The term C(λ̄) represents expenditure and is decreasing in λ̄. The term
wH(λ̄)+rB̃ represents income and are increasing in λ̄. By the intermediate value theorem,
this implies that there exists a λ̄ > 0 such that the economy is at the steady state
equilibrium given B̃.

In this section we partly defined steady-state {Ñ , λ̄, B̃} for the primitive variables of
the dynamical system N, λ̄, B, given steady-state bonds B̃. We gave Ñ(λ̄) analytically
in (36), then used (38) to prove a steady-state λ̄ must exist given B̃. In the next section,
we derive solutions for dynamics which provide an additional steady-state condition B̃(λ̄)

that teamed with (38) and (36) can solve for λ̄ by expressing (38) entirely in λ̄ terms

1

λ̄
− w̃1+ 1

η λ̄− rB̃(λ̄) = 0

3.3 Linearized system

The analysis of the steady state was conditional on the level of steady state bonds B̃.
However to determine B̃ we need to know the path taken to equilibrium. The dynamics
of the system will be analyzed by linearizing around the steady state.19 Where the 3× 3

18Since zero profits imply 0 = ỹ−w̃h̃ then steady-state wage is equivalent to labor productivity w̃ = ỹ

h̃
.

19We provide a full derivation in Appendix A.1.

13



matrix is the Jacobian J, the linearized system is Ṅ

q̇

Ḃ

 =


0 1

γ
0

1
Ñ(λ̄)

νηφ
1−ν+η

r 0

Ω̃ 0 r


 N(t)− Ñ

q(t)− q̃
B(t)− B̃

 (39)

where Ω̃ ≡ d̃Y

dN
= µ

νφ

µ− ν

(
εHN − 1 +

1

µ

)
(40)

In steady state the effect of entry on aggregate output is ambiguous Ω̃ R 0. The labor
returns parameter ν is an important determinant of this as it dictates εHN the labor
elasticity to entry (Proposition 2). For ν ≥ 1 entry always decreases aggregate output,
but for ν < 1 all outcomes are possible.20

Proposition 3 (Entry and Aggregate Output). The effect of entry on aggregate output
Ω̃ in steady-state can be classified as follows:

Ω̃ R 0 ⇐⇒ 1− ν R η(µ− 1)

3.3.1 Industry Dynamics Solution

The determinant and trace of the industry dynamics {N, q} sub-system B ∈ R2 in (39)
are

det(B) = ∆ =
d̃π
dN

γ
= − νηφ

γ (1− ν + η) Ñ(λ̄)
< 0

tr(B) = r

det(B) is negative as 1−ν+η > 0 and is increasing in λ̄.21 The root to the characteristic
polynomial corresponding to the subsystem is

Γ(λ̄) =
r

2

(
1± 1

r

[
r2 − 4∆(Ñ(λ̄))

] 1
2

)
The discriminant (square root term) is positive since the determinant is negative (∆ < 0).
This implies two distinct real roots. And since the discriminant exceeds 1, then so does its
square root so there will be one positive and one negative root. Hence the system is saddle-
path stable, with a negative real root Γ and a positive real root ΓU . Furthermore the
trace is positive so the sum of the eigenvalues is positive implying the positive eigenvalue
is larger than the absolute value of the negative eigenvalue. Our focus is the stable root

20This result can be expanded to study the optimal golden rule number of firms. See supplementary
Appendix B.

21See Appendix A.1 for proof.
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which is negative

Γ =
1

2

(
r −

[
r2 − 4∆)

] 1
2

)
Lemma 3. The stable eigenvalue is increasing in λ̄

Proof. See Appendix A.1.

The solution to the linearized subsystem is

N(t) =Ñ + exp[Γ(λ̄)t](N0 − Ñ) (41)

take derivative to get the net entry rate E = Ṅ = Γ exp[Γt](N0 − Ñ) and substitute
q = γE for the sunk cost solution

q(t) =γΓ exp[Γt](N0 − Ñ) (42)

The derivative of the solution is q̇ = Γ2γ exp(Γt)(N0 − Ñ), so the growth (shrinkage) in
the cost of entry (firm NPV) is given in absolute terms by the stable eigenvalue∣∣∣∣ q̇q

∣∣∣∣ = Γ

with the sign being determined by whether profits are positive (firms accumulation) or
negative (decumulation).

3.3.2 Bonds Solution

Combining (29c) and (8) provides a condition that the solution for bonds must satisfy in
the long run.22

0 = B0 +

∫ ∞
0

e−rt
[
Y − q2

2γ
− C

]
dt (43)

The two terms must cancel out, which has an intuitive interpretation. The first term is
the initial position of bond holdings. B0 > 0 implies the country begins as a borrower,
B0 < 0 implies it begins as a creditor. The second term represents trade surplus if positive
and deficit if negative. Therefore (43) states that if a country begins as a borrower, at
some point over the time horizon it must run a trade deficit.

Linearizing the differential equation in bonds gives

Ḃ(t) = Ω̃
[
N(t)− Ñ

]
− q̃

γ
[q(t)− q̃] + r

[
B(t)− B̃

]
22We show this in Appendix B.
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where q̃ = 0. Then substitute in theN(λ̄, t) solution (41) restricts the differential equation
to be a linear first-order nonhomogeneous differential equation in B(t)

Ḃ(t) = Ω̃
[
exp[Γt](N0 − Ñ)

]
+ r

[
B(t)− B̃

]
(44)

If the economy starts with bonds B(0) = B0 the solution to (44) is

B(t) = B̃ +
Ω̃

Γ(λ̄)− r
exp[Γ(λ̄)t](N0 − Ñ) (45)

where dḂ
dN
|˜ = Ω̃ implies the effect of entry on aggregate output equals the effect of entry

on the flow of bonds evaluated at steady state. Ω̃ affects how accumulation of firms
N0 → Ñ so N0− Ñ < 0 changes stock of bonds B(t). Ω̃ > 0 then entry strengthens home
production and increases bond investment, whereas Ω̃ < 0 then entry weakens home
production and decreases bond investment. In the Walrasian case (µ = 1, ν < 1), Ω̃ > 0

and the accumulation of firms leads to a reduction in bonds. The main mechanism here is
that there is a positive effect of N on labor supply and output (YHN > 0), so that having
too few firms means that wages, labor income and home production are below their steady
state level. To maintain consumption, this low level of income is compensated by higher
than steady state imports, financed by running down bonds. An increase in firms per se
makes wages higher. However, the number of firms is increasing because it is below the
steady-state. The stock of bonds decreases because entry implies that the initial level of
N was low in the first place, not because the accumulation of firms lowers income.

However, given µ > 1, ν < 1, if µ is large enough then bonds will increase as firms are
accumulated. This is because the level of profits along the path to equilibrium is large:
whilst the number of firms is below equilibrium, the extra profits generated are enough
to exceed the adjustment costs and lower wage. In addition, there is a capacity effect, so
that productivity is higher whilst the number of firms is below equilibrium (for µ > 1,
free-entry leads to excessive number of firms in steady-state). In the case of ν ≥ 1, the
flow of entry leads to an increase in the stock of bonds: this is because N has a negative
effect on wages and profits, so that N below its steady state implies income above the
steady state.

3.4 Steady-state Bonds

The linearized dynamics give an explicit solution for steady state bonds as a function of
λ̄ and the initial conditions N0, B0. Evaluate (45) at t = 0 implies

B̃(λ̄) = B0 −
Ω̃

Γ(Ñ(λ̄))− r
(N0 − Ñ(λ̄)) (46)
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therefore the steady-state bond condition (46) and steady-state arbitrage condition (36)
give the excess demand condition (38) in terms of λ̄ only

w̃H̃(λ̄) + rB̃(λ̄)− C̄(λ̄) = 0 (47)

We can solve this for the steady-state consumption index λ̄, which then provides C̃(λ̄),
H̃(λ̄), Ñ(λ̄), and B̃(λ̄). We cannot solve (47) analytically since it is highly nonlinear
in λ̄. However we can show analytically that a unique solution exists, and then solve
for this numerically. A useful lemma to show uniqueness (and other results) is that the
steady-state excess demand function is strictly increasing in inverse consumption, so is
decreasing in consumption given N0 begins within a neighbourhood of Ñ .

Lemma 4 (Excess Demand Monotonically Increasing). The steady-state market-clearing
condition is monotonically increasing in λ̄

w̃
dH̃

dλ
+ r

dB̃

dλ̄
− dC̃

dλ̄
> 0 (48)

if the following sufficient condition holds(
εHN − 1 +

1

µ

)(
N0

Ñ(λ̄)
− 1

)
≥ −

(
εHN − 1

Γ(λ̄)
+

1

rµ

)
(r − 2Γ(λ̄)) (49)

Proof. See appendix A.2.

The right-hand side of (49) is strictly negative and the left-hand side is ambiguous.
This condition is weaker than the simpler sufficient condition N0 − Ñ(λ̄) → 0 which is
commonly assumed and ensures the left-hand side is zero.23 The condition always holds
if there is entry N0 < Ñ and εHN − 1 + 1

µ
< 0 (i.e. Ω̃ < 0) implying the left-hand side is

positive.

Corollary 1 (λ̄ Uniqueness). If (49) holds then there is a unique λ̄ that solves (47).

Proof. Lemma 4 shows that given (49) the steady state market clearing condition is
strictly monotonic in λ̄. Hence, if a steady-state exists it is a unique steady state solution
for λ̄.

