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We compare the predictions of the fundamentally motivated minimal coupling (p̂ · Â) and the

ubiquitous dipole coupling (x̂ · Ê) in the light-matter interaction. By studying the light-matter
interaction for hydrogen-like atoms we find that the dipole approximation cannot be a-priori justified
to analyze the physics of vacuum excitations (a very important phenomenon in relativistic quantum
information) since a dominant wavelength is absent in those problems, no matter how small (as
compared to any frequency scale) the atom is. Remarkably, we show that the dipole approximation
in those regimes can still be valid as long as the interaction time is longer than the light-crossing
time of the atoms, which is a very reasonable assumption. We also highlight some of the subtleties
that one has to be careful with when working with the explicitly gauge noninvariant nature of the
minimal coupling and we compare it with the explicitly gauge invariant dipole coupling.

I. INTRODUCTION

Whilst quantum theory was still in its infancy there
was a desire to integrate Schrödinger’s equation into the
might of electromagnetism. This was not only motivated
by the want of a theoretical framework for the quantum
dynamics of charged particles, but also by the need to
design improved experiments to test atom-field interac-
tions, some of which ultimately lead to the laser [1]. One
of the main challenges in this formalism was how to deal
with the gauge freedom of the electromagnetic (EM) field
and ensure that physically measurable quantities, such
as transition rates, also respected this freedom. The con-
straining effect of the gauge freedom when combined with
a local gauge freedom for the electron wavefunction lead
to the derivation of the minimally coupled Hamiltonian
[2]

i
∂

∂t
ψ(x, t) =

{
1

2µe
(p̂− qA(x, t))

2

+ V (x) + qU(x, t)

}
ψ(x, t),

(1)

where the wavefunctionn local gauge transformation is
given by ψ̃(x, t) = e−iqχ(x,t)ψ(x, t) so that (1) is invariant
under the usual EM vector and scalar potentials gauge
transformations

Ã(x, t) = A(x, t)−∇χ(x, t), (2)

Ũ(x, t) = U(x, t) + χ̇(x, t). (3)

Here µe refers to the reduced mass of the electron-nucleus
system.

This atom-field interaction seems to resolve the gauge
issue introduced by the EM field; however, historically
the improper use of different gauges predicted different
transition rates; which, if correct, would have allowed an
experimentalist to isolate a physical gauge. In order to
resolve this gauge issue in 1931 Göppert-Mayer [3] wrote

down the electric dipole coupling, which approximates
(1) by

i
∂

∂t
ψ(x, t) =

{
1

2µe
p̂2 + V (x) + qx̂ ·E(x, t)

}
ψ(x, t),

(4)

and makes Schrödinger’s equation free from any gauge
terms. The validity of this coupling required the dipole
approximation [4], an approximation that requests that
all plane-waves in the EM field with wavevector k must
obey R |k| � 1 where R is the characteristic length of the
support of the electron wavefunction (e.g. Bohr radius).
Under these circumstances the EM field is approximately
spatially constant over the size of the atom. In addition
to its simplicity, this interaction was consolidated over
time by experiments [5] and is confidently used today
[6, 7].

The electric dipole coupling introduced by Göppert-
Mayer has worked well for the experimental regimes ac-
cessible in the 20th century; however, the purpose built
minimally coupled Hamiltonian defying its gauge inde-
pendence by producing gauge dependent observable pre-
dictions was still a problem that required a solution.
The solution to this problem was produced by Lamb,
Schlicher and Scully [8] with the introduction of ‘physical
observables’. The issue of gauge noninvariance originated
from a misuse of gauge transformations via a change of
EM gauge without performing the corresponding wave-
function gauge transformation. In order to prevent such
ambiguity all ‘physical observables’ would be defined as
functions of the position operator x̂ and the ‘mechani-
cal momentum’, i.e. a form of gauge covariant derivative
given by π̂ = p̂ − qA(x, t). Using the mechanical mo-
mentum, Schrödinger’s equation (1) becomes

i
∂

∂t
ψ(x, t) =

{
1

2µe
π̂2(x, t) + V (x) + qU(x, t)

}
ψ(x, t).

(5)
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In particular this concept of ‘mechanical’ or ‘physi-
cal’ observables also restricts the set of measurable at-
tributes; for example the expectation value of momen-
tum 〈p̂〉 = 〈ψ|p̂|ψ〉 is no longer an allowed measurement
as a gauge transformation of the state |ψ〉 reveals a gauge
dependence on the expectation value. Conversely the ex-
pectation value of ‘physical’ observables, e.g. 〈π̂〉, are al-
lowed measurements as any gauge transformation of the
EM field produce terms that are exactly balanced by the
associated wavefunction gauge transformations. This en-
forces that any ‘physical’ observable produced measure-
ments are gauge invariant, a necessary condition for any
prediction that has to match experimental results.

In summary, gauge invariant transition amplitudes
must be formulated as those between the eigenstates of
the free ‘mechanical’ Hamiltonian,

Ĥ =
1

2µe
π̂2(x, t) + V (x). (6)

As π̂ = p̂− qA(x, t) and p̂ = −i∇, these eigenstates de-
pend on A, and they will in general not coincide with the
eigenstates of the q = 0 Hamiltonian. The point however
is that the eigenstates of Ĥ can be expanded perturba-
tively in q about the eigenstates of the q = 0 Hamil-
tonian: this choice for the eigenstates of Ĥ provides a
perturbative expansion of gauge invariant transition am-
plitudes that have a physical meaning, as the observable
transition amplitudes between eigenstates of the q = 0
Hamiltonian. In particular Lamb et al. [8] demonstrated
that by following this approach and by using point-like
atoms in classical EM fields (where the electric dipole ap-
proximation holds) the minimally coupled Hamiltonian
yielded the same transition probabilities as the electric
dipole Hamiltonian. However; to prove this, it was as-
sumed in [8] that the atoms are point-like, again relying
on an approximation that requires a dominant wavelength
(or, rather, a range of dominant/relevant wavelengths) of
the field to be much larger than the atomic size e.g., a
coherent excitation of the field of peak wavelength much
larger than the size of the atom, or a process of spon-
taneous emission where the gap of the atom has an as-
sociated wavelength again much larger than the atomic
radius.

In this paper we will study to what extent the
dipole approximation and the minimal coupling (with
the correct gauge considerations) coincide for finite-size
hydrogen-like atoms when no notion of dominant wave-
length (or range of dominant wavelengths) is present, e.g.
vacuum excitations: ground state atoms in the presence
of the vacuum of the quantum fields interacting for finite
times. We will be following a similar approach to Lamb
et al. in order to properly compare the electric dipole
coupling with the minimally coupled Hamiltonian with
particular attention to why the electric dipole coupling
is so frequently consistent with experimental results.

We wish to clarify that we will consider the dipole ex-
pansion only. Higher order terms can be added to im-
prove the multipole approximation as shown by [9]; how-

ever we will compare the minimal model with the dipole
model, the simplest approximation and the most com-
monly used; and show under what conditions the dipole
model can still be used even in the absence of dominant
wavelengths.

Our motivation is to validate the use of the dipole
approximation for relativistic quantum information sce-
narios; in particular where EM fields are treated quan-
tumly and where rotating wave-type approximations are
no longer appropriate, denying us a means of defining a
dominant wavelength, i.e. beyond the assumptions of pre-
vious works. This is the case when we study phenomena
where the initial state of the system is the field vacuum
and the ground state of the atom (such as e.g., the Fermi
problem [10, 11] or vacuum entanglement harvesting [12–
14], above all when they are computed modelling realistic
hydrogen-like atoms [15]).

To summarize, the work presented here extends the
domain of the work by Lamb et al. by removing the as-
sumption of a dominant wavelength, allowing us to treat
a wider range of physical situations. Our work uses finite
sized atoms, quantum fields and the full Hydrogen atom
Hilbert space; none of which were used by Lamb et al.
In our analysis we do not consider dissipative losses, only
concentrating on Schrödinger’s equation and the effects
of the different coupling type. In the discussion we also
raise the issue of switching the interaction on and off and
its effects of the dipole approximation.

II. THE MODELS

When treating the electric dipole coupling (4) we note
that the Hamiltonian is explicitly gauge invariant. The
full dipole model then consists of leaving the electron
wavefunction invariant under EM gauge transformations
in order to guarantee gauge invariant dynamics. This is a
common approach adopted by the quantum optics com-
munity, particularly exploiting this electron gauge invari-
ance to define their [preparation and measurement] basis
of states as eigenstates of 1

2µe
p̂2 + V (x̂) [16].

