
An Improved Ant Colony Approach for the
Competitive Traveling Salesmen Problem

Xinyang Du1, Ruibin Bai1, Tianxiang Cui1, Rong Qu2 and Jiawei Li1*

1 School of Computer Science, University of Nottingham Ningbo China.
2 School of Computer Science, University of Nottingham, UK.

* Email: jiawei.li@nottingham.edu.cn, ORCID: 0000-0003-4685-2615

Abstract—A competitive traveling salesmen problem is a vari-
ant of traveling salesman problem in that multiple agents compete
with each other in visiting a number of cities. The agent who
is the first one to visit a city will receive a reward. Each agent
aims to collect as more rewards as possible with the minimum
traveling distance. There is still not effective algorithms for
this complicated decision making problem. We investigate an
improved ant colony approach for the competitive traveling sales-
men problem which adopts a time dominance mechanism and a
revised pheromone depositing method to improve the quality of
solutions with less computational complexity. Simulation results
show that the proposed algorithm outperforms the state of art
algorithms.

Index Terms—Ant colony, competitive traveling salesmen prob-
lem, heuristic, algorithm

I. INTRODUCTION

As a classical combinatorial optimization problem, the Trav-
eling Salesman Problem (TSP) has been heavily investigated.
In a TSP, an agent is to visit a given set of cities with
the minimum traveling distance. Each city should be visited
exactly once. Both exact and approximate methods have been
developed for multiple variants of TSP [2], [12].

A competitive traveling salesmen problem (CTSP) is a
variant of TSP first proposed in 2004 [1]. Multiple agents
compete in visiting a number of cities to maximize individual
payoffs in a CTSP. A agent receives a reward after visiting
a city that has not been visited by other agents. The cost of
traveling is proportional to the distance travelled. The payoff
of each agent is the total reward received in visiting cities
minus the cost of travelling. Each agent aims to maximize
his/her payoff and they are assumed to be non-cooperative in
the competition.

Different from classical TSP, the solution to a CTSP is an
equilibrium state in which multiple agents could not improve
their payoffs by unilaterally changing their strategies (Nash
equilibrium for non-cooperative games). A CTSP is a dynamic
decision making problem that is difficult to solve because of
the interactions among the agents’ strategies [11]. Rather than
computing the equilibrium, it is practical to find dominant
strategies for an individual agent. Some strategies dominate
others as the strategies can be compared according to the
payoffs of agents in a CTSP. The reason we do not use the

This research is funded by an NSFC fund of China (code 72071116) and
Ningbo 2025 key technology projects (code 2019B10026, E01220200006).

word ’optimal’ for strategies is that the strategies of agents
are interacted and the best strategy for one agent depends on
the strategies of others.

CTSP represents the complicated decision making prob-
lems that involves both combinatorial explosion and strategic
interactions among multiple agents. So far there is still not
any efficient algorithm although some heuristics has been
developed for CTSP. A few population based algorithms for
CTSP include Gray Wolf Optimization algorithm [3], Salp
Swarm Algorithm [4], and Ant Colony System [7], [10]. A
hyper-heuristic algorithm is adopted to search the strategies
of individual agents by assuming that each agent adopts a
heuristic strategy consistently [5], [9].

In this research, we developed an improved ant colony
algorithm which outperforms the ant colony system with less
computational complexity. We also proposed an evaluation
index to compare algorithms for CTSP with each other in
competitions.

II. COMPETITIVE TRAVELING SALESMEN PROBLEM

A CTSP is a non-cooperative game with multiple agents
competing in visiting a set of cities. The agents are self
interested and they only care for their individual payoffs. We
formulate the following terms about CTSP.

• Benefit
Every city has a benefit for the first agent who arrives at
the city, which is denoted by Bi. Other agents who arrive
at the city later receive zero benefit. The visit with zero
benefit is called a wasted visit. If two or more agents
arrive at the same city simultaneously, these agents will
share Bi equally. For example, each of n agents receives
Bi

n .
• Cost

Every agent needs to pay for the cost of travel which
is proportional to the travelling distance. The cost for
travelling from city i to j is denoted by Cij .

