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Abstract
In order to fully exploit the benefits provided by using composite materials in large scale aerospace
structures, more efficient detailed design optimisation techniques need to be developed. In the
present work, the optimisation procedure is split up in one gradient-based step that yields an opti-
mal thickness and stiffness distribution which is then matched by a following discrete optimisation
step. The output structure meets prescribed design and manufacturing rules commonly applied
in composite design, through the implementation of a novel Mixed Integer Linear Programming
formulation of the problem. The results indicate the need for more efficient discretisation tech-
niques.

1. Introduction

Modern aeronautical structures are increasingly made out of fibre reinforced plastics, because these offer re-
duced weight and enhanced mechanical characteristics. Aside from this, composites are generally anisotropic
materials, providing the engineer with increased design freedom compared to classic metallic materials. How-
ever, the problem that arises is that with an increased design freedom the complexity of sizing the structure
in detail also increases.

Detailed sizing of aerospace composite structures concerns the optimisation of the layering character-
istics and thickness of large scale structures, which are discretised in so-called zones or patches. During the
optimisation process, a large set of constraints must be taken into account. First of all, so-called design rules
regulating the stacking characteristics of a zone in the material are applied. In addition to optimising in the
direction parallel to the thickness of the structure, there is also the need to optimise in the planar view of the
structure. More specifically, different zones across the structure have different optimal stiffness distributions
and hence stacking sequence characteristics. In order to ensure structural integrity and manufacturability,
these different zones need to be smoothly blended into a design which obeys specific rules known as blending
or manufacturing constraints. A description of the design and blending rules can be found in the work of Iris-
arri et al. 16 or Bermell-Garcia et al.4 Finally, the structure needs to fulfill a large set of physical constraints
which might include amongst others, strength, buckling, aeroelasticity and damage tolerance constraints.

The problem of composite stacking sequence optimisation has been studied thoroughly by many re-
searchers over the last decades. A bibliographic review of different approaches on stacking sequence optimi-
sation has been performed by Ghiasi et al.11, 12 Genetic algorithms have been extensively used to tackle the
problem of stacking sequence optimisation21, 25, 30 because they are especially suited to handle problems with
discrete design variables and allow for a rather straightforward implementation. Other metaheuristics such as
ant colony optimisation3, particle swarm optimisation7, simulated annealing8 and hybrid algorithms17 have
also been used. However, one-shot optimisation approaches using only metaheuristics or other deterministic
optimisation algorithms are bound to fail for industry applications, since the number of optimisation cy-

Copyright © 2019 by Georgios Ntourmas et al. Published by the EUCASS association with permission.



BLENDED STACKING SEQUENCE OPTIMISATION

cles grows exponentially for an increased number of design variables, while the computational cost of each
optimisation cycle is also considerably high.

Gradient-based optimisation algorithms enable faster convergence than deterministic algorithms, but
are suited for continuous design variables. Although stacking sequence optimisation is a highly discrete
problem, gradient-based methods have been applied6, 10, 20, 23, 28, 29 by using penalty functions in order to
drive the design variables to their feasible discrete values. Overall, the applicability of the methodologies is
likely limited by the size of the problem and can only be used as an initial sizing step as further processing
is needed in order to derive design and blending compliant structures.

In an attempt to combine the benefits and eliminate the drawbacks of both gradient and deterministic
algorithms a two step optimisation process has been employed by several researchers. During the first step,
a thickness optimisation26, 34, 35 or thickness and stiffness optimisation using lamination parameters14, 24, 32 is
performed using a gradient-based algorithm. Within this step, the physical constraints of the problem need to
be taken into account, as the inclusion of those also makes each optimisation cycle computationally expensive.
The result of this step is an optimal, continuous distribution of thickness and stiffness characteristics which
needs to be discretised in order to be sensible from a manufacturing point of view. An optimal discretised
result can be used as a target by the second step of the optimisation process which is usually a deterministic
algorithm5, 15, 18, 22 which can handle design and manufacturing rules more efficiently.