Conversely, as stated above, the minimal coupling
Hamiltonian (1) is not gauge invariant; therefore, we
adopt a local gauge transformation of the electron wave-
function to guarantee gauge invariant physical quanti-
ties. These local gauge transformations introduce the
migraine of deciding how to define the preparation and
measurement basis of states. Any choice of basis will
be mathematically correct, provided the relevant gauge
transformations are properly applied; however, experi-
mental constraints would ultimately arbitrate. Lamb et
al.’s suggestion was to use eigenstates of the mechanical
energy, which dynamically change with the field state; al-
though, due to energy level degeneracies these states do
not seem to define an appropriate preparation and mea-
surement basis consistent with the usual |n, l,m〉 atomic
states commonly used in light-matter interactions. This
issue is not addressed by Lamb et al. as they restricted
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their atoms to 2-level systems.
Note our units are ~ = c = ε0 = 1. On some occasions

these constants will be explicitly restored for clarity.

A. The states

In following the spirit of Lamb et al. [8] we work per-
turbatively to first order in q and define a ‘dressed’ state
(assuming, for now, a classical field theory)

|ψ̃t,l〉 =
∑
k

(δlk + iqLlk(t)) |ψk〉 , (7)

where (in our case) |ψk〉 are |n, l,m〉 eigenstates of the
standard atomic Hamiltonian 1

2µe
p̂2 + V (r), orbital an-

gular momentum L̂2 and z-orbital angular momentum L̂z
respectively. The coefficients Llk will be functions of the
EM potentials and are chosen such that the dressed state
|ψ̃t,l〉 is ‘gauge’ invariant, i.e. applying the wavefunction
local gauge transformation also gauge transforms the EM
potentials defining Llk, all to first order in a q perturba-
tive expansion.

Since |ψ̃t,l〉 → |ψl〉 as q → 0 and |ψl〉 is an eigenstate of
the free Hamiltonian p̂2/2µe + V then in order to attain

gauge invariance one could set |ψ̃t,l〉 to be an eigenstate
of π̂2/2µe + V , as suggested by Lamb et al. If all the
eigenenergies of the free Hamiltonian are non-degenerate,
this is accomplished by

Llk(t) = −
〈ψk|A(x̂,t)·p̂+p̂·A(x̂,t)

2µe
|ψl〉

i(El − Ek)
. (8)

If some eigenenergies are degenerate this idea has, how-
ever, a technical difficulty because first order perturba-
tion theory muddles the energy eigenstates of the free
Hamiltonian within the degenerate sectors already at ze-
roth order, and we would lose our notion of ‘perturbing’
the free states |n, l,m〉 defined by energy and angular
momentum. A convenient way to avoid this issue is to
choose

Llk(t) =


− 〈ψk|

A(x̂,t)·p̂+p̂·A(x̂,t)
2µe

|ψl〉
i(El−Ek) if El 6= Ek,

−〈ψk|
t∫

0

dsU(x̂, s) |ψl〉 if El = Ek,
(9)

which ensures gauge invariance of the transition proba-
bilities under the minimal coupling. Stronger than that,
in fact this already ensures the gauge invariance of the
transition amplitudes, as we show in Appendix B. Note
that as q → 0 these states return to the usual atomic
|n, l,m〉 eigenstates.

One can interpret Llk(t) as defining the boundary
conditions for the perturbative solution of Schrödinger’s
equation, i.e. initial state |ψ̃0,i〉 and final measurement

state |ψ̃T,f 〉, measured at time T . Physically, these
dressed states form an orthonormal basis whose measure-
ments produce physical quantities in the sense that the
transition rates are independent of the choice of gauge
(shown in appendix B).

B. The equations

The soon to be quantised Schrödinger equation in the
Coulomb gauge,

i
∂ψ(x, t)

∂t
=

{
1

2µe
(p̂− qA(x, t))

2
+ V (r)

}
ψ(x, t),

(10)

to which we apply the gauge transformation (c.f. Scully
and Zubairy [2] and also appendix A)

ψ̃(x, t) = e−iq(A(x,t)·x)ψ(x, t) (11)

finally yields (See appendix A)

i
∂ψ̃(x, t)

∂t
=

{
1

2µe
(p̂+ q [(xi∇)Ai(x, t)])

2

− qx ·E(x, t) + V (r)

}
ψ̃(x, t).

(12)

Notice the term (xi∇)Ai(x, t); this term can be consid-
ered small if the variations of Ai are small on the length
scale of the support of the wavefunction, in Fourier terms
this means dominant Fourier modes of Ai must obey the
relation a0k � 1 where a0 is the length scale of the sup-
port of the wavefunction (for Hydrogen orbitals a0 is the
Bohr radius). This is a slight reformulation of the dipole
approximation. We therefore have the two equations of
motion for the minimal and dipole models respectively,

i
∂ψ(x, t)

∂t
=

{
1

2µe
(p̂− qA(x, t))

2
+ V (r)

}
ψ(x, t),

(13)

i
∂ψ̃(x, t)

∂t
=

{
1

2µe
p̂2 − qx ·E(x, t) + V (r)

}
ψ̃(x, t).

(14)

At this point we depart from the semiclassical model
and instate A and U as members of the fully relativistic
4-potential for EM field with quantum degrees of free-
dom. As shown in appendix B the transition rates be-
tween dressed states is gauge invariant and so we rewrite
(9), (13) and (14) with a quantised EM field. Specifically,
the Coulomb gauge for the EM field obeys

∇ · Â = 0, (15)

Û = 0, (16)

such that

Â(x, t) =

∫
d3k

(2π)3/2
√

2ω

2∑
λ=1

ελ(k)
(
âλ(k)e−i(ωt−k·x)

+ â†λ(k)ei(ωt−k·x)
)
,

(17)

k · ελ(k) = 0, (18)

Ê(x, t) = − ∂

∂t
Â(x, t), (19)
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and â†λ(k), âλ(k) are the plane-wave mode creation and
annihilation operators respectively.

Given that we are working in an interaction picture
where the EM free field evolution is encoded into the field
operators, we can write the following decomposition of
the total Hamiltonian (first order perturbation theory):

Ĥ = Ĥ0 + qĤI +O(q2), (20)

Ĥ0 =
1

2µe
p̂2 + V (r), (21)

Ĥmin
I = − 1

µe
Â(x, t) · p̂, (22)

Ĥdip
I = −x̂ · Ê(x, t). (23)

For completeness the fully quantum dressed states take
the form

|ψ̃t,l, φi〉 =
∑
k

(
δlk + iqL̂lk(t)

)
|ψk〉 |φi〉 , (24)

where |φi〉 is the state of the EM field and for the minimal
case

L̂lk(t) =

− 〈ψk|
Â(x̂,t)·p̂

µe
|ψl〉

i(El−Ek) if El 6= Ek,

0 if El = Ek,
(25)

since we are working in the Coulomb gauge and L̂lk = 0
for the dipole case.

The main concern now is whether the quantum na-
ture of the EM field permits the existence of a ‘dominant
wavelength’ and if this wavelength satisfies the dipole ap-
proximation. This is particularly relevant when we study
phenomena where the initial state of the system is the
field vacuum and the ground state of the atom, such as
is commonly studied in relativistic quantum information.

III. DYNAMICS AND TRANSITION
PROBABILITIES

A. General field state

Our setup presumes an ability to prepare the electron
in a dressed state described by (24) and (25) at time t =
0; and to projectively measure the state in a dressed basis
also described by (24) and (25) at some final time t = T .
Since we are working to first order in perturbation theory,
the wavefunction of the electron can be perturbatively
represented by

|ψ̃l(t), φi〉 =
∑
k

(
δlk + iqK̂lk(t)

)
e−iEkt |ψk〉 |φi〉 , (26)

i.e. |ψ̃l(t), φ〉 would be a time evolved representation of
the dressed state corresponding to the undressed state
|ψl〉 |φ〉. Note that K̂lk(0) = L̂lk(0).

As shown in appendix C, Schrödinger’s equation yields

˙̂
Klk(t) = −〈ψk|Ĥ1|ψl〉 ei(Ek−El)t, (27)

and therefore

K̂lk(T ) = −
T∫

0

dt 〈ψk|Ĥ1|ψl〉 ei(Ek−El)t + L̂lk(0). (28)

These two equations give us a complete description of
the wavefunction at time T . Now our focus turns to
computing the probability amplitude of measuring the
state of the system in |ψ̃T,f , φf 〉, which becomes

〈ψ̃T,f , φf |ψ̃i(T ), φi〉
= iq 〈φf |

(
K̂if (T )e−iEfT − L̂if (T )e−iEiT

)
|φi〉 ,

(29)

where we have used the property L̂†lk = L̂kl. Note that
we will not measure the field |φf 〉, instead we will trace
over the field to attain a final probability amplitude.