23See Turnovsky 1997, p.68 (footnote 8) for a justification of this.
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4 Technology Shock

4.1 Comparative Statics

An improvement in technology A reduces employment per firm but output per firm (firm
scale) (12) is unaffected. Consequently an improvement in technology increases wages.24

dh̃

dA
= − h̃

νA
< 0,

dw̃

dA
=

w̃

νA
> 0

Therefore in the long run technological progress crowds-out labor at the product-level
but output is unaffected (aggregate output will expand as there are more products each
requiring less labor). These comparative statics are simple as they only depend on exoge-
nous variables. However, the aggregate endogenous variables {C̄, Ñ , B̃} ((6), (36), (46)),
excluding q̃ which is zero, are a function of A directly but also depend on λ̄(A). Therefore
technology change has a direct (partial) and an indirect (consumption) effect.25

Proposition 4 (Long-run Effect of Technology). A permanent increase in technology has
the following long-run effects on aggregate variables:

dC̄

dA
> 0

dÑ

dA
> 0

dB̃

dA
R 0 ⇐⇒ Ω̃ Q 0

dH̃

dA
R 0 ⇐⇒ B0 R

Ω̃

Γ− r
N0

dỸ

dA
= ỹ

dÑ

dA
> 0

From the steady-state market clearing condition, the implicit function theorem implies
that technology unambiguously increases consumption. This rise in consumption (indirect
effect) decreases aggregate labor and number of firms, whereas the direct partial effects
of increased technology increase labor and number of firms. Overall, the partial effect
dominates in the number of firms case, whereas it is ambiguous in the labor case. The
increase in the stock of firms implies an increase in aggregate output, and a bond response
that depends on the how entry affects aggregate output Ω̃.26 The effect on the labor
supply is ambiguous because there is a conflict of income and substitution effects: the
higher wage causes a substitution effect for less leisure and more consumption, which

24An increase in steady-state wages is equivalent to an increase in labor productivity since w̃ = ỹ

h̃
.

25We call the indirect effect a consumption effect as λ̄(A) is inverse consumption by (6).
26Ω̃ is the general derivative of aggregate output with respect to number of firms evaluated at steady-

state. It is not the steady-state derivative.
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increases labor. Whereas the income effect increases leisure and decreases labor. Which
effect dominates depends on the level of initial wealth. From (46) B0 − Ω̃

Γ−rN0 is the
initial value of wealth in terms of bonds.27 If Ω̃ > 0, that is ν < 1 and µ small enough,
then a sufficient condition for employment to increase dH̃

dA
> 0 is that bond holdings are

non-negative B0 ≥ 0. Likewise, if Ω̃ < 0, (for which ν ≥ 1 is sufficient) then a sufficient
condition for employment to decrease dH̃

dA
< 0 is that bond holdings are non-positive

B0 ≤ 0.
Bonds respond in the opposite direction to the entry effect on output. If technology-

induced entry increases GDP, then bonds decrease (less borrowing is necessary). If
technology-induced entry decreases GDP, then bonds increase (more borrowing is neces-
sary). Since steady-state bonds only depend on technology through Ñ , the bond response
follows the number of firms increase: dB̃

dA
= dB̃

dN
dÑ
dA

, and to a first-order approximation
sgn dB̃

dN
≈ sgn−Ω̃.28 Similarly the increase in number of firms determines that aggregate

output increases as long-run output per firm (firm scale) is constant.

4.2 Comparative Dynamics

From the dynamic solution for number of firms (41), we can see that on impact t = 0 of a
shock the number of firms is fixed N(0) = N0, whereas entry adjusts E(0) = Γ(N0− Ñ),
which affects the stock of firms an instance later. In other words number of firms is a stock
(state) variable, and entry is a flow (jump) variable. Thus entry jumps the economy onto
its stable manifold instantaneously as the shock hits, subsequently the number of firms
responds as the economy evolves along this manifold. Therefore the difference between
the impact and long-run effects depend on the effect of entry.

Proposition 5. On impact of a technology shock, the response of hours and wages relative
to their long-run level depending depends on labor returns to scale:

dH(0)

dA
− dH(∞)

dA
R 0 ⇐⇒ ν R 1

dw(0)

dA
− dw(∞)

dA
R 0 ⇐⇒ ν R 1

On impact, relative to the initial position under the old technology, the labor effect is
ambiguous. The reason is the same as the ambiguity in the long run (competing income
and substitution effects). However, if we look at the difference between the impact and
long-run effect, this depends on whether there is an increasing or decreasing MPL at

27From (46), − Ω̃
Γ−rN0 = B̃−B0− Ω̃

Γ−r Ñ thus the term − Ω̃
Γ−rN0 is the present value of the bonds that

would have been decumulated/accumulated if Ñ = 0.
28The approximation arises from assuming we begin close to steady-state N0 − Ñ → 0. From (46)

removes the effect of the eigenvalue responding to Ñ .
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the firm level. We can thus get undershooting of employment (ν < 1) or overshooting
(ν > 1) on impact relative to the new long-run level depending on whether entry increases
or decreases the marginal product. The intuition for the result is that timing differences
between firms adjusting and aggregate labor adjusting cause variation in labor per firm
which affects its efficiency at the firm-level due to non-constant returns. When there
are increasing returns to labor, subsequent firm entry always decreases the efficiency at
which labor is employed which means aggregate hours converge downwards towards their
long-run level. The opposite holds when there are decreasing returns to labor at the firm
level: an additional firm employs labor more productively so as entry takes places wages
and hours increase to their new long-run level.

Table 1 summarizes the combination of static (Proposition 4) and dynamic effects
(Proposition 5) on labor. Rows capture the static effect that labor might in the long-run
increase, decrease or remain constant depending on initial wealth. Columns capture the
dynamic effect that labor might initially overshoot, undershoot or equate to its long-run
level.

ν > 1 ν < 1 ν = 1

B0 >
Ω̃

Γ−rN0 Increase, Overshoot Increase, Undershoot Increase, Constant
B0 <

Ω̃
Γ−rN0 Decrease, Overshoot Decrease, Undershoot Decrease, Constant

B0 = Ω̃
Γ−rN0 Constant, Overshoot Constant, Undershoot Constant, Constant

Table 1: Conditions for Taxonomy of Labor Dynamics

4.3 Empirical Evidence

In the theoretical model we derived the result that the short-run response of labor de-
pends on whether the marginal product of labor is increasing or decreasing. In most
models of entry, such as Bilbiie, Ghironi, and Melitz 2012, there is a constant marginal
product of labor, so that there is no short-run impact on labor. Chang and Hong 2006
conduct an SVAR analysis of labor responses to technology shocks across US manufac-
turing industries. They show that of their 2-digit industry estimates, 14 industries show
a positive response (4 significant) while 6 industries show a negative response (1 signif-
icant).29 Additionally they provide estimates of returns to scale using the methodology
of Basu, Fernald, and Kimball 2006 (BFK). The BFK methodology is to run a log-linear
regression of output on inputs with a common coefficient γBFK on capital and employ-
ment for each industry, with an additional coefficient β on hours per worker.30 We add
the BFK superscript to distinguish their gamma parameter from our usage of γ as the

29Instruments and Non-electornic are zero at 3 decimal places but positive with greater precision.
Statistical significance is at the 10% level. Misc are significant with greater precision than reported in
Table 2: SRR

SD = 0.01626/0.0098 = 1.6492 > tcrit. = 1.6449.
30See Basu, Fernald, and Kimball 2006 equation 18, p. 1424.
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congestion parameter. The coefficient γBFK is interpreted as returns to scale which is
reported by Chang and Hong (Table 5) for their dataset. In terms of our model, in which
there is only labor, we can interpret the increasing or decreasing marginal product of la-
bor ν R 1 either as the coefficient γBFK (i.e. interpreting labor input as employment) or
as the sum of the coefficients γBFK and β (i.e. the coefficient on total hours, the product
of employment and hours-per-worker). Chang and Hong (Table 5) provide estimates of
γBFK for 20 two-digit industries (ten durables and ten non-durables) plus an estimate of
β for durables βD = 0.17 and non-durables βND = 0.76 (β is assumed constant across
industries within each sector). Our theory predicts a positive relationship between labor
returns to scale (ν) and short run responses (SRR) of labor to technology shocks that
is supported by their evidence. In Table 2 the SRR of labor for 2-digit industries, and
standard deviations, are taken directly from Chang and Hong replication files, while the
labor returns to scale are proxied by the returns to scale reported in their table 5. Our
main result is the levels prediction that short-run responses are positive with increasing
returns to labor ν > 1 and negative with decreasing returns to labor ν < 1. The results
show that 14 of 20 industries respond the way we would expect,31 and of the 5 significant
(asterisk) responses reported by Chang and Hong all but textile conform to our theory.32

Chang and Hong find that there are increasing returns in the majority of industries
(14 out of 20) in terms of γBFK. Estimates of β are both positive: if we combine β with
γBFK, all of the industries have increasing returns so that all of the sectors with a negative
or zero short-run impact are inconsistent with our theory: this is 7 industries, meaning
13 are theory consistent. Hence, Chang and Hong’s results are broadly supportive of our
theoretical result: 13 or 14 of the industries are consistent with our results whether we
use γBFK or γBFK + β as our measure of ν.

31This includes Instruments which has no short-run response and is the closest estimate to constant
returns.

32In the appendix we report the results as a scatter plot.
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SIC Industry RTS SRR SD
23 Apparel 1.24 0.012 0.009
28 Chemicals 1.52 -0.004 0.004
36 Electronic 1.53 -0.009 0.012
34 Fab. Metal 1.29 0.024 0.090
20 Food 0.38 0.001 0.003
25 Furniture 1.18 0.021 0.009*
38 Instruments 0.97 0.000 0.011
31 Leather 0.39 -0.002 0.012
24 Lumber 0.92 -0.028 0.011*
33 Metal 1.29 0.012 0.017
39 Misc 1.41 0.016 0.010*
35 Non-electronic 1.67 0.000 0.013
26 Paper 1.48 0.001 0.008
29 Petrol 0.53 -0.004 0.007
27 Printing 1.49 -0.001 0.008
30 Rubber 1.15 0.022 0.010*
32 Stone 1.36 0.009 0.008
22 Textile 0.86 0.017 0.006*
21 Tobacco 1.08 0.005 0.006
37 Transport 1.12 0.018 0.013

Table 2: Chang and Hong 2006 Results Comparison

5 Entry Regulation Shock

We interpret γ in the cost of entry equation (15) as red tape. When red tape increases firm
entry costs become more sensitive to the flow of entry. For example, if a resource needed
to setup a firm is in inelastic supply, like a government office that provides certificates
to enter an industry, then a rise in red tape amplifies congestion. This makes entry
more costly, and a firm may wait until a less congested period to attain certification. A
‘deregulatory’ policy decreases γ.33 Data reported in Figure 1 indicate that red tape,
proxied by procedures to start a business, is positively related to the length of time it
takes to start a firm which proxies pace of business formation.34

33We adopt the term deregulatory shock following Bilbiie, Ghironi, and Melitz 2007 and authors who
interpret entry costs as influenced by regulation (Blanchard and Giavazzi 2003; Poschke 2010; Barseghyan
and DiCecio 2011). Whereas these focus on differences in fixed exogenous sunk costs and changes in
the steady-state stock of operating firms, our interest is endogenous sunk costs and changes in speed of
adjustment of firms.