2. Methodology

The optimisation process followed in the current work is split up in two different optimisation steps as
shown in Figure 1. First, a thickness optimisation is performed using the Airbus in-house Multidisciplinary
Optimisation platform called Lagrange26. The structure is manually discretised into patches, which repre-
sent areas that will be considered as individual laminates during the optimisation. Eventually, each patch
in the structure is assigned a predefined generic stack containing one of the 4 standard ply orientations
{0o, 90o, 45o,−45o} commonly used in industrial applications. The thickness of each individual layer is used
as a design variable in a weight minimisation problem under strength and buckling constraints (see Figure
2). Next, the lamination parameters are calculated for the optimal layer thicknesses of the prescribed generic
stack. In order to mitigate the reduction of design freedom arising from using a generic stack, a sufficiently
large number of layers needs to be defined within the stack. The optimal thicknesses calculated in the first
optimisation step have to be discretised to a thickness value which corresponds to an integer number of layers,
given that the thickness of the composite tape used in manufacturing is known. Currently, this discretisation
is a simple rounding operation.

Figure 1: Two different optimisation steps are applied during the process.

Figure 2: An indicative generic stack of 16 plies results in 6 design variables, due to linking constraints
between design variables which define symmetry and laminate balance.

The second step of the optimisation process aims to match the prescribed discretised thicknesses and
optimal lamination parameters, while enforcing all design and blending constraints so that the resulting
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structural design can be readily manufactured. This discrete optimisation step is formulated as a Mixed
Integer Linear Programming (MILP) problem and solved by using the commercial optimiser Gurobi13.

2.1 Lamination parameters

Lamination parameters were introduced by Tsai and Pagano31. They are used to decouple the stacking-
sequence-dependent part from the material-dependent part of a laminate stiffness matrix. In the general
case of an anisotropic laminate, 12 lamination parameters and 5 material parameters fully define the stiffness
matrix. For the case of a symmetric laminate, the bending extension coupling stiffness matrix B is zero and
the extensional stiffness A and bending stiffness D matrices are formulated as:

A11
A22
A12
A66
A16
A26

 = h


1 ξA1 ξA3 0 0
1 −ξA1 ξA3 0 0
0 0 −ξA3 1 0
0 0 −ξA3 0 1
0 ξA2 /2 ξA4 0 0
0 ξA2 /2 −ξA4 0 0




U1
U2
U3
U4
U5

 (2.1)


D11
D22
D12
D66
D16
D26

 = h3

12


1 ξD1 ξD3 0 0
1 −ξD1 ξD3 0 0
0 0 −ξD3 1 0
0 0 −ξD3 0 1
0 ξD2 /2 ξD4 0 0
0 ξD2 /2 −ξD4 0 0




U1
U2
U3
U4
U5

 (2.2)

In the above equations, U denotes the material constants and h the thickness of the laminate. The lamination
parameters are defined as:

ξA[1,2,3,4] = 1
h

∫ zi
2

− zi
2

[cos(2θ), sin(2θ), cos(4θ), sin(4θ)]dz (2.3)

ξD[1,2,3,4] = 12
h3

∫ zi
2

− zi
2

[cos(2θ), sin(2θ), cos(4θ), sin(4θ)]z2dz (2.4)

where − zi

2 and zi

2 stand for the distance of the bottom and top layer of the ith ply with respect to the
midplane of the laminate.

2.2 Mixed Integer Linear Programming formulation

The current work includes the calculation of stacking sequences which comply with the specified design and
blending rules. A list of these rules, using the naming conventions used by Irisarri et al. 16, is given in Table
1. Rule 4 implies grouping 45o and −45o layers within the laminate to minimize coupling effects. This rule
is used in this work instead of the disorientation rule since these two rules are contradictory and cannot be
applied simultaneously. Rules that are implicitly implemented are fulfilled, not by using constraints, but
through appropriate choice of the design variables of the problem.

The input for the stacking sequence calculation is a simple geometric definition of the patches, together
with the optimal number of layers and lamination parameters for each patch. The problem is formulated
using a linear objective function, linear constraints and a combination of binary and integer variables. It is
therefore categorized as a MILP problem. A formulation of the design rules in such a way has been performed
in the literature2, 33. To the best of the authors’ knowledge, there has not been a formulation of the blending
rules before in a similar way with the exception of Kang and Blom19, who nonetheless treated the blending
rules in the context of compliance with pre-computed laminates, which is not the case for the present work.