After some computation these inner products can be
compressed into simplified expressions

〈ψ̃T,f , φf |ψ̃i(T ), φi〉min = T
q

µe
e−iEfT

∫
d3k

(2π)3/2

√
ω

2

2∑
λ=1

ελ(k) · 〈φf |
(
âλe

i(Ω−ω)T2 sinc

(
(Ω− ω)

T

2

)
〈ψf |

eik·x∇
Ω
|ψi〉

− â†λe
i(Ω+ω)T2 sinc

(
(Ω + ω)

T

2

)
〈ψf |

e−ik·x∇
Ω

|ψi〉
)
|φi〉 , (30)

〈ψ̃T,f , φf |ψ̃i(T ), φi〉dip = −Tqe−iEfT

∫
d3k

(2π)3/2

√
ω

2

2∑
λ=1

ελ(k) · 〈φf |
(
âλe

i(Ω−ω)T2 sinc

(
(Ω− ω)

T

2

)
〈ψf |eik·xr̂|ψi〉

− â†λe
i(Ω+ω)T2 sinc

(
(Ω + ω)

T

2

)
〈ψf |e−ik·xr̂|ψi〉

)
|φi〉 , (31)
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where sinc(x) = sin(x)/x, Ω = Ef − Ei and µe is the
electron-proton reduced mass. Of particular importance
here is the sinc term. This introduces a weak polynomial
type decay with increasing ω. This decay is a conse-
quence of the ‘sudden switching’ of the interaction be-
tween the atom and the EM field. The weakness of this
decay is the source of the difference between the dipole
and minimal models.

The form of (30) and (31) encourage us to define new
variables for derivational simplicity

〈ψ̃T,f , φf |ψ̃i(T ), φi〉

= 〈φf |
∫

d3k

2∑
λ=1

(
h1,λâλ + h2,λâ

†
λ

)
|φi〉 , (32)

where h1,λ and h2,λ are chosen to match up with (30)
and (31) for each of the Hamiltonians under investiga-
tion. Using this compact expression we can determine
the probability of transition∑

φf

∣∣∣〈ψ̃T,f , φf |ψ̃i(T ), φi〉
∣∣∣2

=

2∑
λ,λ′=1

〈φi|
∫

d3k
(
h1,λâλ + h2,λâ

†
λ

)†
×
∑
φf

|φf 〉 〈φf |
∫

d3k′
(
h1,λ′ âλ′ + h2,λ′ â

†
λ′

)
|φi〉 .

(33)

Now
∑
φf
|φf 〉 〈φf | = I is the resolution of the identity for

fields, therefore the probability of transition from initial
to final states is

P (i→ f)

=

2∑
λ,λ′=1

〈∫
d3k

∫
d3k′

(
h∗1,λ(k)â†λ(k) + h∗2,λ(k)âλ(k)

)
×
(
h1,λ′(k

′)âλ′(k
′) + h2,λ′(k

′)â†λ′(k
′)
)〉

φi
.

(34)

This expression can be further simplified by exploiting
the commutation relations of the field operators

P (i→ f)

=

Pφ︷ ︸︸ ︷〈
:

2∑
λ,λ′=1

∫
d3k

∫
d3k′

(
h∗1,λ(k)â†λ(k) + h∗2,λ(k)âλ(k)

)

×
(
h1,λ′(k

′)âλ′(k
′) + h2,λ′(k

′)â†λ′(k
′)
)

:

〉
φi

+

2∑
λ=1

∫
d3kh∗2,λ(k)h2,λ(k)︸ ︷︷ ︸

P0

,

(35)

where the colons indicate normal ordering. In this sense
we detach the vacuum contributions (P0) from excited
field contributions (Pφ). A quick inspection of (35) shows
that for |φi〉 = |0〉 the Pφ term will be zero and the P0

term remains. Also by inspection we note that the P0

term is an integral and sum over non-negative numbers,
in contrast to the Pφ term that is the product of sums
and integrals over the complex plane; and so we intuite
that the P0 term will be significant for many cases and
the Pφ term becomes relevant in very specific cases or for
reasonably strong EM field excitations.

B. Vacuum excitation and spontaneous emission

The natural first step is to compare predictions of the
two models for |φi〉 = |0〉, i.e. the vacuum state. Under
these circumstances we attempt to compute (35). For
the transition 1s→ 2p we have (shown in Appendix C)

Pdip =
262144~3ε0

177147c3q2Z2µ2
e

(36)

×
∫ ∞

0

dω
ω3

(1 +
4a20

9c2Z2ω2)6

sin2
(
(ω + Ω) t2

)(
(ω + Ω) 1

2

)2 ,

Pmin =
262144~3ε0

177147c3q2Z2µ2
e

(37)

×
∫ ∞

0

dω
ω3

(1 +
4a20

9c2Z2ω2)4

sin2
(
(ω + Ω) t2

)(
(ω + Ω) 1

2

)2 ,

where q is the electron charge, Z is the proton number
of this Rydberg type atom, µe is the reduced mass of the
system. Here we have reintroduced fundamental con-
stants for completeness. We have also used Ω = Ef −Ei,
which for Rydberg atoms is given by

Ef − Ei =
1

2
µeZ

2α2

(
1

n2
i

− 1

n2
f

)
, (38)

and α = q2/4π (in natural units); where α is the fine
structure constant, ni is the principal quantum number of
the initial state and nf is the principal quantum number
of the final state.

(36) and (37) have identical coefficients and one signif-
icant difference, namely a different decay rate of the inte-
grand with respect to ω, which generates the discrepency
between the two couplings. If high frequency contribu-
tions could be dampened then these two integrands could
be well approximated by one another. This observation
suggests more general conditions for the two models to
predict the same probabilities.

Indeed, in this form, it is easy to see why when there’s a
dominant frequency, the dipole model approximates the
minimal one for long times: Consider if Ω < 0 (atom
initially in the excited state), then for ω = −Ω we have
resonnance and consequently, for long times, one can ap-
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ply Fermi’s Golden rule (related to the single mode ap-
proximation) of the form

lim
t→∞

sin2(ηt/2)

(η/2)2t
= πδ(η/2). (39)

In this case Ω becomes the field’s ‘dominant’ fre-
quency and the dipole approximation criterion becomes
Ωa0/Z � 1. Such a condition, when coupled with the
relevant zeroth order Taylor expansion of (36) and (37)
yields equal predictions from both couplings. Notice,
however, that if Ω > 0 then the transition is an exci-
tation and the sinc contribution does not resonate (i.e.
@ω ≥ 0 such that ω+Ω = 0). In other words, this single-
mode like approximation would not be justified if we were
looking at the vacuum excitation probability of the field
for finite times.

However, this golden rule/single mode approxima-
tion is not alone in isolating a single mode or ranges
of modes that dominate EM field behaviour. Gener-
ally light-matter interactions may include intrinsic field
UV cutoffs, time dependence in the interaction strength
or secondary non-radiative processes introducing non-
perturbative time dependences; any of which, we argue,
could, in principle, be used to satisfy the dipole approxi-
mation (ωa0/Z � 1), and hence the zeroth order Taylor
expansions of (36) and (37) become

Pdip →
262144~3ε0

177147c3q2Z2µ2
e

ω� Z
a0∫

0

dω ω3 sin2
(
(ω + Ω) t2

)(
(ω + Ω) 1

2

)2 ,

(40)

Pmin →
262144~3ε0

177147c3q2Z2µ2
e

ω� Z
a0∫

0

dω ω3 sin2
(
(ω + Ω) t2

)(
(ω + Ω) 1

2

)2 ,

(41)

which, after substituting numerical values becomes

Pdip, Pmin →2.68× 10−41s2

ω� 1
a0∫

0

dω ω3 sin2
(
(ω + Ω) t2

)(
(ω + Ω) 1

2

)2 .

(42)

Under normal circumstances the dipole approximation
criterion is not satisfied by higher frequency modes and
we therefore ask how large are the contributions from
these non-dipole approximation modes and how large is
the subsequent difference between the models. This will
identify scales for which the dipole approximation is ac-
curate even if there is no dominant frequency. As we will
discuss below, for example, this would include interac-
tions where the atom and the field are in their ground
states but the interaction lasts longer than the light-
crossing time of the atom.

From (36) and (37) we cannot, a priori, know the exact
effect of the high frequency modes on the transition prob-
abilities. Our only expectation is that the introduction

of higher order multipoles would reduce the discrepency
between the two models, however that is not relevant to
this manuscript. We re-emphasise that we want to as-
sess the validity of this approximation in processes like
vacuum excitations where there is no range of dominant
frequencies and the duration of the interaction is what
will dictate whether the approximation is good.