34Figure 1 represents 2016 World Bank Doing Business data for 211 countries. Venezuela is the 20
procedures 230 days outlier. New Zealand is the 0.5 days 1 procedure point. Ebell and Haefke 2009
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Figure 1: Red Tape and Business Churn

Proposition 6. The economy’s speed of adjustment is monotonically decreasing in reg-
ulation of business creation.

The magnitude of the stable root captures the economy’s speed of adjustment, as it
dictates the speed of adjustment of the sole state variable (number of firms) through the
exponential term of (41). Taking the derivative of the stable root, which is negative, with
respect to the regulatory parameter gives35

Γγ = Γ∆∆γ =
∆γ

(r2 − 4∆)
1
2

=
−∆

γ(r2 − 4∆)
1
2

> 0 (50)

The stable root is increasing in the discriminant and the discriminant ∆γ = −∆
γ

is
increasing in the regulatory parameter. Therefore an increase in regulation, increases the
the value of the negative root moving it closer to zero and implying slower adjustment.
The result implies that economies with less red tape recover faster following a shock. In
the context of labor responses to technology shocks, it implies that labor achieves its new
steady state faster. The implication that less red tape, helps business churn and aids the
dissipation of shocks supports recent policy work and academic literature.36

6 Quantitative Exercise

The assumption of an SOE facilitated an explicit analytical solution, at the cost of leaving
out capital and assuming an exogenous world interest rate. Focusing on only labor input

report similar trends in number of procedures and days to start-up for OECD data.
35This result is for a given steady-state Ñ(λ̄)) as γ will also affect Ñ through λ̄.
36See The Case for Fiscal Policy to Support Structural Reforms (IMF, 2017) Cacciatore, Duval, et al.

2016a; Cacciatore, Duval, et al. 2016b.
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kept our model close to the original framework of Gali 1999, and subsequent work that
has adhered to this restriction (Mandelman and Zanetti 2014). In this section, we show
that with capital and an endogenous interest rate the results will still stand. We use
a discrete-time, closed-economy RBC framework which shares our key assumption of
sluggish firm entry costs due to congestion and allows for an increasing or decreasing
MPL.37

The production function of the firm with capital is y = Akαhβ − φ, which implies the
slope of the firm-level marginal cost curve is ν = α+β. For ν = α+β > 1 it is downward
sloping, and, as in our theoretical SOE model, the markup and Frisch elasticity provide a
limit to the extent of increasing return consistent with existence. Our experiments analyze
the effect of changing β on short-run hours responses, holding other variables constant
at their calibrated levels. Figure 2 shows labor hours transition over t for different values
of β in response to a permanent 1% technology shock. Changes in β for a given value
of α represent changes in the slope of the marginal cost curve ν due to a change in the
slope of the MPL. We vary β from 0.2 to 1.1, which shows that for low values of β (0.2 to
0.4) the initial (t = 0) short-run response is negative, but the SRR is positive for larger
values of β. Additionally, the increase of SRR with β (or ν) is monotonic as our theory
predicts (Figure 3 stresses this point). When there is a negative SRR it is followed by
overshooting of hours and a return to the long run from above – this dynamic is noted
in the empirical evidence of Basu, Fernald, and Kimball 2006.
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Figure 2: Hours Transition Paths as β Changes
37The full model and calibration are given in supplementary Appendix C.
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Figure 3 shows the t = 0 short-run hours response on the y-axis for a range of β values
on the x-axis. Crucially it shows how these responses differ according to degree of entry
adjustment costs (γ is the entry adjustment parameter). This illustrates the importance
of dynamic firm entry for the result. When there is instantaneous adjustment of firms
γ = 0, SRR are always positive. They only become negative when entry sluggishness
increases.
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Figure 3: Short-run Response at t = 0 of Hours as β Changes

7 Conclusion

This paper studies the effect of dynamic entry on short-run labor responses to technology
shocks. The main insight is that if firm entry is slow to react, then the response of
labor to technology shocks will depend on whether labor is employed with decreasing,
increasing or constant returns to scale at the firm level. Furthermore the persistence of
these deviations will depend on the level of regulation and consequently on the pace of
firms’ adjustment.

Our core analysis provides an analytically tractable small open economy model with-
out capital. This provides a clear, micro-founded mechanism which is novel relative to
the predominantly reduced-form debate. However, we also extend our model to a more
complex quantitative setting and the results remain significant. Hence we conclude that
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the assumption of a constant marginal product of labor – adopted by much of the liter-
ature – may be excessively restrictive. Several empirical studies verify heterogeneity in
labor returns to scale across industries, and we match these to short-run responses.

The intuition for our result relies on variations in labor at the firm level which affects
the efficiency at which it is employed. Therefore other mechanisms, aside from firm
entry, that cause variation in employment at the firm level may lead to similar dynamics
when teamed with non constant returns to labor. Further research may investigate this
channel by looking at sluggish labor adjustment from search frictions as in related papers
by Mandelman and Zanetti 2014; Cacciatore and Fiori 2016.
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A Main Appendix

A.1 Jacobian

The Jacobian matrix of the 3-dimensional system is as follows where elements are evalu-
ated at steady state:

J =

 0 dṄ
dq

0
dq̇
dN

dq̇
dq

0
dḂ
dN

dḂ
dq

dḂ
dB


∣∣∣∣∣∣∣
·̃

=


0 1

γ
0

− d̃π
dN

r 0
d̃Y
dN

− d̃C
dq

r

 (51)

where

d̃C
dq

=
q̃

γ
(52)

d̃π

dN
=
π̃ + φ

Ñ(λ̄)

(
−ην

1− ν + η

)
(53)

d̃Y

dN
= Ah̃ν

(
1 + ν

(
1− h̃
h̃

))
− φ (54)

where q̃ = π̃ = 0 (from (31) and (32)) and (33) gives h̃ as a function of exogenous param-
eters, but Ñ(λ̄) depends on endogenously determined steady-state consumption index
given in (36). In the results that follow, the trace, determinant, eigenvalue relationships
are useful

∆ = ΓΓU (55)

r = Γ + ΓU (56)

∆ = Γ(r − Γ) (57)

(r2 − 4∆)
1
2 = r − 2Γ (58)

Proof of Lemma 3. The determinant of the entry subsystem det(B) = ∆(Ñ(λ̄)) is in-
creasing in λ̄.

∆λ = ∆NÑλ = −∆

Ñ
· Ñ
ηλ̄

= −∆

ηλ̄
> 0 (59)

The stable root is increasing in the determinant

Γ∆ = −r
2

(
1

2

(
1− 4∆

r2

)−1
2

· −4

r2

)
(60)

=
1

(r2 − 4∆)
1
2

=
1

r − 2Γ
> 0 (61)
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and therefore increasing in the number of firms

dΓ

dÑ
= Γ∆∆N =

Γ(Γ− r)
r − 2Γ

1

Ñ
> 0 (62)

Therefore the stable root is increasing in λ̄

Γλ̄ = Γ∆∆λ = Γ∆∆ÑÑλ > 0 (63)

This can be written

Γλ̄ = − ∆

ηλ̄(r2 − 4∆)
1
2

=
1

ηλ̄

Γ(Γ− r)
r − 2Γ

> 0

A.2 Steady-state Proofs

Proof of Proposition 3.

Ω̃ =

(
εHN − 1 +

1

µ

)
YH h̃

Ω̃ = ν
φ

1− ν
µ

(
εHN − 1 +

1

µ

)
=

νφµ

µ− ν

(
1

µ
− η

1− ν + η

)
sgn Ω̃ = sgn

[
εHN −

(
µ− 1

µ

)]
where sgn εHN = sgn(1− ν) since εHN = 1−ν

1−ν+η
from (28).

Repeating the steady-state bond condition here

B̃(λ̄, A) = B0 −
Ω̃

Γ(Ñ(λ̄))− r
(N0 − Ñ(λ̄)) (46)

The total derivative of steady-state bonds with respect to inverse consumption is

dB̃

dλ̄
= −Ω̃

d
(
N0−Ñ(λ̄)

Γ(N(λ̄))−r

)
dλ̄

 = Ω̃

[
(Γ(λ̄)− r)dÑ

dλ̄
+ [N0 − Ñ(λ̄)]dΓ(Ñ)

dλ̄

(Γ(λ̄)− r)2

]
(64)

The response of steady-state bonds to inverse consumption λ̄ is ambiguous because both
Ω̃ and [N0 − Ñ(λ̄)] are ambiguously signed. Since this model is path-dependent (steady-
state depends on initial conditions Ñ(λ̄, N0) due to (46)), we cannot evaluate at N0 = Ñ ,
which removes the changing eigenvalue effect (see Caputo 2005, p. 475-477 for this
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common approach).38 Instead we follow Turnovsky 1997, p.68 (footnote 8) and assume
this component [N0 − Ñ ] is small, which – to a linear approximation – removes the
changing eigenvalue effect.

Lemma 5. The effect of a change in the consumption index on bonds is

dB̃

dλ̄
=

Ω̃

Γ(Ñ(λ̄))− r

[
Γ

r − 2Γ

(
r

Γ
− 3 +

N0

Ñ

)]
Ñ

λ̄η
(65)

Proof. From (46) a change in consumption index only affects steady-state bonds indirectly
through its effect on steady-state stock of firms

dB̃

dλ̄
=
dB̃

dÑ

dÑ

dλ̄
(66)

Then steady-state stock of firms affects bonds directly ∂B̃
∂Ñ

through Ñ and indirectly dB̃
dΓ

dΓ
dÑ

through the eigenvalue Γ(Ñ(λ̄)):

dB̃

dÑ
=
∂B̃

∂Ñ
+
dB̃

dΓ

dΓ

dÑ
=

Ω̃

Γ(Ñ(λ̄))− r

[
1 +

(
N0 − Ñ(λ̄)

Γ(Ñ(λ̄))− r

)
dΓ

dÑ

]
(67)

Therefore the effect of a change in consumption index on bonds through eigenvalues is
an indirect-indirect effect.

dB̃

dλ̄
=
dB̃

dÑ

dÑ

dλ̄
=

(
∂B̃

∂Ñ
+
dB̃

dΓ

dΓ

dÑ

)
dÑ

dλ̄
(68)

=
Ω̃

Γ(Ñ(λ̄))− r

[
1 +

(
N0 − Ñ(λ̄)

Γ(Ñ(λ̄))− r

)
dΓ

dÑ

]
dÑ

dλ̄
(69)

Using (62) the term in square brackets simplifies

dB̃

dλ̄
=

Ω̃

Γ(Ñ(λ̄))− r

[
Γ

r − 2Γ

(
r

Γ
− 3 +

N0

Ñ

)]
dÑ

dλ̄
(70)

Therefore substituting in (91) gives (65).