2.2.1 Formulation of design and blending rules

In order to formulate the blending and stacking sequence optimisation, various design variables need to be
introduced. Each family of design variables, i.e. x, r, u, t, ξ, contains many individual members. The number
of members for each family depends on the usage of the design variable and different indexes are used to
distinguish between individual members of each family of design variables. Index i ∈ {1, 2, ..., Ij} is used to
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Table 1: Current status of the implementation of the design and blending rules. Naming conventions used
by Irisarri et al. 16

# Rule description Implemented in
gradient optimisation

Implemented in
discrete optimisation

1 Symmetry Implicitly Yes
2 Balance Implicitly Yes
3 Contiguity Implicitly Yes
4 Group 45/-45 Implicitly Yes
5 10%-rule Yes No
6 Damtol Implicitly Yes
7 Covering Implicitly Yes
8 Maximum taper slope Yes No
9 Max-stopping No No
10 Internal continuity No No
11 Ply-drop alternation No No
12 Continuity No Yes
13 ∆n-rule Yes No

Table 2: Summary of indexes used to denote the various design variables

Name Description
i Layer
j Patch
h Interface between neighboring patches
p Blending possibility between plies of neighboring patches
θ Fiber orientation
k Lamination parameter

denote the exact layer in a specific patch j ∈ {1, 2, ..., J}. The range of i is not constant for all patches j,
but rather takes a maximum value of Ij according to the patch of interest. Index h ∈ {1, 2, ...,H} accounts
for all interfaces between neighboring patches and index p ∈ {1, 2, ..., Ph} takes into account the different
blending combinations between neighboring patches. A more detailed explanation of these two indexes will
be presented in the following paragraphs. Index θ denotes the different available fiber orientations with
θ ∈ {1 → 0o, 2 → 90o, 3 → 450, 4 → −45o} and k ∈ {1, 2, 3, 4} distinguishes between the lamination
parameter which is of interest. A summary of the design variables employed in the discrete optimisation is
given in Table 2.

The objective function of the optimisation problem minimises the deviation from the optimal set of
lamination parameters and is mathematically formulated as:

min|
J∑
j=1

[ ξDkj − (ξDkj)optimal ]| ∀k (2.5)

where ξDkj ∈ [−1, 1] are the lamination parameters for a specific stack, whereas, (ξDkj)optimal are the constant
optimal parameters passed over from the gradient-based optimisation. In the most general case, lamination
parameters ξBk may also be matched in a similar fashion, but this does not apply for symmetric laminates
currently examined. The objective function is not linear in its current form because of the absolute values,
therefore, a simple linearisation needs to be performed.

The constraints defining the problem are the following: Firstly, the matching for ξA is defined. Since the
stacking sequence does not influence ξA, which only depends on the number of layers per fiber orientation in
the patch, a preprocessing step is carried out in order to calculate the number of layers for each orientation.
This preprocessing step is as simple as solving a system of four linear equations for the case where the
standard set of 0,90,45,-45 fiber orientations is used. If more fiber orientations are of interest, the value of
ξA could also be incorporated in the objective function of the problem, in a similar manner to that of ξD.
For the case of four standard fiber orientations, the following system of equations can be easily derived from
Equations 2.3-2.4:
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νj1 + νj2 + νj3 + νj4 = nj ∀j (2.6)

νj1 − νj2 = njξ
A
1j ∀j (2.7)

νj3 − νj4 = njξ
A
2j ∀j (2.8)

νj1 + νj2 − νj3 − νj4 = njξ
A
3j ∀j (2.9)

In the above equations nj is the total number of layers for each patch and νjθ is the number of layers per
orientation per patch.

To make the formulation of the problem possible, the binary design variables xijθ ∈ {0, 1} defining the
orientation of a specific layer within a certain patch are introduced. More specifically, every layer consists of
θ design variables, each one representing whether the corresponding fiber orientation is used or not. The ξA
matching constraint can now be formulated as:

Ij∑
i=1

xijθ = νjθ ∀j, θ (2.10)

Each layer may only have one orientation, therefore, the following feasibility constraint needs to be defined.