C. Excited fields

When considering optical experiments, one of the most
common excited fields considered is the coherent state.
This is the state usually associated with a laser and for
our purposes we will model it with a Gaussian frequency
spectrum

|φi〉 = N exp

(∫
dk

2∑
λ=1

Gλ(k,k0)â†λ(k)

)
|0〉 , (43)

where Gλ(k,k0) is some Gaussian centred at k0 and N
is the appropriate normalisation factor. Coherent states
are eigensates of the field annihilation operator, using
this fact we can simplify (35) as

P (i→ f)

=

2∑
λ=1

∫
d3k

(
h∗1,λ(k)G∗λ(k,k0) + h∗2,λ(k)Gλ(k,k0)

)
×

2∑
λ=1

∫
d3k′ (h1,λ′(k

′)Gλ′(k
′,k0) + h2,λ′(k

′)G∗λ′(k
′,k0))

+

2∑
λ=1

∫
d3kh∗2,λ(k)h2,λ(k),

=

∣∣∣∣∣
2∑

λ=1

∫
d3k

(
h∗1,λ(k)G∗λ(k) + h∗2,λ(k)Gλ(k)

)∣∣∣∣∣
2

+

2∑
λ=1

∫
d3kh∗2,λ(k)h2,λ(k),

(44)

For the transition 1s→ 2p we have

hdip
±,λ = ±128

√
2~3/2√ε0t

243
√
πqZµe

e−
it
2 (2Ef/~±ω−Ω)sinc

(
ω∓Ω

2 t
)√

ω sin(θk)(
1 +

4a20
9c2Z2ω2

)3 ,
(45)

hmin
±,λ = ±128

√
2~3/2√ε0t

243
√
πqZµe

e−
it
2 (2Ef/~±ω−Ω)sinc

(
ω∓Ω

2 t
)√

ω sin(θk)(
1 +

4a20
9c2Z2ω2

)2 ,
(46)

where the ± subscript refers to +→ 1, − → 2; and θk is
the spherical coordinate polar angle of k. Here we have
reintroduced the physical constants for completeness.
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As with the vacuum contributions the minimal cou-
pling and the dipole approximation differ only in the de-
cay rate of h±,λ with respect to ω. Unlike the vacuum
contributions (36) and (37), the asymptotic behaviour
of Gλ(k,k0) make it possible to enforce the dipole ap-
proximation ωa0/Z � 1 for all significantly contributing
modes. In this case we can implement a zeroth order
Taylor expansion to obtain

hdip
±,λ →±

128
√

2~3/2√ε0t
243
√
πqZµe

e−
it
2 (2Ef/~±ω−Ω)sinc

(
ω ∓ Ω

2
t

)√
ω sin(θk),

(47)

hmin
±,λ →±

128
√

2~3/2√ε0t
243
√
πqZµe

e−
it
2 (2Ef±ω−Ω)sinc

(
ω ∓ Ω

2
t

)√
ω sin(θk),

(48)

which are equal, as expected when the dipole approxima-
tion criterion is satisfied.

Therefore, if the field dependent term of (35) is dom-
inant over the vacuum contribution, and the field is ex-
cited in dipole approximation satisfying modes, then we
expect that the dipole model can be successfully and re-
liably used.

IV. RESULTS

Given the nature of the integrals in question we resort
to numerical integration in order to study the discrep-
ancies between dipole and minimal models. In partic-
ular our interest lies in how the probability of transi-
tion varies with the size of the electron orbital. Scully
and Zubairy [2] seem to suggest that in the limit of an
infinitely small atom the two models should converge;
however that derivation was based around classical fields
whilst assuming the energy gap Ω remains constant as
the atom is shrunk.

A. Vacuum fields

1. Vacuum excitation

Consider first the transition 1s → 2p with the initial
EM field in the vacuum.

In Fig. 1 the transition probabilities have been plotted
as a function of time. At a glance these two figures appear
similar; however, the two graphs are offset by 2.6×10−4.
Since the graphs do not detail extremely small times we
must presume that this offset arises in the very early
evolution of the electron, an artifact of using different
models combined with a ‘sudden switching’. This already
suggests that a significant difference is present for short
time scales, i.e. t < Ω−1.

10 20 30 40

0.000381434

0.000381434

0.000381435

0.000381435

0.000381436

P (1s→ 2p)
Vacuum excitation - Dipole

t (Ω−1)

10 20 30 40

0.000639162

0.000639162

0.000639163

0.000639163

0.000639164

P (1s→ 2p)
Vacuum excitation - Minimal

t (Ω−1)

FIG. 1. Vacuum transition probability 1s → 2p for Z = 1
atom. The short time behaviour, i.e. t ∈ (0, 40Ω−1),
corresponds to all vacuum modes constructively contribu-
tion with very minor phase differences. In the long time
limit all modes are dephased with one another, leading to
a constant transition probability. The dashed lines corre-
spond to analytic results obtained from (36) and (37) via

lim
t→∞

sin2

(
(ω + Ω)

t

2

)
=

1

2
. From these analytic expressions

we know that the offset is 2.58× 10−4.

In Fig. 2, as expected, the transition probability de-
cays with Z given that the energy gap increases without
an increase in the interaction strength. However in spite
of the electron orbital size decreasing as 1/Z the predic-
tions of the dipole and minimal model remain distant, in
particular the relative error is also seen to increase.

This behaviour goes against our expectations given the
dipole criterion R |k| � 1. Mathematically (see (36) and

(37)) this behaviour is a consequence of the
(
1+

4a20
9c2Z2ω

2
)

term increasing the number of dipole approximation sat-
isfying modes, whilst increasing the sensitivity to previ-
ously ‘dormant’ UV modes via the ω3sinc2

(
(ω + Ω) t2

)
∼

ω growth. These competing effects ensure that the two
predictions never coincide.

2. Spontanous emission

Now consider the transition 2p → 1s in the vacuum.
In this case we would expect that if Ωa0/Z � 1 then the
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0.0002

0.0003

0.0004

0.0005

0.0006

P (1s→ 2p)
Vacuum excitation probabilities

z

50 100 150 200

0.40

0.42

0.44

0.46

0.48

0.50

0.52

∆P

P
(1s→ 2p)

Vacuum excitation - Relative error

z

FIG. 2. Long time transition probability as a function of Z
and the relative error between the two models. As Z increases
the atom becomes smaller; however, contrary to Scully and
Zubairy, the models diverge. Minimal model is dashed.

single mode approximation would limit the integration
domain of (36) and (37) to a dipole approximation sat-
isfying domain and therefore we expect the dipole model
to be good.

In Fig. 3 the emission probabilities as a function of
time are plotted. Their long time behaviour coincides
with Fermi’s golden rule, where both models yield the
same gradient, implying coincidence of the models. This
can be justified using the single mode approximation,
which is valid for long times, i.e.

lim
t→∞

t2sinc2

(
(ω + Ω)

t

2

)
∼ πtδ

(
ω + Ω

2

)
; (49)

and the fact that Ω(Z = 1) satisfies the dipole approxi-
mation. For short times the single mode approximation
is no longer applicable and this generates the offset seen
in the graphs.

Fig. 4 shows the progression of the asymptotic emission
rate with Z. As Z increases the atom size decreases; how-
ever when implementing the single mode approximation
the dipole approximation criterion becomes Ωa0/Z � 1,
so the atomic size decreases as 1/Z but the energy gap Ω
increases as Z2, therefore as Z →∞ the dipole criterion
is increasingly violated. Of interest is the relative error
graph in Fig. 4. The linear vs quadratic behaviour results
in a minimum in the relative error occurring at Z ≈ 3,

1 2 3 4

0.0003924

0.0003926

0.0003928

0.0003930

P (2p→ 1s)
Vacuum emission - Dipole

t (Ω−1)

1 2 3 4

0.0006532

0.0006534

0.0006536

0.0006538

P (2p→ 1s)
Vacuum emission - Minimal

t (Ω−1)

FIG. 3. Vacuum transition probability 2p → 1s for Z = 1
atom. The short time behaviour corresponds to the region
where the single mode approximation is invalid. During this
time the dipole approximation is violated and the observed
offset is generated. The dashed line corresponds to the single
mode approximation. Note that for longer times the curve
becomes linear as dictated by the single mode approximation.

the optimal proton number for coincidence of minimal
and dipole models.

Note that if a temporal switching is introduced this
may help the dipole model converge on the minimal
model, at the cost of invalidating any use or interpre-
tations of the single mode approximation.

B. Excited fields

Finally consider the transitions concerning excited
fields, i.e. field states where Pφ from (35) is not zero. In
particular we focus on ‘spatial pulses’ of coherent ‘light’.
In order to explore the effects of model choice on Pφ alone
the following section will involve plots and discussions of
Pφ alone, note that P0 is independent of the field state
so the discussion in previous sections generally holds.

