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SUPPLEMENTARY INFORMATION

Equilibrium positions and static potential energy

The trap potential of two ions with state-dependent
trap frequencies ωα with α = {↑, ↓} resembling two pos-
sible internal states, reads
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where Zj is the position of the j-th ion and C = e2/4πε0
is the Coulomb constant with e the elementary charge, ε0
the vacuum permittivity, γ the trap field gradient and rj
the relative coordinate of the outer electron of each ion.
We have introduced the interaction between the excited
electron of a Rydberg state with the ion core by the last
term. For small vibrations zj of the ionic core around
the equilibrium position Z̄j , we expand the potential
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where we kept up to quadratic expansions in terms of
small quantities rj and zj . V

αβ
0 gives a static potential,

which depends on the equilibrium positions,

V αβ0 =
m (ωα)

2
Z̄2
1

2
+
m
(
ωβ
)2
Z̄2
2

2
+

C

|Z̄1 − Z̄2|
(2)

As the change in equilibrium positions by the additional
static potential VDC is typically small, we calculate the
ion distances between two ground state ions:

C

|Z̄1 − Z̄2|3
= 2eγ

and obtain:

VDC ≈ −4eγ(r2z1 + r1z2) (3)

We identify this term as a cross-coupling between the
negatively singly charged electron of one ion with the

positively double charged core of the other ion. For two
ions in the Rydberg state both ions see an additional
trap potential. If only one ion is in the Rydberg state,
the neighboring ground state ion will see a modified trap
potential. The term VDC describes the electron dynam-
ics, which is typically much faster than the ion core dy-
namics, and can be treated via second order perturba-
tion. Thereby, we obtain modified trap frequencies for
Rydberg ions compared to ground state ions (see main
text). From the force balance condition (linear orders)
the state-dependent equilibrium positions are obtained
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and we find the geometric center of the two ions:
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With the equilibrium positions, we can calculate the
static potential
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We should note that the state-dependent difference of
the static potential V αβ0 will be canceled by proper laser
detuning. This means that the laser frequency for exci-
tation of a single ion and two ions to the Rydberg state
will be different.

Phonon modes

Using the equilibrium positions, we obtain
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We introduce a transformation, which mixes position co-
ordinates by an angle θ:(
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and the potential becomes

V =
m

2

((
ωαβ1

)2
q21 +

(
ωαβ2

)2
q22

)
+ V αβ0 (11)

+
m

2

[(
(ωα)

2 −
(
ωβ
)2)

sin 2θ − 2
(
Jαβ

)2
cos 2θ

]
q1q2

with(
ωαβj

)2
= ωαωβ

[(
ωβ

ωα

)(−1)j
cos2 θαβ +

(
ωα

ωβ

)(−1)j
sin2 θαβ

]
+ (Jαβ)2

[
1 + (−1)j sin(2θαβ)

]
. (12)

The potential is diagonal when the mixing angle becomes
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At low temperatures, the vibrations are described by
vibrational quanta acting on the collective coordinates

qj = lαβj

(
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)
with the oscillator length lαβj =√
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and the phonon Hamiltonian is expressed

in terms of the state-depending creation ã†j = (aαβj )† and

annihilation ãj = aαβj operators (~ = 1).
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Summing up all basis states we obtain the phonon Hamil-
tonian of the full system:
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with the state projection operator

Παβ = |α〉1 〈α|1 ⊗ |β〉2 〈β|2 (16)

Electric kick

The Hamiltonian for the fast electric pulse driving the
ions is given by
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Time evolution operator

We obtain the interaction Hamiltonian by:
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As the Hamiltonian in the interaction picture is time de-
pendent we use a Magnus expansion for time ordered
systems:
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The complete time evolution operator is thereby:
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Gate fidelity

We analyze the time evolution of the electronic basis
states |αβ〉 = {|↓↓〉, |↓↑〉, |↑↓〉, |↑↑〉}. As the states |↓↑〉
and |↑↓〉 are symmetric, we only consider state |↑↓〉. An

ideal controlled phase gate has the evolution operator

UCP =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 . (31)

The state fidelity without lifetime limit is defined as the
overlap F = | 〈Ψ(0)|UCPUI(T ) |Ψ(0)〉 |2, which we eval-
uate here explicitly for the two ion superposition state
|Ψ(0)〉 = 1/2 [(|↓〉+ |↑〉)⊗ (|↓〉+ |↑〉)] with the ion crys-
tal initially in the motional ground state. For a constant
driving field we obtain:
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