• Payoff
The payoff of every agent is calculated by subtracting the
cost from the benefit, and it is denoted by P . If one agent
visits m cities and obtains benefits from m

′
cities, then

978-1-6654-6708-7/22/$31.00 ©2022 IEEE

20
22

 IE
EE

 C
on

gr
es

s o
n

Ev
ol

ut
io

na
ry

 C
om

pu
ta

tio
n

(C
EC

) |
 9

78
-1

-6
65

4-
67

08
-7

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

CE
C5

50
65

.2
02

2.
98

70
41

4

Authorized licensed use limited to: UNIVERSITY OF NOTTINGHAM. Downloaded on September 02,2023 at 06:13:55 UTC from IEEE Xplore. Restrictions apply.

the payoff of this agent is calculated as:

P =

m′∑
i=1

Bi −
m−1∑
j=1

Cj(j+1) − Cm1 (1)

• Path
The agents are assumed to departure from different cities
in order to avoid indifferent choices at the beginning of
the game. An agent chooses his/her sequence of destina-
tions independently and travels to them sequentially. A
destination of an agent cannot be changed once the agent
has started moving towards it.

• Speed of travel
All agents have the same speed of travel.

• Common knowledge
The locations of cities, the agents’ current destinations,
the speed of travel, the paths travelled, and the informa-
tion whether or not a city has been visited are known to
all agents. Agents will choose their destinations based on
common knowledge.

III. AN IMPROVED ANT COLONY APPROACH

The Ant System (AS) proposed by Colorni, Dorigo &
Maniezzo in 1991 as a population-based approach for com-
binatorial optimization problems. This approach mimics the
behavior of ants in collaboratively search for food by using
pheromone trails. It has been compared with other local search
algorithms like Tabu search and simulated annealing in solving
TSP [6].

Inspired by the Ant Colony System (ACS) proposed by
Mohannad & Belal & Muamer [10] and other heuristics
applied to the CTSP, we have developed an Improved Ant
Colony (IAC) algorithm.

The algorithm contains two steps in the decision making
process. The first step is called pheromone accumulation
procedure, in which the population of ants leave pheromone
to guide the search for destinations. In the second step, the
destination city is chosen according to the distance between
cities and the accumulated pheromone in the first step.

Compared with ACS and other heuristics, IAC has im-
provements in four aspects: the pheromone depositing method,
computational complexity, robustness, and a new mechanism
called time dominance.

A. A pheromone reinforcement method

In an ant colony system described in [7], the population of
ants will deposit pheromone on each arc they crossed in their
route. The pheromone accumulation equation is:

τij ← τij +
m∑

k=1

∆τkij ,∀(i, j) ∈ L (2)

where m is the number of ants, and ∆τkij is the pheromone
deposited by the k-th ant on the arc from i to j, and the value
of ∆τkij is calculated as:

∆τkij =

{
1
Ck
, if(i, j) ∈ Tk

0, otherwise
(3)

where Tk is the route constructed by the k-th ant, and Ck is
the length of Tk.

This pheromone depositing mechanism has been success-
fully applied in solving TSP. In CTSP, however, probability
that the agents gain payoffs from the cities that are far from
their departure cities is low so that the agent adopting the
above pheromone depositing mechanism may be guided to far
cities while those cities have been visited by their opponents.
Therefore, the pheromone depositing mechanism needs to be
improved. The agents should assign priority to the cities close
to their current locations that they have high probabilities to
arrive before their opponents.

IAC maintains most components of the conventional ACS.
The pheromone evaporation mechanism is also the same as
that in the conventional methods. Consider a population of
m ants and every ant visits all cities in each round. IAC
adopts a revised pheromone depositing method, in which the
pheromone deposited by the k-th ant on the arc from i to j,
∆τkij , is calculated by:

∆τkij =

{
Q
dij

(1− 1
1+e−z+10), if(i, j) ∈ Tk

0, otherwise
(4)

where Q is a constant, and dij is the distance from i to j,
and z is the number of visited cities before visiting city j.
Let σ(z) = 1− 1

1+e−z+10 be the visited factor, which denotes
the marginal payoff of visiting an extra city. σ(z) controls
the pheromone deposited on the arc (i, j) and is a strictly
monotone decreasing function of z. When an ant visits the
first few cities, which are near to the salesman’s start location,
it will deposit much pheromone on the arc because the value
of z is small. As the increase in the number of visited cities,
the marginal payoff of visiting an extra city decreases. The
relationship between σ(z) and z is shown in the Fig. 1.