The initial field state used was

|φ〉 = N exp

(∑
λ

∫
d3kGλ(k)â†λ(k)

)
|0〉 , (50)
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(2p→ 1s)

Vacuum emission - Relative error

z

FIG. 4. Vacuum emission transition rates as a function of
Z. Note that as Z increases and the atom becomes smaller
the two models diverge. Minimal model is dashed. By
implementing the single mode approximation in (36) and
(37) one can show that the transition rates are given by

R =
6.26× 108Z4

(1 + 3.33× 10−6)n
, where n = 4, 6 for the minimal and

dipole coupling respectively.

where

Gλ(k) =
δλ,λ0

eiωT∗

(2π)3/4

e
− (kx−k0x)

2

4σ2x e
− (ky−k0y)

2

4σ2y e
− (kz−k0z)

2

4σ2z

√
σxσyσz

,

(51)

where k0 is the central wavevector of the wavepacket,
λ0 is the polarisation of the field excitation, T ∗ dictates
the wavepackets initial position and N is the appropriate
normalisation factor. Note that Gλ(k) is L2 normalised.

For the numerical work presented here σx = σy = σz =
Ω/100 and k0 = Ωex, i.e. a resonant wavepacket. Fig. 5
shows the Pφ contribution to the transition probability
as a function of time. There is a rapid increase in the
transition probability as the wavepacket passes through
the atom, finally the probability becomes almost constant
as the field locally returns to the vacuum. The relative
error between the two models is very small, in fact it is
very similar to the relative error shown in Fig. 4 for small
Z. Note that as we change Z then Ω ∼ Z2; this includes
changing the EM field.

In Fig. 6 the asymptotic transition probability is shown

2000 4000 6000 8000 10000 12000

5.×10-11

1.×10-10

1.5×10-10

2.×10-10

2.5×10-10

3.×10-10

P (1s→ 2p) Resonant coherent excitation - Dipole

t (Ω−1)

0 2000 4000 6000 8000 10000 12000

0.002184

0.002186

0.002188

0.002190

∆P

P
(1s→ 2p)

Resonant coherent excitation - relative error

t (Ω−1)

FIG. 5. Excitation probability (Pφ only) for a Gaussian coher-
ent pulse with central frequency Ω (resonant). As the pulse
arrives the transition probability increases to 3×10−10. Once
the pulse is far from the atom the transition probability re-
mains roughly constant. Note that the relative error remains
small throughout 2 × 10−3. Also note, the bump at early
times is believed to be a numerical imprecision.

along with the relative error between the models as a
function of Z. As in previous cases as Z increases the
dominant mode Ω no longer satisfies the dipole approx-
imation and therefore there is no expectation that the
two models should give the same predictions.

V. DISCUSSION

As can be seen from the plots above there seem to be
cases when the dipole model is valid and others when it
is not. These can be explained by the existence or not
of a dominant mode and whether this mode satisfies the
dipole approximation.

In the case of vacuum excitations there is no notion of
a dominant mode in the EM field. The vacuum fluctua-
tions cause all modes of all wavelengths to interact with
the electron, with short wavelength modes suppressed by
the Fourier properties of the atom itself. In particular
the equation describing the contributions of each mode
is given by (36) and (37). It can be rewritten to highlight
key aspects as
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FIG. 6. Long time excitation probability (Pφ only) as a func-
tion of Z. Unlike the vacuum cases the dominant frequency
is dictated by the field excitation and not the single mode ap-
proximation; however, since we chose the field excitation to
remain resonant with the atomic transition the relative error
increases with Z as Ω ceases to satisfy the dipole approxima-
tion.

P = K

∫
dω

1

(1 +
4a20ω

2

9Z2 )n︸ ︷︷ ︸
Geometry & coupling

ω3 sin2
(
(ω + Ω) t2

)(
(ω + Ω) 1

2

)2︸ ︷︷ ︸
Intrinsic & Switching

,

(52)

where K is some constant and n = 4, 6 depending on the
model. The intrinsic & switching term dictates the ‘dom-
inant’ or ‘range of dominant’ modes. When considering
the dipole approximation ω � Z/a0 this can be inter-
preted as saying “we want the intrinsic & switching fac-
tors to decay long before the geometry & coupling term
begins to decay.” As was shown in section III B treat-
ing the geometry & coupling term as constant reduces
the minimal model to the dipole model. Inspection of
(52) shows that the intrinsic & switching term actually
grows with increasing ω, contrary to our needs; therefore
creating this discrepancy between the two models. If a
smooth switching function (with characteristic width T )
could be introduced, then the intrinsic & switching term
would be modified to suppress UV modes with ω & T−1,
thereby reducing the contributions to the transition prob-
ability from high frequency modes and diminishing the

0.1 0.5 1 5 10

0.00005

0.00010

0.00015

0.00020

0.00025

P∞
min − P∞

dip
Asymptotic offset vs UV cutoff

Λ (z/a0)

FIG. 7. Difference in asymptotic behaviour between dipole
and minimal models for vacuum excitations, as a function of
a hard UV cutoff. The x-axis is normalised to dipole approxi-
mation frequency cutoff. Λ� 1 corresponds to an application
of the dipole approximation. This reflects the conclusion of
(42).

difference between the dipole and minimal models. We
illustrate this in figure 7, where we introduce a cutoff Λ
(that would be proportional to 1/T ) and we see that the
two models yield identical predictions for small enough
Λ. This characteristic appears in figure 1, where the high
frequency modes cause an offset in the transition prob-
abilities on a very short timescale. However for longer
times the two models predict similar trends (i.e. for T
such that IR unsuppressed modes ω . T−1 satisfy the
dipole criterion).

In the case of spontaneous emission Ω < 0 and
so the intrinsic & switching terms of (52) have a
dominant frequency (ω = −Ω). It is the identity

lim
t→∞

sin2(ηt/2)

(η/2)2t
= πδ(η/2) that gives us the dominant

mode, not by suppressing the higher frequency modes
but by elevating a single mode, i.e. the single mode ap-
proximation. If this dominant mode satisfies the dipole
approximation then the geometry & coupling term will
have the approximate value of 1 and both models will be
equivalent. However, if Ω no longer satisfies the dipole
approximation then the models will begin to differ and
this is what is shown in Fig. 3. As Z becomes larger,
Ω grows quadratically in Z and therefore at some point
Ω > Z/a0.

In section IV B the excited field contributions are
shown, demonstrating how similar the predictions of the
two models are when there is a dominant mode that satis-
fies the dipole approximation. In particular Fig. 6 shows
how the models begin to diverge as Ω ceases to satisfy
the dipole approximation. These are the effective predic-
tions given under the rotating wave approximation and
they hold true for stronger coherent amplitudes. This
is the regime most commonly found in experiments and
therefore justifies the widespread use of the dipole model.

In the case of spontaneous emission or stimulated exci-
tation we say that the dipole model is good because the
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dominant frequency Ω satisfies the dipole approximation;
however, there is still a relative error of 2× 10−3. If we
consider the basis of the dipole approximation, i.e. ap-
proximating eik·x ≈ 1 + ik · x ≈ 1 then we note that the
first order error will be of O(k·x), which can be rewritten
as O(Ωa0/Z). Therefore the amount by which the dipole
approximation is satisfied provides an estimate for the
error between the two models. In particular note that
for the hydrogen atom Ωa0 = 2.7 × 10−3. In the cases
where a dominant frequency exists, or a finite range of
effective modes exists, the dipole criterion can be used
as a first order estimate for the relative error. Hence if,
experiementally, a0 can be made smaller without chang-
ing Ω then the dipole model would become exact for all
cases except for the vacuum excitation case, where the
probability of transition would become divergent.

VI. CONCLUSION

In this paper we have evaluated the differences in the
predictions of the minimal coupling Hamiltonian (p̂ · Â)

and the dipole coupling (x̂·Ê) of light-matter interaction
for the hydrogen atom. This comparison is non-trivial for
extended atoms due to the explicit gauge noninvariant
nature of the minimal coupling.

We have confirmed the validity of the predictions of
the dipole model for spontaneous emission and stimu-
lated excitation (situations where there is a dominant
contribution from a particular frequency scale satisfying
a dipole approximation) in the long time regimes. In
these situations the relative difference between the mod-
els is approximately given (to first order) by Ωa0, i.e. the
magnitude evaluated to coarsely assess the validity of the
dipole approximation.

Crucially, we have found the situation to be much dif-
ferent in the case of vacuum excitation, where the atom
starts in the ground state and the field in the vacuum.
For the cases of vacuum excitation, a dominant mode
is absent, and even considering a very small (point-like)
atom does not guarantee that the dipole approximation is
accurate, and there can be indeed a discrepancy between

dipole and minimal model predictions. One cannot get
away in this case just saying that the atom is ‘small’,
since there is no characteristic field wavelength dominat-
ing the interaction to compare it with. Entanglement
harvesting and the Fermi problem are two such scenarios
where one considers finite-time evolution of the ground
state of atoms and the field vacuum, and one may then
need to be further justified to use the dipole approxima-
tion.

