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The synthesis of functionalized 1-tetralones by the rhodium(I)-

catalyzed reaction of alkynyl malonates with arylboronic acids is 

described. These arylative cyclizations proceed via an alkenyl-to-

aryl 1,4-Rh(I) migration as a key step. Preliminary results of an 

enantioselective variant of these reactions are also presented. 

 

Domino reactions that consist of a metal-catalyzed addition of an 

aryl nucleophile to an alkyne, followed by an intramolecular 

nucleophilic addition of the resulting alkenylmetal species onto a 

tethered electrophile, are versatile transformations for the 

preparation of hetero- and carbocyclic products.1 A variation of these 

arylative cyclizations involves the 1,4-migration of the metal2 from 

the initially formed alkenylmetal species A onto an aryl site, 

followed by cyclization of the resulting arylmetal species B onto the 

electrophile (Scheme 1A). This through-space transmission of 

reactivity further increases the synthetic capabilities of arylative 

cyclizations, and to date, reactions based upon alkenyl-to-aryl 1,4-  

 

 

Scheme 1 Catalytic arylative cyclizations via 1,4-metal migration  

 

Fig 1 Natural products containing a 1-tetralone with an all-carbon 
quaternary stereocenter at C2  

 

migrations of rhodium,3 iridium,4 and cobalt5 have been 

described.6,7,8,9,10,11  The use of esters as the electrophiles in these 

reactions leads to the formation of aromatic ketones. In this context, 

the Murakami3a and Yoshikai5 groups have shown that alkyne-

tethered esters react with arylboron and arylzinc reagents in arylative 

cyclizations under rhodium and cobalt catalysis, respectively. 

However, only symmetrical alkynes were employed in these 

studies.3a,5 Although this feature eliminates the challenge of 

controlling regioselectivity in the initial arylmetalation, it does limit 

synthetic utility. Here, we describe the rhodium-catalyzed reaction of 

arylboronic acids with alkynyl malonates 1, in which the alkyne is 

unsymmetrically substituted (Scheme 1B). These arylative 

cyclizations produce 1-tetralones containing an all-carbon quaternary 

stereocenter at C2, a structural motif that appears in several natural 

products such as (±)-nidemone,12 aspewentin B,13 and 

diomuscinone14 (Figure 1). Preliminary results of an enantioselective 

variant are also  described. 

 It is known that carbometalation of alkynes substituted with one 

alkyl and one aryl group are often highly regioselective.15 

Accordingly, bis(2,2,2-trifluoroethyl)malonate 1a, which contains 

such an alkyne, was selected for our initial experiments in the hope 

that a highly regioselective synthesis of 1-tetralones by arylative 

cyclization could be achieved. First, a mixture of 1a and PhB(OH)2 

(1.5 equiv) was heated at 70 °C for 20 h in the presence of 5 mol% 

of [Rh(cod)Cl]2 and various bases (1.5 equiv) (Table 1).16 We were 

pleased to observe that arylative cyclization was successful and the 

best results were obtained using KF as the base in 1,4-dioxane/H2O 

(9:1) as the solvent, which gave 1-tetralone 2aa in 75% yield as 

determined by 1H NMR analysis of the crude mixture using 1,4-

dimethoxybenzene as an internal standard (entry 1). This experiment 

also gave alkyne hydroarylation product 3ab in 14% yield. Changing 

the quantity of H2O in the reaction medium by using anhydrous  
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Table 1  Evaluation of reaction conditionsa 

 
Entry Deviation from  

standard conditions 

Yield of 2aa 

(%)b 

Yield of 3aa 

(%)b 

Yield of 3ab 

(%)b 

1 None 75 – 14 

2 1,4-Dioxane as solvent 42 19 14 

3 In 1,4-dioxane/H2O (4:1) 54 5 9 

4 Toluene as solvent 28 28 14 

5 Xylenes as solvent 33 42 14 

6 Et3N instead of KF 47 19 14 

7 Cs2CO3 instead of KF 56 – 9 

a Reactions were conducted with 0.05 mmol of 1a. b Determined by 1H NMR 
analysis of the crude reactions using 1,4-dimethoxybenzene as an internal 
standard.  

 

1,4-dioxane or 1,4-dioxane/H2O (4:1) gave lower yields of 2aa along 

with significant quantities of alkyne hydroarylation products 3aa and 

3ab (entries 2 and 3). Other solvents such as toluene (entry 4) and 

xylenes (entry 5) also gave inferior results. Other bases such as Et3N 

(entry 6) and Cs2CO3 (entry 7) are also effective but the yields of 

2aa are appreciably lower compared with using KF (entry 1). The 

conditions shown in entry 1 were therefore selected for use in further 

experiments. 