4∑
θ=1

xijθ = 1 ∀i, j (2.11)

The contiguity constraint limits the number of consecutive layers having the same fiber orientation to a
maximum of N . In a mathematical formulation, this is expressed as:

xijθ + x(i+1)jθ + . . .+ x(i+N)jθ ≤ N ∀i ∈ {1, 2, ..., Ij −N}, j, θ (2.12)

In many cases laminates are designed to be symmetric. Whenever symmetry is required, the following
constraints must be incorporated in the optimisation model.

xijθ = x(Ij−i+1)jθ ∀i ∈ {1, 2, ..., Ij/2}, j, θ (2.13)

The damage tolerance rule requires the outermost two plies being equal to 45o and −45o accordingly. These
same two layers have to be continuous over all patches according to the covering rule. The next set of
constraints fulfills both requirements.

x1j3 = 1 ∀j (2.14)

x2j4 = 1 ∀j (2.15)

Finally, the 45o/−45o grouping rule is formulated as:

xij3 ≤ xij4 ∀i ∈ {1, 2, ..., Ij/2}, j (2.16)

The formal definition of lamination parameters has already been presented in the previous section.
Before moving on to the definition of the remaining constraints, it is worth formulating the lamination
parameter values in a way that serves the specific approach to the problem.

ξDkj =
Ij∑
i

4∑
θ

skθa
D
ijxijθ ∀j (2.17)

Coefficients skθ take into consideration the influence of the trigonometric terms depending on which θ design
variable is used out of xijθ. Additionally, coefficients aDij depend on the position of the ply within the laminate
and can be pre-calculated during the setup of the problem.

The continuity between neighboring patches also needs to be formulated as a set of linear constraints.
A new family of design variables rihθp ∈ {0, 1} is defined. It contains information on whether the orientation
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of a specific ply within a patch can be blended with one of the p possible neighboring plies. The number
of possibilities p depends on the interface h examined and can easily be determined during the setup of the
optimisation problem. A representation of the different plies that could blend between two patches is given
in Figure 3a. More specifically, for any of the interfaces h, the maximum number of of possibilities can be
calculated as:

Ph = |nj1 − nj2 |+1 (2.18)

In the above equation, patches j1 and j2 denote the two patches which constitute an interface h, with j1 being
the thickest of the two, in case there is a difference in thickness between them. The number of interfaces H
is easily calculated prior to setting up the optimisation problem based on the arrangement of the patches. In
Figure 3b, an example of the interfaces between a specific patch geometry is given.

(a) Knowing the number of ply drops between
two neighboring patches, the different blending
possibilities can be determined for each ply.

(b) The interfaces between patches are marked
with red ticks for the given patch geometry.

Figure 3: Illustrative examples showing usage of indexes p and h

In order for the design variables rihθp to contain the necessary information, they are defined as rihθp =
x(i+p−1)j1θxij2θ. In this way, if the examined fiber orientations of two different plies belonging to neighboring
patches are both equal to 1, then blending could exist between them. Because the definition of rihθp is
non-linear, a standard linearisation needs to be performed. This linearisation of the product of two binary
variables is defined by the following inequalities9:

rihθp ≤ x(i+p−1)j1θ ∀i, h, θ, p (2.19)

rihθp ≤ xij2θ ∀i, h, θ, p (2.20)

rihθp ≥ x(i+p−1)j1θ + xij2θ − 1 ∀i, h, θ, p (2.21)

Another family of design variables uihp ∈ {0, 1} is defined in order to accumulate the information contained
in rihθp for all possible orientations of a specific ply. Essentially, uihp indicates whether two plies belonging
in different patches have the same orientation and is defined as:

uihp =
4∑
θ

rihθp ∀i, h, p (2.22)

By definition, uhp i is also a binary design variable, as each layer can only have one ’active’ fiber orientation.
Finally, a last family of design variables tihp ∈ {0, 1} is introduced. The number and structure of

members for tihp follows the same pattern as uihp and is used to regulate and keep track of which layers
blend with each other. A new constraint is defined as:

uihp ≥ tihp ∀i, h, p (2.23)

This constraint ensures that when the decision variable thp i is switched on, the material orientations take
such values so that blending occurs. This constraint alone is not enough to ensure manufacturable composite
patches. Three further sets of constraints need to be defined to ensure the blending between individual layers
is achieved in a meaningful manner.
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Ph∑
p

t(i−p+1)h(Ph−p+1) ≤ 1 ∀i, h (2.24)

Ph∑
p

tihp = 1∀i, h (2.25)

Ph∑
p

t(i−1)hp(Ph − p+ 1) ≤
Ph∑
p

tihp(Ph − p+ 1)∀i, h (2.26)

The presented set of equations is implemented using the Python interface of Gurobi.