For this case, we have characterized the regimes where
the dipole model does not suffice to predict the physics
of the light-matter interaction. In particular we found
that when considering vacuum excitations for short time
interactions the dipole coupling does not yield the same
results that the minimal coupling, which is of particular
interest when analyzing vacuum phenomena.

As (52) shows, this difference cannot be removed by
shrinking the atom, and we have shown that it is the
contribution of arbitrarily high frequency modes what
makes the two predictions diverge.

However, in practice, most light-matter interactions
are finite in time (preparation to measurement). We
have shown that the introduction of a smooth switching
(which in turn suppresses the influence of the higher fre-
quency modes on the atomic dynamics) ensures satisfac-
tion of the dipole criterion as long as the interaction time
between atom and field is longer than the light-crossing
time of the radius of the atom. This would justify the
widespread use of the dipole approximation in modelling
light-matter interactions even for vacuum fluctuations (as
in the case of entanglement harvesting [12–14] and the
Fermi problem [10, 11]), but crucially not because of an
argument of a ‘small atom’, but instead for ‘sufficiently
long interaction time’.
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Appendix A: Gauge transformations

If we begin by analysing Schrödinger’s equation we have

i
∂ψ(x, t)

∂t
=

{
1

2µe
(p̂− qA(x, t))

2
+ V (x) + qU(x, t)

}
ψ(x, t). (A1)

If we introduce a local phase to the wavefunction of the form

ψ̃(x, t) = e−iqχ(x,t)ψ(x, t) (A2)
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this will lead to a new Schrödinger’s equation:

i
∂

∂t
ψ̃(x, t) =

{
1

2µe
(p̂− q [A(x, t)−∇χ])

2
+ V (x) + q(U(x, t) + χ̇)

}
ψ̃(x, t). (A3)

This new equation is also Schrödinger’s equation for a gauge transformed EM field, i.e.

A(x, t)→A(x, t)−∇χ, (A4)

U(x, t)→U(x, t) + χ̇. (A5)

Now if we start with Schrödinger’s equation in the Coulomb gauge

U = 0, (A6)

∇ ·A = 0, (A7)

and then perform the gauge transformation

χ = A(x, t) · x, (A8)

this will yield an equation

i
∂ψ̃(x, t)

∂t
=

{
1

2µe
(p̂+ q [(xi∇)Ai(x, t)])

2 − qx̂ ·E(x, t) + V (r)

}
ψ̃(x, t). (A9)

Note that under the conditions of the dipole approximation A is considered constant over the support of the wave-
function, hence the term [(xi∇)Ai(x, t)] will be zero, exactly giving the dipole approximation.

This gauge transformation was chosen specifically because for small atoms (with respect to some EM wavelength)
this will reproduce the dipole approximation, which exactly the approximation we wish to test for different parameter
regimes.

Appendix B: Gauge invariance of transition probabilities between dressed states

Consider the minimal model Hamiltonian

Ĥ =
1

2µe
(p̂− eA(x̂, t))

2
+ V (x̂) + qU(x̂, t)

= Ĥ0 + qĤ1 +O(q2), (B1)

where we discard O(q2) terms since we shall be performing a first order perturbative expansion. To first order the
dressed state can be written as

|ψ̃t,l〉 =
∑
k

(δlk + iqLlk(t)) |ψk〉 , (B2)

where |ψk〉 are the Ek eigenstates of Ĥ0. These form the measurement basis for the electron in the particular EM
gauge we choose.

Since we work to first order perturbation theory, the evolving state of the electron can be expressed as

|ψ̃l(t)〉 =
∑
k

(δlk + iqKlk(t)) e−iEkt |ψk〉 , (B3)

where the initial condition is Klk(0) = Llk(0). In order to determine the time evolution of Klk(t) we need to use
Schrödinger’s equation,

i
∂

∂t
|ψ̃l(t)〉 =

∑
k

(δlk + iqKlk(t))Eke
−iEkt |ψk〉 −

∑
k

qK̇lk(t)e−iEkt |ψk〉

= Ĥ0

∑
k

(δlk + iqKlk(t)) e−iEkt |ψk〉+ qĤ1

∑
k

δlke
−iEkt |ψk〉+O(q2). (B4)
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By cancelling out the appropriate terms and taking an inner product with 〈ψm| we are left with

K̇lm(t) = −〈ψm|Ĥ1|ψl〉 ei(Em−El)t, (B5)

and therefore

Klk(T ) = −
T∫

0

dt 〈ψk|Ĥ1|ψl〉 ei(Ek−El)t + Llk(0). (B6)

In the main text we made the choice

Llk(t) =


− 〈ψk|

A(x̂,t)·p̂+p̂·A(x̂,t)
2µe

|ψl〉
i(El−Ek) if El 6= Ek,

−〈ψk|
t∫

0

dsU(x̂, s) |ψl〉 if El = Ek,
(B7)

and stated that this will guarantee gauge invariance of the transition amplitudes, and hence gauge invariance of the
measurable transition probabilities. To prove this, consider first the following inner product,

〈ψk|p̂ · (∇χ) + (∇χ) · p̂|ψl〉 = 〈ψk| (p̂ · ∇)χ− p̂ · χ∇+ (∇χ) · p̂|ψl〉
= 〈ψk| (p̂ · ∇)χ− (−i∇χ) · ∇ − χp̂ · ∇+ (∇χ) · p̂|ψl〉
= 〈ψk| (p̂ · ∇)χ− (∇χ) · p̂− χp̂ · ∇+ (∇χ) · p̂|ψl〉
= 〈ψk| (p̂ · ∇)χ− χp̂ · ∇|ψl〉
= i 〈ψk|p̂2χ− χp̂2|ψl〉 , (B8)

where we have repeatedly implemented the product rule and the definition of the momentum operator. One can then
exploit the fact that Ĥ0 |ψk〉 = Ek |ψk〉:

〈ψk|
p̂ · (∇χ) + (∇χ) · p̂

2µe
|ψl〉 = i 〈ψk|

p̂2

2µe
χ− χ p̂

2

2µe
|ψl〉

= i 〈ψk|
(
p̂2

2µe
+ V (x̂)

)
χ− χ

(
p̂2

2µe
+ V (x̂)

)
|ψl〉

= i 〈ψk|Ĥ0χ− χĤ0|ψl〉
= i(Ek − El) 〈ψk|χ|ψl〉 . (B9)

Armed with this identity consider Llk(t)→ L′lk(t) under field gauge transformations. For El 6= Ek, we have

L′lk(t) =
〈ψk| − p̂·A′(x̂,t)+A′(x̂,t)·p̂

2µe
|ψl〉

i(El − Ek)

=
〈ψk| − p̂·A(x̂,t)+A(x̂,t)·p̂

2µe
|ψl〉

i(El − Ek)
+
〈ψk| p̂·(∇χ)+(∇χ)·p̂

2µe
|ψl〉

i(El − Ek)

=
〈ψk| − p̂·A(x̂,t)+A(x̂,t)·p̂

2µe
|ψl〉

i(El − Ek)
+

i(Ek − El) 〈ψk|χ|ψl〉
i(El − Ek)

= Llk(t)− 〈ψk|χ(x̂, t)|ψl〉 . (B10)

Similarly, for El = Ek, we have

L′lk(t) = −〈ψk|
t∫

0

dsU ′(x̂, s)|ψl〉

= −〈ψk|
t∫

0

ds (U(x̂, s) + χ̇) |ψl〉

= −〈ψk|
t∫

0

dsU(x̂, s)|ψl〉 − 〈ψk|χ(x̂, t)|ψl〉+ 〈ψk|χ(x̂, 0)|ψl〉

= Llk(t)− 〈ψk|χ(x̂, t)|ψl〉+ 〈ψk|χ(x̂, 0)|ψl〉 . (B11)
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Now consider the gauge transformation on Klk,

K ′lk(T ) = −
T∫

0

dt 〈ψk|Ĥ ′1|ψl〉 ei(Ek−El)t + L′lk(0)

= −
T∫

0

dt 〈ψk|Ĥ1 +
p̂ · (∇χ) + (∇χ) · p̂

2µe
+ χ̇|ψl〉 ei(Ek−El)t + Llk(0)− 〈ψk|χ(x̂, 0)|ψl〉

= −
T∫

0

dt 〈ψk|Ĥ1|ψl〉 ei(Ek−El)t −
T∫

0

dt 〈ψk|i(Ek − El)χei(Ek−El)t + χ̇ei(Ek−El)t|ψl〉+ Llk(0)− 〈ψk|χ(x̂, 0)|ψl〉

= Klk(T )−
T∫

0

dt
d

dt
〈ψk|χei(Ek−El)t|ψl〉 − 〈ψk|χ(x̂, 0)|ψl〉

= Klk(T )− 〈ψk|χ(x̂, T )|ψl〉 ei(Ek−El)T . (B12)

As such, when considering measurement probability amplitudes (l 6= k),

〈ψ̃T,k|ψ̃l(T )〉 =
∑
m

〈ψm| (δkm − iqL∗km(T ))
∑
n

(δln + iqKln) e−iEnt |ψn〉

= iqKlke
−iEkT − iqL∗kle

−iElT +O(q2)

= iq
(
Klk(T )e−iEkT − L∗kl(T )e−iElT

)
+O(q2). (B13)

The gauge transformation properties of

K ′lk(T )e−iEkT − L′∗kl(T )e−iElT = Klk(T )e−iEkT − 〈ψk|χ(x̂, T )|ψl〉 e−iElT − L∗kl(T )e−iElT + 〈ψk|χ(x̂, T )|ψl〉 e−iElT

= Klk(T )e−iEkT − L∗kl(T )e−iElT , (B14)

therefore with our definition of Llk we now have gauge invariant transition amplitudes. In order to see how this has
changed from the usual näıve approach, repeat the process above with Llk = δlk only.