Corollary 2. If N0

Ñ(λ̄)
< 3− r

Γ
then

sgn
dB̃

dλ̄
= − sgn Ω̃ (71)

Proof. From (65) this result ensures the term in curled parenthesis is negative.
38Attempting this approach here introduces another fixed point problem since changing N0 to equal

Ñ will in turn change Ñ due to path-dependency.
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Hence a sufficient condition is N0

Ñ
< 3, which allows for both entry and exit −Ñ <

N0 − Ñ < 2Ñ . The economic interpretation is that the initial stock of firms (market
size) is greater than zero and less than three times the steady-state stock of firms. This is
more general than the (commonly assumed) stronger condition that the initial condition
is arbitrarily close to steady state N0

Ñ
→ 1. This condition simply ensures we ignore the

changing eigenvalue effect.

Corollary 3. If [N0 − Ñ(λ̄)]→ 0 then

sgn
dB̃

dλ̄
= − sgn Ω̃ (72)

Proof. From (67) as N0 − Ñ(λ̄)→ 0

dB̃

dÑ
≈ ∂B̃

∂Ñ
=

Ω̃

Γ(Ñ(λ̄))− r
(73)

dB̃

dλ̄
≈ ∂B̃

∂Ñ

dÑ

dλ̄
=

Ω̃

Γ(Ñ(λ̄))− r
Ñ

λ̄η
(74)

Lemma 6 (Steady-state Existence). There exists at least one λ̄ that solves the steady-
state market clearing condition

w̃H̃(λ̄) + rB̃(λ̄)− C̄(λ̄) = 0 (47)

Proof of Lemma 6. We use the intermediate-value theorem. Split the steady-state excess
demand function into two functions: an income function f(λ̄) = w̃H̃(λ̄) + rB(λ̄) and an
expenditure function g(λ̄) = C(λ̄), so we have f(λ̄) − g(λ̄) = 0. Analyze the functions
for the limits of λ̄. Existence follows from the functional forms for H(λ̄, A) = (λ̄w)

1
η and

C(λ̄) = 1
λ
. Also that B̃ is bounded in (46) since Ñ is bounded as it is proportional to

H̃, which lies in [0, 1]. limλ→0H = 0 and limλ→0C =∞ so expenditure exceeds income.
limλ→∞H = 1 and limλ→∞C = 0, so income exceeds expenditure. Hence for at least one
intermediate value of λ (47) is satisfied.

Proof of Lemma 4. We aim to show that the steady-state market clearing condition is
increasing in λ̄

w̃
dH̃

dλ
+ r

dB̃

dλ̄
− dC̃

dλ̄
> 0 (48)

Since dC̃
dλ̄

< 0, a sufficient condition is to show that w̃ dH̃
dλ

+ r dB̃
dλ̄

> 0. That is, we show
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that the positive labor effect always dominates the (potentially) negative bond effect.

w̃
dH̃

dλ̄
+ r

dB̃

dλ̄
=
ỸH
µ

dH̃

dλ̄
+ rΩ̃

[
(Γ− r)dÑ

dλ̄
+ [N0 − Ñ ]dΓ

dλ̄

(Γ− r)2

]
(75)

Substitute Ω̃ =
(
εHN − 1 + 1

µ

)
ỸH h̃ and dÑ

dλ̄
= dH̃

dλ̄
1
h̃

=

[
YH
µ

dH̃

dλ̄
(Γ− r) + r

(
εHN − 1 +

1

µ

)
YH

dH̃

dλ̄

+
r
(
εHN − 1 + 1

µ

)
YH h̃(N0 − Ñ)

Γ− r
dΓ

dλ̄

 1

Γ− r
(76)

=

[
1

µ
(Γ− r) + r

(
εHN − 1 +

1

µ

)

+
r
(
εHN − 1 + 1

µ

)
h̃(N0 − Ñ)

(Γ− r)dH̃
dλ̄

dΓ

dλ̄

 YH dH̃
dλ̄

Γ− r
(77)

Cancel r
µ
and use that dH̃

dλ̄
= dÑ

dλ̄
h̃

=

 1

µ
Γ + r (εHN − 1) +

r
(
εHN − 1 + 1

µ

)
(N0 − Ñ)

Γ− r

dΓ
dλ̄

dÑ
dλ̄

 YH dH̃
dλ̄

Γ− r
(78)

Remembering εHN − 1 < 0, the first two terms are negative and the third term (the
changing eigenvalue term dΓ

dλ̄
) is ambiguous. As with signing B̃λ̄, a sufficient condition to

remove the problematic changing eigenvalue term is N0 − Ñ → 0. Although a weaker,
but messier, sufficient condition is:(

εHN − 1 +
1

µ

)(
N0

Ñ
− 1

)
Γ

r − 2Γ
≤ −

(
Γ

rµ
+ εHN − 1

)
(79)(

εHN − 1 +
1

µ

)(
N0

Ñ
− 1

)
≥ −

(
εHN − 1

Γ
+

1

rµ

)
(r − 2Γ) (80)

The right-hand side is negative so this condition always holds if there is entry N0 < Ñ

and εHN −1+ 1
µ
< 0 implying Ω̃ < 0. Or if there is exit N0 > Ñ and and εHN −1+ 1

µ
> 0

implying Ω̃ > 0.
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A.3 Dynamics

Rather than defining steady-state as a function of h̃(A), w̃(A) as in (36) and (37), since
both depend on A and we are investigating changes in A it is useful substitute out.
Repeating B̃, expressing dependence on A, is also useful. A only affects B̃ through Ñ ,
which it affects directly and indirectly: Ñ(A, λ̄(A)) via (81).

Ñ(λ̄, A) =

(
λ̄
ν

µ

) 1
η

A
1+η
νη

(
µ− ν
µφ

) 1−ν+η
νη

(81)

H̃(λ̄, A) = h̃(A)Ñ(λ̄, A) =

(
λ̄
ν

µ

) 1
η

A
1
νη

(
µ− ν
µφ

) 1−ν
νη

(82)

B̃(Ñ(A, λ̄(A))) = B0 −
Ω̃

Γ(Ñ(A, λ̄(A)))− r
(N0 − Ñ(Ñ(A, λ̄(A))) (46)

Technology change has a direct (partial) and an indirect (consumption) effect on the
core endogenous model variables

dX

dA
=
∂X

∂A
+
dX

dλ̄

dλ̄

dA
, X ∈ {C̄, Ñ , B̃} (83)

The direct (partial) effects of A holding λ̄ constant are simple to calculate. There is no
partial effect on consumption, only an indirect effect.

∂C̄

∂A
= 0 (84)

∂Ñ

∂A
=

(1 + η)Ñ

νηA
> 0 (85)

∂B̃

∂A
≈ Ω̃

Γ− r
∂Ñ

∂A
R 0 =⇒ sgn

∂B̃

∂A
= sgn−Ω̃ (86)

∂H̃

∂A
=

H̃

νAη
> 0 (87)

From the steady state market clearing condition (47), we can use the implicit function the-
orem to infer that technology decreases the marginal utility of consumption and therfore
increase consumption (since through (6) consumption and marginal utility are inversely
related).

Proposition 7 (Technology Effect on Steady-state Consumption).

dλ̄

dA
< 0 (88)

dC̄

dA
=
dC̄

dλ̄

dλ̄

dA
> 0 (89)

dC̄

dλ̄
= − 1

λ̄2
< 0 (90)
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Therefore an increase in technology increases consumption (decreases marginal util-
ity), which, from (36) and (37), will have an indirect effect of decreasing numbers of firms
and labor. This is because consumption crowds out investment in firms.

dÑ

dλ̄
=
Ñ

ηλ̄
> 0 (91)

dB̃

dλ̄
=
dB̃

dÑ

dÑ

dλ̄
≈ Ω̃

Γ− r
dÑ

dλ̄
=⇒ sgn

dB̃

dλ̄
= − sgn Ω̃ (92)

dH̃

dλ̄
= h̃

dÑ

dλ̄
=
H̃

ηλ̄
> 0 (93)

Proof of Proposition 7. The total derivative of (47) with respect to technology is

dw̃

dA
H̃ + w̃

(
∂H̃

∂A
+
dH̃

dλ̄

dλ̄

dA

)
+ r

(
∂B̃

∂A
+
dB̃

dλ̄

dλ̄

dA

)
− dC

dλ̄

dλ̄

dA
= 0 (94)

Therefore

dλ̄

dA
= −

dw̃
dA
H̃ + w̃ ∂H̃

∂A
+ r ∂B̃

∂A

w̃ dH̃
dλ̄

+ r dB̃
dλ̄
− dC

dλ̄

< 0 (95)

The denominator is positive under sufficient condition (49) or stronger sufficient condition
N0 − Ñ → 0. Let’s focus on the numerator

dw̃

dA
H̃ + w̃

∂H̃

∂A
+ r

∂B̃

∂A
(96)

which appears to be ambiguous. We shall show it is positive implying (95) is negative.

dw̃

dA
H̃ + w̃

∂H̃

∂A
+ r

∂B̃

∂A
(97)

=
w̃

νA
H̃ + w̃

H̃

νAη
+ r

Ω̃

Γ− r
(1 + η)Ñ

νηA
=

1 + η

νA

[
w̃H̃

(1 + η)
+

w̃H̃

(1 + η)η
+ r

Ω̃

Γ− r
Ñ

η

]
(98)