2.2.2 Guiding patch

The approach presented in the previous section, solves the stacking and blending optimisation problem as
a whole. What might be useful in common practice is solving the stacking sequence optimisation problem
of a single patch without considering any of the blending constraints and then using this as the guiding
patch for the rest of the design. Regarding the solution procedure, a guiding patch would require fixing the
corresponding design variables to a specified value. The concept of guiding patches has been introduced by
Adams et al.1 and used by many others including Ijsselmuiden et al. and Seresta et al.15, 27

Figure 4: Simple flow chart of the optimisation procedure when using guiding patches.

For a specific set of provided lamination parameters, there might be many or no exact stacking sequence
matches. For lamination parameters which have been calculated by a continuous gradient-based optimisation,
the latter is most likely to be the case, however, a large number of different stacking sequences might result
in lamination parameters whose values approach the specified target very closely. The bounds for treating
a calculated stacking sequence as a possible guide must be chosen. This directly affects the computational
expenses of the entire optimisation process.

Another choice that needs to be made concerns the patch to be treated as a guide for the structure.
Choosing the thickest patch as the guide, results in a larger number of optimal matches for the same user-
defined optimality bounds, but the design space that is left to be explored is significantly shrinked resulting
in smaller computational expenses per inner optimisation cycle. On the other hand, choosing one of the
thinner patches as a guide for the design would result in a smaller number of potential guides, but a larger
computational time per inner optimisation cycle as the design space is not shrinked to the same extent.

3. Results

Initially, some results from a demonstrator case are presented in order to assess the discrete optimisation
methodology presented. As a next step, a subset of an industrial problem is presented in order to demonstrate
the complete optimisation process.

3.1 Ideal demonstrator case

The presented discrete optimisation approach is able to produce fully blended composite designs that meet all
of the specified design and blending rules. An illustrative result produced for a methodology demonstrator
problem is shown in Figure 5. In order to set up this demonstrator problem, a stacking which fulfills all
prescribed design and blending rules is manually defined and the corresponding lamination parameters which
are used as target values during the optimisation are calculated for each individual patch. The geometry of
the problem used is shown in 6.

In Table 3, some data concerning the runtimes of the discrete optimisation for different problem in-
stances are presented. The runtime of the optimisation grows too big for large problem instances. Runtimes
marked with a star correspond to a stop due to reaching maximum optimisation time and the ones without
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Figure 5: Resulting stacking sequence for the demonstrator problem.

Figure 6: Patch geometry definition for result shown in 5.

a star correspond to the optimiser finding the optimal solution which for this case is known a priori and
has an objective value equal to zero. All runs have been performed on a personal computer which uses CPU
Intel Core i5-8250U @1.60GHz (4 cores, 8 threads) and a RAM of 8 GB. By default all threads are used by
Gurobi.

Additionally, in Table 4 the final MILP problem size in terms of the number of design variables and
constraints is presented. The final MILP size does not directly correspond to the numbers one would theoret-
ically calculate given the problem definition, because Gurobi (as other commercial solvers), applies pre-solve
algorithms that usually slightly reduce the size of the problem. It can be observed that the size grows
significantly for large instances.

The runtime for finding an optimal solution can be drastically reduced when using the guiding patch
concept. In Table 5, the same problem instance which is comprised of 6 patches and 50 plies in the thickest
patch is optimised treating different patches as the guide ones. It is worth having a closer look at the choice
and number of the different individual stacking sequences which are considered for the chosen guide patch.
The number of guide designs which is shown in Table 5 is chosen arbitrarily from a pool of available stacking
sequences which exactly match the provided target lamination parameters. This pool is generated by forcing
the optimiser to find the N best solutions to the individual patch stacking sequence optimisation problem
and not terminate when finding an optimal solution. Although this number N highly depends on the set
of lamination parameters which is provided, some indicative results for lamination parameter sets which are
known to be feasible are provided. In the case of a laminate having 100 plies, this number is larger than
200 000, the exact number not being determined due to the increased computational cost. For 50 plies, there
are approximately 3 900 exact matches, while for 38 plies this number is 190. Once again, these results are
not indicative for an arbitrary set of lamination parameters, but they do provide a rough estimation of how
much the design space increases as the number of plies increase. It would seem more appropriate to use
thinner patches as guides, since matching the stiffness characteristics of a thin patch is more difficult than
matching those of a very thick laminate.

Table 3: Runtimes for different problem instances.