Appendix C: Perturbative time evolution of full quantum model

The models under scrutiny are the dipole model, computing the transition probability between states |1s〉 → |2p〉
under the Hamiltonian (to first order perturbation theory)

Ĥ = Ĥ0 − qr̂ ·E; (C1)

and the minimal model, which in the Coulomb gauge (where p̂ and Â commute)

Ĥ = Ĥ0 −
q

µe
A · p̂. (C2)

For completeness:

Â(x, t) =

∫
d3k

(2π)3/2
√

2ω

2∑
λ=1

ελ(k)
(
âλ(k)e−i(ωt−k·x) + â†λ(k)ei(ωt−k·x)

)
, (C3)

k · ελ(k) = 0, (C4)

Ê(x, t) = − ∂

∂t
Â(x, t), (C5)

1. Initial condition and measurement (aka dressed states)

Taking the lead from the semi-classical derivation in appendix B, the dressed states are

|ψ̃t,l, φi〉 =
∑
k

(
δlk + iqL̂lk(t)

)
|ψk〉 |φi〉 , (C6)
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where

L̂min
lk =

− 〈ψk|
Â(t)·p̂
µe
|ψl〉

i(El−Ek) if El 6= Ek,

0 if El = Ek,
(C7)

L̂dipole
lk = 0, (C8)

and |φi〉 is the initial state of the EM field. Note that L̂lk are now operators acting on the EM field’s Hilbert space.

Therefore the initial state will be |ψ̃t,i, φi〉 and the final measurement will involve an inner product of the time evolved

state with |ψ̃t,f , φf 〉.
Furthermore for this derivation

Ĥ = Ĥ0 + qĤ1, (C9)

Ĥmin
1 = −Â · p̂

µe
, (C10)

Ĥdipole
1 = −Ê · r̂. (C11)

As shown in appendix B these definitions ensure the final measurement is gauge invariant (appendix B’s results
are independent of classical or quantum fields as they only require the gauge transformation properties of the EM
potentials).

2. Dynamics

Given that we are looking at first order perturbations, the general state will be of the form

|ψ̃l(t), φi〉 =
∑
k

(
δlk + iqK̂lk(t)

)
e−iEkt |ψk〉 |φi〉 , (C12)

with initial conditions K̂lk(0) = L̂lk(0). Recall that now K̂lk is an operator acting on the EM field’s Hilbert space.
Schrödinger’s equation then becomes (EM field evolution has been encoded into the field operators via interaction
picture)

i∂t |ψ̃l(t), φi〉 =
∑
k

(
δlk + iqK̂lk(t)

)
Eke

−iEkt |ψk〉 |φi〉+ q
∑
k

− ˙̂
Klk(t)e−iEkt |ψk〉 |φi〉

=
(
Ĥ0 + qĤ1

)
|ψ̃l(t)〉 |φi〉

=
∑
k

(
δlk + iqK̂lk(t)

)
Eke

−iEkt |ψk〉 |φi〉+ qĤ1e
−iElt |ψl〉 |φi〉+O(q2). (C13)

This leaves

˙̂
Klk(t) = −〈ψk|Ĥ1|ψl〉 ei(Ek−El)t. (C14)

Integration over time yields

K̂lk(T ) = −
T∫

0

dt 〈ψk|Ĥ1|ψl〉 ei(Ek−El)t + L̂lk(0). (C15)

Herein |ψ̃T,f 〉 refers to the dynamically changing dressed state corresponding to the state |ψf 〉 and evaluated at

time T . |ψ̃i(T )〉 refers to the dressed state of |ψi〉, evaluated at time t = 0 and time evolved under the particular
model to time T .
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3. Inner product

Observe that

L̂†lk = L̂kl. (C16)

Now

〈φf , ψ̃T,f |ψ̃i(T ), φi〉 = iq 〈φf |
(
K̂if (T )e−iEfT − L̂if (T )e−iEiT

)
|φi〉 , (C17)

where |φi,f 〉 correspond to the initial and final states of the EM field. Since there is no O(1) term there is no need to
keep track of the O(q2) terms. Expanding:

〈ψ̃T,f , φf |ψ̃i(T ), φi〉 = iqe−iEfT 〈φf |

− T∫
0

dt 〈ψf |Ĥ1|ψi〉 ei(Ef−Ei)t + L̂if (0)− L̂if (T )ei(Ef−Ei)T

 |φi〉 , (C18)

let Ω = Ef − Ei,

〈ψ̃T,f , φf |ψ̃i(T ), φi〉 = iqe−iEfT 〈φf |

− T∫
0

dt 〈ψf |Ĥ1|ψi〉 eiΩt + L̂if (0)− L̂if (T )eiΩT

 |φi〉 . (C19)

4. Transition probability

Consider the inner product

〈ξ̃f , φf |ξ̃i, φi〉 = 〈φf |Ô|φi〉 , (C20)

Then the probability will be given by ∣∣∣〈ξ̃f , φf |ξ̃i, φi〉∣∣∣2 = 〈φi|Ô†|φf 〉 〈φf |Ô|φi〉 . (C21)

In particular since our attention is on the transition amplitudes of the atom itself we need to trace out the final state
of the field |φf 〉, leading to ∑

φf

∣∣∣〈ξ̃f , φf |ξ̃i, φi〉∣∣∣2 = 〈φi| Ô†
∑
φf

|φf 〉 〈φf | Ô |φi〉 , (C22)

〈φi| Ô†IÔ |φi〉 = 〈φi|Ô†Ô|φi〉 , (C23)

i.e. independent of φf . Therefore in the derivation that follows φf has already been traced out and as such the
notation will only make reference to φi.

〈φi|
∣∣∣〈ψ̃T,f |ψ̃i(T )〉

∣∣∣2 |φi〉 = q2 〈φi|
( T∫∫

0

dtdt′ 〈ψf |Ĥ1(t)|ψi〉 〈ψi|Ĥ1(t′)|ψf 〉 eiΩ(t−t′)

−
T∫

0

〈ψf |Ĥ1|ψi〉 eiΩt]L̂fi(0)−
T∫

0

〈ψi|Ĥ1|ψf 〉 e−iΩtL̂if (0)

+

T∫
0

〈ψf |Ĥ1|ψi〉 eiΩtL̂fi(T )e−iΩT +

T∫
0

〈ψi|Ĥ1|ψf 〉 e−iΩtL̂if (T )eiΩT

+L̂if (0)L̂fi(0) + L̂if (T )L̂fi(T )− L̂if (0)L̂fi(T )e−iΩT − L̂fi(0)L̂if (T )eiΩT

)
|φi〉

(C24)
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a. Minimal model

〈φi|
∣∣∣〈ψ̃T,f |ψ̃i(T )〉

∣∣∣2 |φi〉
=
q2

µ2
e

〈φi|
∞∫∫
−∞

d3xd3x′
( T∫∫

0

dtdt′ ψ∗f (x) (−i∂a)ψi(x)ψ∗i (x′) (−i∂′b)ψf (x′)Âa(x, t)Âb(x′, t′)eiΩ(t−t′)

−
T∫

0

dtψ∗f (x) (−i∂a)ψi(x)Âa(x, t)eiΩtψ∗i (x′) (−i∂b)ψf (x′)Âb(x′, 0)
1

−iΩ

−
T∫

0

dtψ∗i (x) (−i∂a)ψf (x)Âa(x, t)e−iΩtψ∗f (x′) (−i∂b)ψi(x
′)Âb(x′, 0)

1

iΩ

+

T∫
0

dtψ∗f (x) (−i∂a)ψi(x)Âa(x, t)eiΩtψ∗i (x′) (−i∂b)ψf (x′)Âb(x′, T )
e−iΩT

−iΩ

+

T∫
0

dtψ∗i (x) (−i∂a)ψf (x)Âa(x, t)e−iΩtψ∗f (x′) (−i∂b)ψi(x
′)Âb(x′, T )

eiΩT

iΩ

+ψ∗f (x) (−i∂a)ψi(x)ψ∗i (x′) (−i∂b)ψf (x′)

[
Âa(x, 0)Âb(x′, 0)

1

Ω2
+ Âa(x, T )Âb(x′, T )

1

Ω2

−Âa(x, 0)Âb(x′, T )
e−iΩT

Ω2
− Âa(x, T )Âb(x′, 0)

eiΩT

Ω2

])
|φi〉 ,

(C25)

where the derivative operators only act on the wavefunction immediately to its right.