=
1 + η

νA

[
w̃H̃

η
+ r

Ω̃

Γ− r
Ñ

η

]
=

1 + η

νA

[
ỸH
µ
H̃

η
+ r

Ω̃

Γ− r
Ñ

η

]
(99)
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Substitute Ω̃ = (εHN − 1 + 1
µ
)ỸH

H̃
Ñ

=
1 + η

νA

[
ỸH
µ
H̃

η
+ r

(εHN − 1 + 1
µ
)ỸH

H̃
Ñ

Γ− r
Ñ

η

]
=

(1 + η)ỸHH̃

νAη

[
1

µ
+ r

(εHN − 1 + 1
µ
)

Γ− r

]
(100)

=
(1 + η)ỸHH̃

νAη

1

(Γ− r)

[
Γ

µ
+ r(εHN − 1)

]
=

(1 + η)Ñ(ỹ + φ)

Aη

1

(Γ− r)

[
Γ

µ
+ r(εHN − 1)

]
> 0

(101)

Using H̃
ηλ̄

= dH̃
dλ̄

we can show

=
(1 + η)λ̄

νA

ỸH
dH̃
dλ̄

(Γ− r)

[
Γ

µ
+ r(εHN − 1)

]
(102)

Substitute (78) (ignore changing eigenvalue effect)

=
(1 + η)λ̄

νA

(
w̃
dH̃

dλ̄
+ r

dB̃

dλ̄

)
> 0 (103)

Therefore

dλ̄

dA
= −

dw̃
dA
H̃ + w̃ ∂H̃

∂A
+ r ∂B̃

∂A

w̃ dH̃
dλ̄

+ r dB̃
dλ̄
− dC

dλ̄

= −(1 + η)λ̄

νA

(
w̃ dH̃

dλ̄
+ r dB̃

dλ̄

w̃ dH̃
dλ̄

+ r dB̃
dλ̄
− dC

dλ̄

)
< 0 (104)

Proof of Proposition 4.
Firms

dÑ

dA
=
∂Ñ

∂A
+
dÑ

dλ̄

dλ̄

dA
(105)

=
(1 + η)

νηA
Ñ − Ñ

λ̄η

[
(1 + η)λ̄

νA

(
w̃ dH̃

dλ̄
+ r dB̃

dλ̄

w̃ dH̃
dλ̄

+ r dB̃
dλ̄
− dC

dλ̄

)]
(106)

=
∂Ñ

∂A

[
1−

w̃ dH̃
dλ̄

+ r dB̃
dλ̄

w̃ dH̃
dλ̄

+ r dB̃
dλ̄
− dC

dλ̄

]
=
∂Ñ

∂A

[
−dC̄

dλ̄

w̃ dH̃
dλ̄

+ r dB̃
dλ̄
− dC

dλ̄

]
> 0 (107)

Bonds

dB̃

dA
=
∂B̃

∂A
+
dB̃

dλ̄

dλ̄

dA
=
dB̃

dÑ

∂Ñ

∂A
+
dB̃

dÑ

dÑ

dλ̄

dλ̄

dA
(108)

=
dB̃

dÑ

[
∂Ñ

∂A
+
dÑ

dλ̄

dλ̄

dA

]
=
dB̃

dÑ

dÑ

dA
(109)
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From (67) if N0 − Ñ → 0 then dB̃
dÑ

= ∂B̃
∂Ñ

+ dB̃
dΓ

dΓ
dÑ

= Ω̃
Γ−r

(
1 + N0−Ñ

Γ−r
dΓ
dÑ

)
≈ Ω̃

Γ−r thus

dB̃

dA
≈ Ω̃

Γ− r
dÑ

dA
R 0 =⇒ sgn

dB̃

dA
= sgn−Ω̃ (110)

Labor

dH̃

dA
=
∂H̃

∂A
+
dH̃

dλ̄

dλ̄

dA
=

H̃

νAη
+
H̃

νλ̄

dλ̄

dA
=
∂H̃

∂A

[
1 +

νA

λ̄

dλ̄

dA

]
(111)

Substitute out (104)

=
∂H̃

∂A

1−
(1 + η)

(
w̃ dH̃

dλ̄
+ r dB̃

dλ̄

)
w̃ dH̃

dλ̄
+ r dB̃

dλ̄
− dC̄

dλ̄

 (112)

=
∂H̃
∂A

w̃ dH̃
dλ̄

+ r dB̃
dλ̄
− dC̄

dλ̄

(
−η

(
w̃
dH̃

dλ̄
+ r

dB̃

dλ̄

)
− dC̄

dλ̄

)
(113)

Substitute out dH̃
dλ̄

= H̃
λ̄η
, dB̃
dλ̄
≈ Ω̃

Γ−r
dÑ
dλ̄

and dC̄
dλ̄

= − 1
λ̄2

= − C̄
λ̄

=
∂H̃
∂A

w̃ dH̃
dλ̄

+ r dB̃
dλ̄
− dC̄

dλ̄

1

λ̄

(
C̄ − w̃H̃ − r Ω̃

Γ− r
Ñ

)
(114)

In steady state C̃ − w̃H̃ = rB̃

dH̃

dA
=

∂H̃
∂A

w̃ dH̃
dλ̄

+ r dB̃
dλ̄
− dC̄

dλ̄

1

λ̄

(
rB̃ − r Ω̃

Γ− r
Ñ

)

From (46) B̃ − Ω̃
Γ−r Ñ = B0 − Ω̃

Γ−rN0

dH̃

dA
=

∂H̃
∂A

w̃ dH̃
dλ̄

+ r dB̃
dλ̄
− dC̄

dλ̄

r

λ̄

(
B0 −

Ω̃

Γ− r
N0

)

Proof of Proposition 5.
Labor Totally differentiating H = H(λ̄, N,A) keeping N fixed yields.

dH(0)

dA
=
dH

dλ̄

dλ̄

dA
+
∂H

∂A
(115)

= −∂H
∂A

[
(1− ν + η)(w dH

dλ̄
+ r dB

dλ̄
)− ν dC

dλ̄
)

ν
(
w dH

dλ̄
+ r dB

dλ̄
− dC

dλ̄

) ]
(116)

As in the long-run case, the income and substitution effects of a technological improve-
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ment work in opposite directions. The difference between the long-run and impact mul-
tiplier is accounted for by the effect of entry, so that

dH(0)

dA
− dH(∞)

dA
=
dH

dN

dN

dA
=
dH

dN

[
∂N

∂A
+
dN

dλ̄

dλ̄

dA

]
(117)

=
dH

dN

∂Ñ

∂A

[
−dC̄

dλ̄

w̃ dH̃
dλ̄

+ r dB̃
dλ̄
− dC

dλ̄

]
(118)

sgn

[
dH(∞)

dA
− dH(0)

dA

]
= sgn HN = sgn [1− ν]

Wages

dw(0)

dA
=

1

µ
YHH

dH(0)

dA
+

w

Aν
(119)

Hence

dw(0)

dA
− dw(∞)

dA
=

1

µ
YHH

dH(0)

dA
(120)

sgn

[
dw(0)

dA
− dw(∞)

dA

]
= sgn [ν − 1] (121)

The difference between the long-run and short run wage effect depends on whether an
increase in employment increases the MPL (ν > 1, YHH > 0), or decreases it (ν < 1,

YHH < 0).
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B Supplementary Appendix I: Extra Results

B.1 Household Optimization

The Hamiltionian and optimality conditions are

Ĥ(t) = U(C,H) + λ(t)[rB + wH + Π− C] (122)

ĤC = 0 : =⇒ UC(C)− λ = 0 (123)

ĤH = 0 : =⇒ UH(H) + λw = 0 (124)

ĤB = ρλ− λ̇ : =⇒ λr = ρλ− λ̇ (125)

Ĥλ = Ḃ : =⇒ Ḃ = rB + wH + Π− C (126)

The presence of a small open economy and international capital markets ρ = r means that
the household can completely smooth its consumption so (125) implies λ̇ = 0. Therefore
marginal utility of wealth is unchanging over time. λ = λ̄ combined with additively
separable preferences uCH = 0 this implies from (123) that consumption is constant and
in a one-one relationship with marginal utility of wealth.39

C̄ = C(λ̄) (127)

This relationship from (123) then implies labor only varies with real wage from (124)

H = H(λ̄, w) = H(C̄, w) (128)

This represents the households labor supply.

B.2 General Equilibrium Effect of Entry on Output

There are two ways to think of the effect of an entrant on aggregate output dY
dN

, and
they offer different intuitions. The first begins with Y = Ny and the second begin with
Y = AN1−νHν −Nφ.

B.2.1

Entry has an ambiguous effect on aggregate output if there are decreasing returns ν < 1

so that εHN > 0. This is because entry strengthens labor supply which can increase
output. Whereas with constant or increasing returns ν ≥ 1 an entrant always decreases

39We could not make the final step from (123) if uCH 6= 0. Imposing additive separability and therefore
constant consumption, we simplify analysis of dynamics as C can be treated as fixed.
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aggregate output.

dY

dN
= y +N

dy

dN
= εHN(1 + η)Ahν − φ (129)

The first equality states that an entrant contributes its own output y but has a business
stealing (Mankiw and Whinston 1986) effect on the output of all other incumbents. In the
appendix we show this business stealing effect is strictly negative N dy

dN
= ν(y+φ)(εHN −

1) < 0. The second equality of states that an entrant has a negative effect by bringing in
an extra fixed cost, but it has another positive, negative or zero effect depending on the
labor elasticity to entry εHN .

dY (N, y(N,H))

dN
=
d[Ny]

dN
= y +N

dy

dN

An entrant always causes ‘business stealing’ from other firms: a fall in output at the firm
level or analogously, by (24), a fall in an each incumbents’ profits.

dy

dN
< 0 (130)

dy

dN
=
d (AN−νHν − φ)

dN
(131)

= −ν (y + φ)

N
+ ν

(y + φ)

H

dH

dN
(132)

= ν
(y + φ)

N
[εHN − 1] < 0 (133)

= YH
h

N
[εHN − 1] (134)

Therefore the aggregate business stealing effect is

N
dy

dN
= ν(y + φ)(εHN − 1) (135)

This also implies the effect on operating profits is negative and less than proportional

dπ

dN
=

(
1− ν

µ

)
dy

dN
< 0 (136)

At the aggregate level it is not clear whether the negative business stealing effect of an
entrant aggregated across all incumbents offsets the positive effect of the new firms’ extra
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output.

dY

dN
=
d(Ny)

dN
(137)

= y +N
dy

dN
(138)

= y + νAhν(εHN − 1) (139)

= Ahν(1− (1− εHN)ν)− φ (140)

=
(1− ν)(1 + η)

1− ν + η
Ahν − φ (141)

= εHN(1 + η)Ahν − φ (142)

The final representation makes clear the crucial effect of returns to scale. It reads that
an entrant has a negative effect by bringing in an extra fixed cost, but it has another
positive negative or zero effect depending on εHN .