 The scope of this reaction with respect to the alkynyl malonate 

was then examined in reactions with PhB(OH)2, which gave 1-

tetralones 2aa–2qa in 33–74% yield (Table 2). In some cases (2ha 

and 2pa), it proved beneficial to increase the loading of [Rh(cod)Cl]2 

to 10 mol% and the quantity of PhB(OH)2 to 2.0 equivalents. The 

reaction producing 2aa also gave a 1:1.25 mixture of inseparable 

alkyne hydroarylation products 3aa and 3ab (see Table 1 for the 

structures), respectively, in 19% combined yield. Alkyne 

hydroarylation products corresponding to 3aa and 3ab were not 

isolated in subsequent experiments using other substrates. The 

reaction is tolerant of a wide range of carbon-linked substituents at 

the 2-position of the substrate, including benzyl (2aa and 2ja–2ma), 

methyl (2ba and 2oa), 2-thienylmethyl (2ca), 2-oxo-2-phenylethyl 

(2da), 2-oxo-2-phenoxyethyl (2ea17 and 2na), phenyl (2fa), 2-

methoxyphenyl (2ga), 2-naphthyl (2ha), and 3-thienyl (2ia) groups. 

Heteroatom substituents at the 2-position are also accommodated, 

such as ethoxy (2pa) and 3-thienylmethoxy (2qa) groups. The 

alkynyl substituent can be changed from a phenyl group (2aa–2ia 

and 2na–2qa) to 4-methoxyphenyl (2ja), 3-methylphenyl (2ka), 1-

naphthyl (2la), and 2-thienyl (2ma) groups. A substrate with a 

methyl-substituted alkyne did undergo arylative cyclization in low 

yield but the product 2ra contained unidentified, inseparable 

impurities.18 In addition, a substrate containing a terminal alkyne 

gave only a complex mixture of unidentified products. Pleasingly, 

the reaction is not limited to bis(2,2,2-trifluoroethyl) malonates; 

Table 2  Scope with respect to the alkynyl malonatea 

 
a Reactions were conducted with 0.30 mmol of 1a–1q in 3 mL of 1,4-
dioxane/H2O (9:1). Yields are of isolated products. b This experiment also 
gave a 1:1.25 inseparable mixture of 3aa and 3ab, respectively, in 19% 
combined yield. c The reaction time was 24 h. d Conducted using 10 mol% of 
[Rh(cod)Cl]2 and 2.0 equiv of PhB(OH)2. 
 

substrates containing dimethyl or diphenyl malonates gave 1-

tetralones 2na and 2oa in 55% and 72% yield, respectively.  

 Table 3 presents the results of the reactions of representative 

substrates 1a, 1i, 1m, and 1n with various arylboronic acids, which 

gave 1-tetralones 2ab–2nj in 45–79% yield. The arylboronic acid 

scope includes a range of para- (2ab, 2ac, 2nh, and 2ni), meta-  

(2mg), and disubstituted phenylboronic acids (2ie and 2mf) 

containing methyl (2ab), halide (2ac, 2mf, and 2ni), carboethoxy 

(2mg), or alkoxy groups (2ge and 2nh). 2-Naphthylboronic acid 

(2ad) is also tolerated. In the case of 2-naphthylboronic acid and 3-

ethoxycarbonylphenylboronic acid, 1,4-Rh(I) migration occurred to 

the sterically more accessible position (2ad and 2mg, respectively). 

3-Thienylboronic acid also reacted successfully with 1a; however,  
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Table 3  Scope with respect to the boronic acida 

 
a Reactions were conducted with 0.30 mmol of 1a, 1g, 1m or 1n in 3 mL of 
1,4-dioxane/H2O (9:1). Yields are of isolated products. 

 

 
 

two products 2aj and 2aj' were obtained in 21% and 42% yield, 

respectively, resulting from 1,4-Rh(I) migration to different sites of 

the thiophene prior to cyclization (eqn (1)). 

 A possible catalytic cycle for these reactions is depicted in 

Scheme 2, using substrate 1a and PhB(OH)2 as example reaction 

partners. Heating a mixture of [Rh(cod)Cl]2, KF, and H2O may 

generate rhodium hydroxide 4 (R = H), which can undergo 

transmetalation with PhB(OH)2 to give arylrhodium species 5. 

Phenylrhodation of the alkyne of 1a gives alkenylrhodium species 6, 

which then undergoes alkenyl-to-aryl 1,4-Rh(I) migration to give 

arylrhodium species 7. Cyclization of 7 by 1,2-addition onto one of 

the esters produces rhodium alkoxide 8, which collapses to release 

the product 2aa and regenerate the active rhodium complex 4 (which 

could have a either a trifluoroethoxide or hydroxide counterion). 

 

 Scheme 2 Possible catalytic cycle  

 
 Finally, preliminary efforts at developing an enantioselective 

variant of this reaction were conducted. After some 

experimentation,19 heating 1a with PhB(OH)2 (1.5 equiv) in the 

presence of [Rh(C2H4)2Cl]2 (5 mol%), (R)-MeO-BIHEP (L1, 10 

mol%), and KF (1.5 equiv) in 1,4-dioxane/H2O (9:1) at 70 °C gave 

(+)-2aa in 85% yield and 76% ee, along with an inseparable mixture 

of 3aa and 3ab in 13% yield (eqn (2)). 

 

 

 In summary, we have developed the rhodium(I)-catalyzed 

reaction of alkynyl malonates with arylboronic acids to give diverse 

1-tetralones. A key step in these arylative cyclizations is an alkenyl-

to-aryl 1,4-Rh(I) migration. Use of a chiral bisphosphine-ligated 

rhodium complex as the precatalyst gives promising 

enantioselectivity (76% ee). Our investigations into development of 
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new domino reactions involving 1,4-metal migration are ongoing 

and will be reported in due course.20 
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