∣∣∣〈ψ̃T,f |ψ̃i(T )〉
∣∣∣2 =

q2

µ2
e

∞∫∫
−∞

d3xd3x′
( T∫∫

0

dtdt′ ψ∗f (x) (−i∂a)ψi(x)ψ∗i (x′) (−i∂′b)ψf (x′)eiΩ(t−t′)
〈
Âa(x, t)Âb(x′, t′)

〉
φi

−
T∫

0

dtψ∗f (x) (−i∂a)ψi(x)eiΩtψ∗i (x′) (−i∂b)ψf (x′)
1

−iΩ

〈
Âa(x, t)Âb(x′, 0)

〉
φi

−
T∫

0

dtψ∗i (x) (−i∂a)ψf (x)e−iΩtψ∗f (x′) (−i∂b)ψi(x
′)

1

iΩ

〈
Âb(x′, 0)Âa(x, t)

〉
φi

+

T∫
0

dtψ∗f (x) (−i∂a)ψi(x)eiΩtψ∗i (x′) (−i∂b)ψf (x′)
e−iΩT

−iΩ

〈
Âa(x, t)Âb(x′, T )

〉
φi

+

T∫
0

dtψ∗i (x) (−i∂a)ψf (x)e−iΩtψ∗f (x′) (−i∂b)ψi(x
′)
eiΩT

iΩ

〈
Âb(x′, T )Âa(x, t)

〉
φi

+ψ∗f (x) (−i∂a)ψi(x)ψ∗i (x′) (−i∂b)ψf (x′)
1

Ω2

〈
Âa(x, 0)Âb(x′, 0) + Âa(x, T )Âb(x′, T )

−Âa(x, 0)Âb(x′, T )e−iΩT − Âa(x, T )Âb(x′, 0)eiΩT

〉
φi

)
,

(C26)

where the final step was to ensure that the operators Â were all in the correct order (i.e. 〈ψf |ψi〉, f before i). Note
that this order is reversible however it must be consistent.
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b. Dipole model

∣∣∣〈ψ̃T,f |ψ̃i(T )〉
∣∣∣2 = q2

∞∫∫
−∞

d3xd3x′
T∫∫
0

dtdt′ ψ∗f (x) (ra)ψi(x)ψ∗i (x′) (r′b)ψf (x′)eiΩ(t−t′)
〈
Êa(x, t)Êb(x′, t′)

〉
φi

. (C27)

Note that both (C26) and (C27) have been written down in this format for those who prefer to work with Wightman
functions.

Appendix D: Numerical setup

In order to evaluate the transition probabilities shown in Appendix C certain simplifications are made prior to
resorting to numerical integration. These simplifications have been made with the aid of computer algebra software.

a. Minimal model

In order to optimise computational resources start with (operator equations over EM Hilbert space)

〈ψ̃T,f |ψ̃i(T )〉 = iqe−iEfT

− T∫
0

dt 〈ψf |Ĥ1|ψi〉 eiΩt + L̂if (0)− L̂if (T )eiΩt

 , (D1)

and recall Ĥ1 = −Â · p̂
µe

. Then

〈ψ̃T,f |ψ̃i(T )〉 = i
q

µe
e−iEfT 〈ψf |

∫
d3k

(2π)3/2
√

2ω

2∑
λ=1

ελ(k)

âλ


T∫
0

e−iωteiΩtdt+
1

iΩ
− e−iωT eiΩT

iΩ

 eik·xp̂

+ â†λ


T∫

0

eiωteiΩtdt+
1

iΩ
− eiωT eiΩT

iΩ

 e−ik·xp̂

 |ψi〉
=

q

µe
e−iEfT

∫
d3k

(2π)3/2
√

2ω

2∑
λ=1

ελ(k)

(
âλe

i(Ω−ω)T2

{
T

2 sin
(
(Ω− ω)T2

)
(Ω− ω)T

− 2 sin
(
(Ω− ω)T2

)
Ω

}

×〈ψf |eik·x∇|ψi〉+ â†λe
i(Ω+ω)T2

{
T

2 sin
(
(Ω + ω)T2

)
(Ω + ω)T

− 2 sin
(
(Ω + ω)T2

)
Ω

}
〈ψf |e−ik·x∇|ψi〉

)

=
q

µe
e−iEfT

∫
d3k

(2π)3/2

√
ω

2

2∑
λ=1

ελ(k)

(
âλe

i(Ω−ω)T2

{
T

2 sin
(
(Ω− ω)T2

)
(Ω− ω)T

}
〈ψf |

eik·x∇
Ω
|ψi〉

− â†λe
i(Ω+ω)T2

{
T

2 sin
(
(Ω + ω)T2

)
(Ω + ω)T

}
〈ψf |

e−ik·x∇
Ω

|ψi〉
)

= T
q

µe
e−iEfT

∫
d3k

(2π)3/2

√
ω

2

2∑
λ=1

ελ(k)

(
âλe

i(Ω−ω)T2 sinc

(
(Ω− ω)

T

2

)
〈ψf |

eik·x∇
Ω
|ψi〉

− â†λe
i(Ω+ω)T2 sinc

(
(Ω + ω)

T

2

)
〈ψf |

e−ik·x∇
Ω

|ψi〉
)
.

(D2)
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b. Dipole model

〈ψ̃T,f |ψ̃i(T )〉 = −Tqe−iEfT

∫
d3k

(2π)3/2

√
ω

2

2∑
λ=1

ελ(k)

(
âλe

i(Ω−ω)T2 sinc

(
(Ω− ω)

T

2

)
〈ψf |eik·xr̂|ψi〉

− â†λe
i(Ω+ω)T2 sinc

(
(Ω + ω)

T

2

)
〈ψf |e−ik·xr̂|ψi〉

)
.

(D3)

In both cases expressions of the form 〈ψf |e−ik·x∇|ψi〉 , 〈ψf |e−ik·xr̂|ψi〉 need to be evaluated. Firstly we note that

〈ψf |Ô|ψi〉 =

∫
d3xψ∗f (x)O(x, ∂x)ψi(x)

=

∫
d3xR∗nf ,lf (r)Y ∗lf ,mf (x̂)O(x, ∂x)Rni,mi(r)Yli,mi(x̂). (D4)

This final expression above can be simplified by exploiting Clebsch-Gordon coefficients in reducing the product of
spherical harmonics into a sum of spherical harmonics. Importantly this will be a finite sum. Secondly, note that

eix·k =

∞∑
l=0

l∑
m=−l

4πiljl(|x| |k|)Ylm(x̂)Y ∗lm(k̂) =

∞∑
l=0

l∑
m=−l

4πiljl(|x| |k|)Y ∗lm(x̂)Ylm(k̂). (D5)

Using this identity our desired terms reduce to ψ∗f∇ψi →
∑

(λ,µ)∈S uλµYλµ, therefore

〈ψf |e−ik·x∇|ψi〉 =

∫
d3x

∑
(λ,µ)∈S

uλµYλµ(x̂)

∞∑
l=0

l∑
m=−l

4πiljl(|x| |k|)Y ∗lm(x̂)Ylm(k̂)

=
∑

(λ,µ)∈S

∞∑
l=0

l∑
m=−l

4πiluλµjl(|x| |k|)Ylm(k̂)δλlδµm

=
∑

(λ,µ)∈S
4πiλuλµjλ(|x| |k|)Yλµ(k̂), (D6)

where S is a finite set. Note that whilst this derivation may seem abstract and ineffective, these steps can be followed
with computer algebra packages. The above can be interpreted as an illustrated pseudo-code.

The remainder of the calculation is straightforward, requiring eliminating the EM field creation and annihilation
operators via inner products and a series of k space integrals, of which the angular parts can be evaluated analytically
and the radial part ω must be evaluated numerically except for the special cases of rotating wave approximation or
for very long times T � a0/Z.
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