B.2.2

The partial derivatives of aggregate output (20) with respect to inputs are:40

∂Y

∂N
= (1− ν)Ahν − φ = y − νAhν =

Y

N
(1− ν (1 + sφ)) R 0 (143)

YH ≡
dY

dH
= Aν(H/N)ν−1 = Aνhν−1 =

Y

H
ν (1 + sφ) > 0 (144)

where sφ ≡ Nφ
Y

is the share of fixed costs in output.41 Since aggregate output is homoge-
neous of degree 1 in inputs

Y =
∂Y

∂N
N + YHH (145)

Substituting this and w = 1
µ
YH into Nπ = Y − wH gives

π = YN +

(
1− 1

µ

)
YH

H

N
(146)

Alternatively use (146), where the first term is the partial derivative effect of an
40Aggregate and firm-level derivatives are equivalent YH = yh.
41The N derivative is partial, as in general equilibrium the total derivative would recognize that a

variation in N affects H, so dY
dN = ∂Y

∂N + dY
dH

dH
dN or εY N = ∂Y

∂N
N
Y + εY HεHN . When there are constant

or increasing returns to labor ν ≥ 1, an entrant always decreases aggregate output due to the fixed cost
it brings in addition to the division of labor across more units where it has a lower productivity. When
ν < 1/(1 + sφ) < 1 aggregate output will increase in response to entry because the decreasing returns
to labor (ν < 1 ) mean that when an entrant divides aggregate labor into smaller units it employs labor
more productively than the incumbents did prior to its entry. This positive effect of output is stronger
than the negative fixed cost effect. Since N is independent of H then the partial and total derivative are
equivalent for dY

dH = ∂Y
∂H .
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entrant which we have explained is ambiguous based on ν, and the second term is the
labor response which is also ambiguous based on ν.

dY (N,H)

dN
=
d[AN1−νHν −Nφ]

dN
=
∂Y

∂N
+ YH

dH

dN
(147)

= π −
(

1− 1

µ

)
YH

H

N
+ YH

dH

dN
(148)

= π −
(

1− 1

µ
− εHN

)
YHh (149)

εY N = sπ −
(

1− 1

µ
− εHN

)
εY H , where sπ =

Nπ

Y
(150)

In terms of profits this can be written dY
dN

= ∂Y
∂N

+ YH
dH
dN

= π −
(

1− 1
µ
− εHN

)
YHh

which is useful when we analyze zero-profit steady state. The first term is the partial
derivative effect of an entrant (143) which we have explained is ambiguous based on ν,
and the second term is the labor response which is also ambiguous based on ν.

Since y and π are in a one-one relationship, the business stealing effect can also be
interpreted as entrants diminishing profits, from (23) dπ

dN
= dy

dN

(
1− ν

µ

)
< 0.

B.2.3 Steady-state Effect of Entry on Aggregate Output

The ambiguity of aggregate output response to entry has a long tradition in welfare
analysis of firm-entry. These discussions are traditionally focused on ‘business stealing’
(Mankiw and Whinston 1986) and variety effects.42 In our framework, ν creates the pos-
sibility that entry increases, decreases or has no effect on aggregate output. This implies
there can be an insufficient, excess or optimal number of firms in steady-state. Optimal
implies the number of firms that maximizes steady-state aggregate output, conditional on
a markup existing. There is no maximum with perfect competition µ = 1, always a lack
of entry due to a positive labor effect and no negative markup (business stealing) effect.
Etro 2009; Etro and Colciago 2010 provide a discussion of ‘golden rule’ number of firms
when there is endogenous imperfect competition, constant returns and love-of-variety.
The golden rule number of firms is that which maximizes consumption and therefore
output in steady-state. They show that imperfect competition causes excessive entry in
steady-state, which our result corroborates (µ > 1 and ν = 1 implies 1− ν < η(µ− 1), so
excess entry). Bilbiie, Ghironi, and Melitz 2019 provide a discussion of the welfare effects
of entry taking transition into account, rather than focusing on steady-state.

The derivation of Ω̃ shows that the outcome depends on whether the negative business
stealing effect −1 < −

(
µ−1
µ

)
≤ 0, µ ∈ [1,∞) dominates the labor elasticity to entry

effect −1 < −η
1−ν+η

< εHN < 1 (the left-hand bound holds with ν → 0 and η →∞), which
may be positive, negative or zero. For a standard calibration, η = 1 and µ = 1.5, the

42A textbook reference is Acemoglu 2009 (Ch. 12).
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condition
Ω̃ R 0 ⇐⇒ 1− ν R η(µ− 1)

becomes Ω̃ R 0 ⇐⇒ 0.5 R ν.
Excess Entry Ω̃ < 0: If there are constant ν = 1 or increasing ν > 1 returns to labor,

εHN ≤ 0, then the fall in labor reinforces the negative business stealing effect, so there is
unambiguously a negative effect of entrants on aggregate output in steady state. This is
a sufficient condition but is not necessary, providing the business stealing effect is large
enough it can override even a positive labor elasticity effect that arises with decreasing
returns ν < 1.

1. Example: Positive labor elasticity effect, dominated by negative business stealing
effect ν = 0.9, η = 1 therefore εHN = 0.09 with µ = 1.15 business stealing is −0.13.

2. Constant Returns Special Case ν = 1: The labor effect is zero, so only the negative
business stealing effect is present. The smaller the markup µ → 1 the smaller
the negative business stealing effect. But it cannot equal 1 due to the existence
condition ν < µ.

With large markups this outcome is likely. With less divisible labor η → 0 this outcome
is more likely.

Lack of Entry Ω̃ > 0: If there are decreasing returns ν < 1 then 0 < εHN < 1

and the boost in labor from entry works against the negative business stealing effect, so
there can be too little entry if this positive effect dominates the negative business stealing
effect. εHN > 0, hence ν < 1, is necessary but not sufficient, sufficiency requires it is
positive and larger than the negative business stealing effect.

1. Example: Positive labor elasticity effect dominates negative business stealing effect
ν = 0.9, η = 1 therefore εHN = 0.09 with µ = 1.05 business stealing is −0.05.

2. Perfect Competition Special Case µ = 1, ν < 1, Ω̃ > 0: There is no negative business
stealing effect, and the the existence condition ν < µ enforces decreasing returns.
Therefore entry always has a positive effect, implying lack of entry in steady state
in the Walrasian (perfect competition) economy.

Optimal Entry Ω̃ = 0: A necessary condition is that the ambiguous labor elasticity
effect is positive εHN > 0, so it can counterbalance the negative business stealing effect.
Therefore a necessary condition is decreasing returns ν < 1.

1. Example: ν = 0.9, η = 1, µ = 1.1

44



B.3 Bonds

The dynamic equation (29c) is a first-order, linear, nonhomogeneous ordinary differential
equation in B. Rewrite in standard form

Ḃ − rB = Y − q2

2γ
− C (151)

Multiply by the integrating factor e−rt

e−rtḂ − re−rtB = e−rt
[
Y − q2

2γ
− C

]
(152)

The left-hand side is the result of a product rule differentiation, hence integrating yields

e−rtB = κ+

∫ ∞
0

e−rt
[
Y − q2

2γ
− C

]
dt (153)

To find the constant of integration κ, evaluate at t = 0 and use the initial condition
B(0) = B0

B(0) = κ = B0 (154)

Substitute this back in (153), then evaluate at t → ∞. Use the transversality condition
(8) which makes the left-hand side zero as λ = λ̄. Therefore

0 = B0 +

∫ ∞
0

e−rt
[
Y − q2

2γ
− C−

]
dt (43)

B.4 Firm Problem

B.4.1 Final Good Profit Maximization

The final goods producer maximizes profits taking all prices as given. That is, it operates
as a price-taker because of perfect competition:

max
yi

PY −
∫ N

0

piyi di (155)

subject to

Y = N ς− θ
θ−1

[∫ N

0

y
(θ−1)/θ
i di

]θ/(θ−1)

(156)

where pi is the price of firm i’s product and P is the aggregate price level. The N ς

multiplier captures any variety effect. We assume ς = 1 so no variety effect which
implies an increase in the range of intermediates does not affect the unit cost function.
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A common case (following Dixit and Stiglitz 1977) is ς = θ
θ−1

which leads to a variety
effect. We remove the variety effect because it will create an additional mechanism
adding to the main result that we want to distill. Without removing love of variety, N
will enter the labor market equilibrium condition, even with constant returns to scale.
The corresponding aggregate price index is

P = N−(ς− θ
θ−1)

(∫ N

0

p1−θ
i di

) 1
1−θ

At symmetry P = N1−ςp, variety effects (e.g. the Dixit-Stiglitz case ς = σ
σ−1

) cause
an increase in the number of firms to decrease the aggregate price index as there are
efficiency gains. Substituting (156) into (155) and taking the first-order condition yields
the constant elasticity demand for each product

yi =
(pi
P

)−θ Y

N ς(1−θ)+θ (157)

Rearranged for inverse demand, this gives:

pi
P

=

(
Y

N ς(1−θ)+θyi

) 1
θ

(158)

B.4.2 Firm-level Production Function

When ν < 1, φ > 0 there is a U-shaped average cost curve with increasing marginal cost.
This is compatible with both perfect and imperfect competition. When ν = 1, φ = 0,
there are constant returns to scale: AC = MC. When ν = 1, φ > 0, there is a constant
MC and decreasing AC. When ν > 1 there is decreasing AC and MC. The extent of
increasing returns to labor ν > 1 is limited by the degree of imperfect competition. In
the two cases with globally increasing returns to scale, equilibrium can only exist with
imperfect competition. Expressed as elasticities the MPL and its slope are:

εyh ≡ yh
h

y
= ν (1 + sφ) (159)

εyhh ≡ yhh
h

yh
= ν − 1 (160)
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The fixed cost implies that labor returns to scale ν are not equivalent to overall returns
to scale measured as average cost over marginal cost43

AC

MC
= ν(1 + sφ) (162)

where sφ ≡ φ
y
is the fixed cost share in output.