Instance Num. of patches Max num. of layers Runtime (s)
1 6 30 5
2 2 50 45
3 3 50 74
4 4 50 164
5 6 50 675
6 2 100 13 560
7 4 100 18 000∗

∗Unconverged
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Table 4: MILP problem size

Description Discrete optimisation problem size
Instance Num. of patches Max num. of layers Rows Columns Non-zeros (%)

1 6 30 8 236 3 569 0.075
2 2 50 3 182 1 448 0.192
3 3 50 5 219 2 334 0.117
4 4 50 7 108 3 090 0.087
5 6 50 16 836 7 234 0.037
6 2 100 11 660 5 140 0.054
7 4 100 57 585 24 754 0.011

Table 5: Runtime comparison of a specific problem instance using different guiding patches.

6 patches, maximum 50 plies
60 guides from thickest patch 588s
5 guides from thinnest patch 891s

3.2 OptiMALE aircraft subcase

In this section, the potential of the entire optimisation process is applied to OptiMALE, an industrial demon-
strator of an aircraft drone. As seen in Figure 7, a subset of patches located at the upper skin of the aircraft’s
wing box are examined. In the first step of the gradient-based optimisation, the thickness of user defined
generic plies is optimised. An adequate number of generic plies needs to be used in order to mitigate the
reduced design freedom effect of prescribing the stacking of the generic plies. In this case, a total of 48 generic
plies are defined for each patch i.e. [(45,−45, 90, 0)6]s. The size of the continuous problem for 10 patches
and 90 examined load cases grows to 180 design variables, 161 280 constraints and 34 596 degrees of freedom.
The discrete optimisation step converges after only 534s.

Figure 7: Subset of patches examined for the OptiMALE aircraft

However, the lack of blended designs which closely match the target optimal stiffnesses for each in-
dividual patch, results in violation of the physical constraints of the structure i.e. strength and buckling.
Therefore, there is a need to optimise for higher reserve factors during the gradient-based optimisation which,
of course, increases the weight of the structure. In Figures 8-10, we see the reserve factors for strength and
buckling for the optimised subset of patches. The reserve factor is defined as the ratio of the allowable stress
over the applied stress. Therefore, reserve factors smaller than unity indicate a violation of the physical
constraints. In Figure 8, the reserve factors calculated for the optimal thicknesses of the gradient-based
optimisation are presented. Every patch has been pushed to the target reserve factor value of 1.15 which
is used here to mitigate expected physical constraint mismatches. In 9, results are presented for a blended
design produced by the discrete optimisation. In this case patch thicknesses have been rounded off and a
small increase of 0.4% with respect to the weight of the continuous design is observed. Finally, in Figure 10 a
round-up is performed for all patch thicknesses, resulting in a weight increase of 3.0% of the structure, with,
as expected, higher reserve factors.

It is apparent that optimising for higher reserve factors and simply rounding the thicknesses for each
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patch individually is not the best remedy for obtaining manufacturable designs which still meet the physical
constraints. In the future, either smarter discretisation techniques need to be implemented or the gradient-
based optimisation needs to be performed in a way that smoother stiffness distributions are obtained allowing
the discrete optimisation process to closely match these distributions.

(a) Buckling (b) Strength

Figure 8: Reserve factors for the result of the gradient-based optimisation

(a) Buckling (b) Strength

Figure 9: Reserve factors for the result of the discrete optimisation having performed rounding-offs for the
thickness of each patch.

(a) Buckling (b) Strength

Figure 10: Reserve factors for the result of the discrete optimisation having performed rounding-ups for the
thickness of each patch.

4. Conclusion

A two step optimisation approach for the layering design of aerospace composite structures has been presented
within the general framework of a multidisciplinary optimisation platform. A gradient-based continuous
optimisation using generic stacks is used to find an optimal stiffness and thickness distribution which is then
discretised and matched by a discrete optimisation carried out in the second step. A MILP formulation for
the blending of composite structures has been demonstrated as part of the discrete step of the process, which
results in structures complying with the prescribed design and blending rules while allowing for complete
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design freedom during the optimisation process. The computational expenses seem to be acceptable for
industrial sized applications. Future work will focus on further enhancement of the capabilities of the current
discrete optimisation step. Moreover, an efficient, automated feedback loop needs to be established in order
to eliminate designs which are mis-compliant with respect to physical structural constraints.
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