B.4.3 Firm-level Profit Maximization

An individual firm operates under imperfect competition. It is a price-setter because it
can have some influence on its own price through the inverse demand function

max
h

πi = piyi − Pwhi (163)

s.t.
pi
P

=

(
Y

N ς(1−θ)+θyi

) 1
θ

(158)

yi = Ahνi − φ (12)

where w = W/P is the real wage and W is the nominal wage. Substituting in the
constraints and treating firms as symmetric gives profit as a function of h

π = P

(
Y

N ς(1−θ)+θ

) 1
θ

(Ahν − φ)1− 1
θ − Pwh (164)

The first order condition with respect to h is

πh = P

(
Y

N ς(1−θ)+θ

) 1
θ
(

1− 1

θ

)
(Ahν − φ)−

1
θ · Aνhν−1 − Pw (165)

To find the profit maximizing outcome set πh = 0

πh = P

(
Y

N ς(1−θ)+θy

) 1
θ
(

1− 1

θ

)
· Aνhν−1 − Pw = 0 (166)

43The cost function dual of our production function is TC = MC ν(y+φ). This follows because factor
prices equal their marginal revenue product, in the case for labor w = MR×MPL. An optimizing firm
produces where MR = MC, hence as labor is the sole input TC = wh = MC×MPL×h = MC ν(y+φ).
Multiply by 1

yMC to get AC /MC which captures overall returns to scale. Furthermore, where w is

nominal wage, as labor is the only input, total costs are TC = wh = w
(
y+φ
A

) 1
ν

so that marginal cost is

MC =
w

νA

(
y + φ

A

) 1−ν
ν

=
TC

ν(y + φ)
(161)

and average cost is AC = TC
y which in the U-shaped AC case (ν < 1 and φ > 0) will achieve minimum

at firm scale yMES = νφ
1−ν , the firm’s minimum efficient scale (MES).
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Use the inverse demand definition (158) gives

πh = pi

(
1− 1

θ

)
· Aνhν−1 − Pw = 0 (167)

This gives the optimizing condition that

Pw

pi
=
ν

µ
Ahν−1

i (168)

where µ = θ
θ−1

.
Symmetric Equilibrium: We have P

p
= N1−ς therefore

w = N ς−1 ν

µ

y + φ

h
(169)

which can be rearranged as an expression for profit-maximizing labor demand hi condi-
tional on the wage w. ς = 1 removes variety effects.

Second-order condition for profit maximization

In the increasing returns case ν > 1, the second-order condition for profit maximization is
not always satisfied, so we give a necessary condition for this. However, our later condition
ν < µ is sufficient for this second-order necessary condition to hold. The second-order
condition for a maximum requires πhh < 0

πhh = −1

θ

(πh + w)

y

(y + φ)ν

h
+

(πh + w)(ν − 1)

h
=
πh + w

h

[
ν

(
1− 1

θ
− φ

θy

)
− 1

]
(170)

The term in square brackets provides a necessary and sufficient condition for a maximum

πhh < 0 ⇐⇒ 1− 1 + sφ
θ

<
1

ν
, (171)

where sφ ≡ φ
y
is the fixed cost share in output. The second-order condition for maxi-

mization πhh < 0 is always satisfied when ν ≤ 1. Throughout the paper we impose a
more restrictive assumption that is important for another reason – it is necessary for a
well-defined steady-state. The assumption is that the markup µ ≡ θ

θ−1
exceeds the MPL

slope ν < µ. A by-product of the assumption is that it is sufficient (but not necessary)
for the second-order profit-maximization condition to hold. Rearranging the condition
and using the markup definition show this is the case

1

µ− 1

(
1− µ

ν

)
< sφ (172)
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If we impose ν < µ then the left-hand side is always negative whereas the right-hand side
is always positive. Hence the second-order condition for profit maximization is satisfied.

The ν ≤ µ restriction implies that, for profit maximizing output, MR must intersect
MC from above (the second order condition for profit maximization). A higher degree
of monopoly µ (more differentiated products) implies steeper MR which allows steeper
downward sloping MC (higher ν). Horizontal MC only exists if MR is downward sloping,
so some monopoly power exists. Increasing marginal costs ν < 1 is compatible with any
level of imperfect competition µ ∈ [1,∞) including perfect competition.

B.5 General Equilibrium Labor Behavior

The elasticity εHN = 1−ν
1−ν+η

is less than 1, it approaches 1 in the indivisible labor limit.

lim
η→0

εHN = 1 (173)

lim
η→∞

εHN =

0+ ν < 1

0− ν > 1
(174)

The elasticity of hours to number of firms is constant and bounded. It is bounded by
−η

1−ν+η
< εHN < 1. The upper bound occurs with indivisible labor η → 0. The lower

bound follows from ν < 1 + η so that (working right to left) −η
1−ν+η

< 1−(1+η)
1−ν+η

< 1−ν
1−ν+η

=

εHN . If ν = 1 then εHN = 0. If ν < 1 then 0 < εHN < 1. And if ν > 1 then
−∞ < εHN < 0.

B.6 Extra Figures

Figure 4 plots a scatter of the Chang and Hong results from Table 2. Red triangles
represent the 14 observations that are consistent with our theory.
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Figure 4: Empirical Evidence
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C Supplementary Appendix II: Quantitative Model

This section develops a discrete-time, closed-economy, RBC model with entry and capital
adjustment costs. Entry costs are denominated in output terms.

max
Ct,Ht,It,Et,Kt+1,Nt+1,Bt+1

E0

∞∑
t=0

%tu(Ct, Ht) (175)

subject to (176)

Ct + It + Θ

(
It
Kt

)
Kt + Et + Ψ

(
Et
Nt

)
Nt +Bt+1

≤ πtNt + wtHt +RtKt + (1 + rt)Bt (177)

Kt+1 = It + (1− δK)Kt (178)

Nt+1 = Et + (1− δN)Nt (179)

The model represents a standard closed-economy RBC model with the addition of ad-
justment costs in firm entry.

L = E0

∞∑
t=0

%t
{
u(Ct, Ht) (180)

+ λt

[
πtNt + wtHt +RtKt + (1 + rt)Bt

− Ct − It −Θ

(
It
Kt

)
Kt − Et −Ψ

(
Et
Nt

)
Nt −Bt+1

]
(181)

+ κt[It + (1− δK)Kt −Kt+1] (182)

+$t[Et + (1− δN)Nt −Nt+1]

}
(183)
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We get the following first-order conditions and transversality

∂L
∂Ct

= 0 =⇒ uC = λt (184)

∂L
∂Ht

= 0 =⇒ uH = −λtwt (185)

∂L
∂It

= 0 =⇒ κt = λt

(
1 + Θ′

(
It
Kt

))
(186)

∂L
∂Kt+1

= 0 =⇒

κt = %Et
(
λt+1

[
Rt+1 −Θ

(
It+1

Kt+1

)
+ Θ′

(
It+1

Kt+1

)
It+1

Kt+1

]
+ (1− δK)κt+1

)
(187)

∂L
∂Et

= 0 =⇒ $t = λt

(
1 + Ψ′

(
Et
Nt

))
(188)

∂L
∂Nt+1

= 0 =⇒

$t = %Et
(
λt+1

[
πt+1 −Ψ

(
Et+1

Nt+1

)
+ Ψ′

(
Et+1

Nt+1

)
Et+1

Nt+1

]
+ (1− δN)$t+1

)
(189)

∂L
∂Bt+1

= 0 =⇒ λt = %Et λt+1(1 + rt+1) (190)

The shadow values λt, κt and $t represent the value of an additional unit of consumption;
the value of an additional unit of capital; and the value of an additional firm. Divide
through by λt to get in terms of the consumption good (since λt is the marginal utility
of consumption by (184)) and define qt ≡ κt

λt
and st ≡ $t

λt
. The interpretation of these

terms is the marginal value of capital and a firm in consumption unit terms. 44

qt = %Et
(
λt+1

λt

[
Rt+1 −Θ

(
It+1

Kt+1

)
+ Θ′

(
It+1

Kt+1

)
It+1

Kt+1

+ (1− δK)qt+1

])
(192)

st = %Et
(
λt+1

λt

[
πt+1 −Ψ

(
Et+1

Nt+1

)
+ Ψ′

(
Et+1

Nt+1

)
Et+1

Nt+1

+ (1− δN)st+1

])
(193)

44With no adjustment costs and zero death, (193) reduces to the firm asset pricing equation in Bilbiie,
Ghironi, and Melitz 2012 (191) (assuming zero death in their model which is implausible on technical
grounds). They solve the problem of maximizing utility by choosing consumption Ct, labor Lt, and
mutual fund holdings Xt+1, rather than choosing Nt and Et, and capital is ignored in the basic setup.
The constraint is wtLt +XtNt(πt + st) = Ct +Xt+1st(Nt +Et) where they use notation dt = πt, vt = st
and Ht = Et. Bilbiie, Ghironi, and Melitz 2012 assume time-to-build law of motion, where some new
entrants die before production, (1 − δN )(Nt + Et) = Nt+1 this ensures a contraction in the firm asset
pricing equation by substitution Nt+1

Nt+Et
= 1− δN

st = Et %
λt+1

λt

Nt+1

(Nt + Et)
(πt+1 + st+1) = (1− δN )%Et

[
λt+1

λt
(πt+1 + st+1)

]
(191)
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Dividing (185) by (184) gives

−uH
uC

= w (194)

Then from (186) and (188) we have

qt = 1 + Θ′
(
It
Kt

)
(195)

st = 1 + Ψ′
(
Et
Nt

)
(196)

And from (190) we get the asset pricing relationship, where 1 + rt+1 can be taken outside
the Et operator as it is known at the start of the period45

u′(Ct) = %Et[u′(Ct+1)(1 + rt+1)] (197)

Capital adjustment costs are a function of net investment It−δKKt = Kt+1−Kt which is
investment in capital less capital depreciation. Similarly firm creation adjustment costs
are a function of net entry Et − δNNt = Nt+1 −Nt which is investment in firms less firm
death. Net investment and net entry equal the change in stocks over a time period, and
are zero in steady-state as stocks are unchanging. Hence adjustment costs are zero in
steady-state.

The production function now includes capital

yt = Akαt h
β
t − φ (198)

Yt = Ntyt (199)

Kt = Ntkt (200)

Ht = Ntht (201)

We continue to work with imperfect competition in the product market so that

Rt =
1

µ
AαKα−1

t Hβ
t (202)

wt =
1

µ
AβKα

t H
β−1
t (203)

The aggregate operating profit expression

πtNt = Yt − wtHt −RtKt (204)

45rt is the consumption-based interest rate on holdings of bonds between t − 1 and t which is known
with certainty as of t−1 . Therefore 1+rt+1 can be taken outside the time t expectations operator (Et).

53



Allows us to update the aggregate resource constraint

Ct + It + Θ

(
It
Kt

)
Kt + Et + Ψ

(
Et
Nt

)
Nt +Bt+1

≤ πtNt + wtHt +RtKt + (1 + rt)Bt (205)

Yt = Ct + It + Θ

(
It
Kt

)
Kt + Et + Ψ

(
Et
Nt

)
Nt (206)

where we drop Bt.
If we specify adjustment costs as

Θ

(
It
Kt

)
=
ϑ

2

(
It
Kt

− δK
)2

(207)

Ψ

(
Et
Nt

)
=
γ

2

(
Et
Nt

− δN
)2

(208)

and assume isoelastic preferences with separable subutilities (as in the baseline RBC
model King, Plosser, and Rebelo 1988)

U(Ct, Lt) =
C1−σ
t − 1

1− σ
− χH

1+η
t

1 + η
(209)

where η ≡ 1
ϕ
∈ (0,∞) and ϕ ≥ 0 is the Frisch elasticity of labor supply to wages and the

intertemporal elasticity of substitution in labor supply. Isoelastic utility implies there is
constant elasticity of marginal utility with respect to consumption uCC

uC
C

= −σ (this
is the inverse elasticity of intertemporal subsitution) and labor uHH uH

H
= η. At η = 0

workers have indivisible labor, and as η →∞ labor responds more strongly. σ → 1 is the
logarithmic utility case in which income and substitution effects cancel out.

Table summarizes the equilibrium conditions
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Static

Labor
Supply

χHη
t C

σ
t = w

Labor
Demand

wt = 1
µAN

1−α−ββKα
t H

β−1
t = β

µ
Yt+Ntφ
Ht

Capital
Cost

Rt = 1
µAN

1−α−βαKα−1
t Hβ

t = α
µ
Yt+Ntφ
Kt

q qt = 1 + ϑ
(
It
Kt
− δK

)
s st = 1 + γ

(
Et
Nt
− δN

)

Agg.
Accnt.

Yt = Ct + It + ϑ
2

(
It
Kt
− δK

)2
Kt + Et + γ

2

(
Et
Nt
− δN

)2
Nt

equivalently:

πtNt + wtHt +RtKt = Ct + It + ϑ
2

(
It
Kt
− δK

)2
Kt + Et + γ

2

(
Et
Nt
− δN

)2
Nt

Agg.
Profit

πtNt = Yt − wtHt −RtKt

equivalently:

πtNt =
(

1− ν
µ

)
(Yt +Ntφ)−Ntφ

Firm
Prod.

yt = Akαt h
β
t − φ

Agg.
Output

Yt = Ntyt

Agg.
Capital

Kt = Ntkt

Agg.
Hours

Ht = Ntht

Dynamic

Consp.
Euler

1 = %Et
[(

Ct
Ct+1

)σ
(1 + rt+1)

]
, where rt+1 = Rt+1 − δK

Entry
Arb.

st = %Et
((

Ct
Ct+1

)σ (
πt+1 − γ

2

[
Et+1

Nt+1
− δN

)2
+ γ

(
Et+1

Nt+1
− δN

)
Et+1

Nt+1
+ (1− δN )st+1

)]

Capital
Arb.

qt = %Et
[(

Ct
Ct+1

)σ (
Rt+1 − ϑ

2

(
It+1

Kt+1
− δK

)2
+ ϑ

(
It+1

Kt+1
− δK

)
It+1

Kt+1
+ (1− δK)qt+1

)]
Firms
LOM

Nt+1 = Et + (1− δN )Nt

Capital
LOM

Kt+1 = It + (1− δK)Kt
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C.1 Steady State

q̃ = 1 (210)

s̃ = 1 (211)

R̃ =
1

%
− (1− δK) (212)

π̃ =
1

%
− (1− δN) (213)

r̃ =
1

%
− 1 (214)

ỹ =

(
1− ν

µ

)−1

(π̃ + φ)− φ (215)

k̃ =
α

µ

ỹ + φ

R̃
(216)

c̃ = ỹ − δK k̃ − δN (217)

h̃ =

(
µR̃

αAk̃α−1

) 1
β

(218)

H̃ =

[(
β(ỹ + φ)

µc̃χ

)(
c̃

h̃

)1−σ
] 1
σ+η

(219)

Ñ =
H̃

h̃
(220)

C̃ = Ñ c̃ (221)

Ỹ = Ñ ỹ (222)

K̃ = Ñ k̃ (223)

Ĩ = K̃δK (224)

Ẽ = ÑδN (225)

The per firm variables π̃, ỹ, k̃, c̃ are independent of technology in the long-run steady
state. Hours per firm h̃ on the other hand decreases as technology increases. So at
the firm-level production function: technology increases, capital is unchanged and hours
decrease to offset the technology increase, so that output per firm is unchanged. The
aggregate variables are all affected by A through the change in the number of firms (the
extensive margin). The intensive margin plays no role, except for hours h̃. H̃ will not be
affected by technology with logarithmic utility σ = 1 as income and substitution effects
cancel out.
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C.2 Calibration

Table 3 gives the parameter values we use to simulate the RBC model with firm entry.

% 0.980 Discount factor
χ 1.000 Labor disutility weight
δK 0.024 Depreciation Rate
α 0.200 MPK slope
κ 0.100 Capital adjustment cost
γ ∈ (0, 2) Firm adjustment cost
δN 0.200 Death rate
β ∈ (0.1, 1.1) MPL slope
µ 1.500 Markup
φ 0.300 Fixed cost
η 0.976 Inv. Frisch elasticity
σ 0.970 Inv. EIS

Table 3: RBC with Entry Parameter Values

C.3 Intratemporal Condition

In both the RBC and SOE setups labor supply is determined by the intratemporal con-
dition and

−uH
uC

= w

Labor demand, with imperfect competition, is determined by wage market equilibrium
that states wage is equal to the marginal revenue product of labor

w =
1

µ

dY

dH

Given isoelastic utility and Cobb-Douglas production, equating labor demand and supply
gives hours as a function of technology, capital, consumption and number of firms

H(A,K,C,N) =

(
N1−νAβKα

µχCσ

) 1
1+η−β

(226)

This reduces to the SOE presentation (27), by defining ν ≡ α + β, switching-off capital
α = 0, imposing logarithmic consumption utility σ = 1 and setting labor disutility
weight χ = 1. In either model, the general response of hours to a technology shock,
where elasticities are defined as εab ≡ da

db
b
a
, is

εHA =

(
1

1 + η − β

)
(1− σεCA + αεKA + (1− ν)εNA) (227)
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In the SOE model with no capital, a permanent positive technology shock increases A and
causes an immediate permanent increase in C to its new long-run level. The technology
increase raises hours and the consumption increase lowers hours. After impact the only
variable left to adjust is the number of firms N which is a state variable, so predetermined
on impact. After impact, the number of firms will gradually increase to its new long-run
level and whether this increases or decreases hours from the initial jump depends on
the sign of the power 1 − ν. Hence whether the long-run steady state level of hours is
approached from above (positive short-run response) or approached from below (negative
short-run response) is entirely determined by firm adjustment. Table 1 summarized the
long-run hours response and whether it is approached from above of below.

In the RBC model consumption will not remain constant after immediately jumping
as it does in the SOE model. If there is logarithmic consumption utility long-run hours
will revert to their initial position, hence C must rise to offset the increase in A. If we
assume α = 0 and 1− ν = 0, it is easy to see that consumption is the only variable that
can offset the rise in A such that hours will be unchanged in the long run. It will jump
and then increase until it reaches its steady-state level. If 1− ν < 0 then the adjustment
in number of firms will ‘help’ C to offset the A increase, hence C will not need to increase
as much as N will be doing some of the job.

The long-run response is the same regardless of entry. It is a function of σ, β, η and will
be ε̃HA = 0 with σ = 1 and will be ε̃HA = − 1

β
with η = 1. In steady state capital per firm

and consumption per firm are independent of A which implies the long-run elasticities of
aggregate capital, aggregate consumption and total number of firms are all they same –
the rise in capital and consumption is perfectly offset by a rise in number of firms such
that per firm quantities are fixed ε̃CA = ε̃KA = ε̃NA = 1+η

β(σ+η)
.

ε̃HA =
1− σ

β(σ + η)
R 0 ⇐⇒ σ Q 1 (228)

With log consumption utility σ → 1, consumption will increase such that it exactly offsets
the increase in technology leaving long-run hours unchanged.

58


	Model
	Household
	Firms
	Firm Production
	Firm Entry


	Equilibrium
	General Equilibrium Existence
	Labor Market Equilibrium

	Model Solution
	Reduced-form Equilibrium
	Steady-state
	Linearized system
	Industry Dynamics Solution
	Bonds Solution

	Steady-state Bonds

	Technology Shock
	Comparative Statics
	Comparative Dynamics
	Empirical Evidence

	Entry Regulation Shock
	Quantitative Exercise
	Conclusion
	Main Appendix
	Jacobian
	Steady-state Proofs
	Dynamics

	Supplementary Appendix I: Extra Results
	Household Optimization
	General Equilibrium Effect of Entry on Output
	
	
	Steady-state Effect of Entry on Aggregate Output

	Bonds
	Firm Problem
	Final Good Profit Maximization
	Firm-level Production Function
	Firm-level Profit Maximization

	General Equilibrium Labor Behavior
	Extra Figures

	Supplementary Appendix II: Quantitative Model
	Steady State
	Calibration
	Intratemporal Condition