Fig. 1. Diminishing marginal payoff of pheromone deposit

This pheromone depositing function forces ants to deposit
more pheromone on arcs to the cities that are close to their
departure cities, and less pheromone on arcs to the cities
that are far away from their starting locations. The deposited
pheromone assigns higher weights to the cities close to them
and lower weights to cities that they will arrive later than their
opponents.

Authorized licensed use limited to: UNIVERSITY OF NOTTINGHAM. Downloaded on September 02,2023 at 06:13:55 UTC from IEEE Xplore. Restrictions apply.

B. Time complexity

So far, some heuristic approaches have been developed for
the CTSP. The time complexity of the GWO, the SSA and the
Hyper Heuristics is O(n2∗s), O(n2∗s), O(n3∗s) respectively,
where the n is the number of cities, and s is the number
of the salesman or agents in the competition. By contrast,
this IAC reduced the time complexity into O(n2), because
the pheromone and distance between cities are informative
enough to the IAC and there is no need for the IAC to
consider potential routes of other salesmen. This improvement
is a noteworthy advantage, especially when there exist many
salesmen.

C. Robustness

ACS initializes the pheromone on arcs with the values of
inverse distance of arcs, and then deposits the pheromone by
the equation (2) and (3) after a competition. This method
performs well when it is applied repeatedly on the same
map so that the locations of cities and distances between
cities remained unchanged. In this situation, the ants deposit
pheromone on the arcs in the first few competitions. Although
the performance may be poor in these competitions, the
amount of pheromone in arcs will converge and guide the
agent to perform better in later competitions. If the locations of
cities and distances between cities change in each competition,
the deposited pheromone in previous competitions becomes
useless. This is the reason why this method performs poor in
the competitions of randomly chosen maps.

By contrast, the IAC finishes depositing the pheromone in
the accumulation procedure before the competition, so that
there is no need to spend the first few competitions to deposit
the pheromone in arcs to a suitable value to guide agents.
Even though the locations of cities and distances between
cities change and the deposited pheromone is removed, the
performance of IAC will not be influenced. This concludes
that IAC has better robustness than AC because it adapts to
the change of maps.

D. Time dominance mechanism

Every heuristic that does not take into account the oppo-
nents’ destinations has a serious drawback that it may cause
waste moves.

When two agents choose the same destination, it is likely
that one agent is dominated by another by doing some waste
moves. Consider the scenario in Fig. 2.

In this scenario, Both agents will choose city 2 as the first
destination because it is the nearest city for both agents. Agent
1 will arrive at city 2 first because the distance between cities 0
and 2 is shorted than the distance between cities 1 and 2. At the
time agent 0 arrives at city 2, agent 1 has moved towards the
next destination. If both agents do not change their strategies,
agent 0 will follow agent 1’s path and make a sequence of
waste moves. In order for an agent to avoid making wasted
moves, we adopt a time dominance mechanism. The time of an
agent arriving at a city matters if this city is also the destination
of another agent. We call it time dominance if one agent will

Fig. 2. A Two-agent CTSP in a 2D map. Agent 0 starts from city 1 while
agent 1 starts from city 0. Both agents adopt nearest neighbor heuristic. Agent
0 visits cities 2, 3, 4, and 5 in sequence and then move back to city 1. Agent
1 also visits cities 2, 3, 4, and 5 and then return to city 0. The path of agent
0 and 1 are illustrated by brown and green arrows respectively. Blue arrows
represent the identical path of both agents.

arrive at the common destination earlier than the opponent.
In case that an agent does not have time dominance than the
opponent, the current destination needs to be changed. The
flowchart of time dominance (TD) mechanism inside IAC is
described in Fig. 3.

The first step for the agent is to find the next city by using
the proposed IAC. The second step is to judge whether the
destination is same destination of the opponent. If it is not,
the agent will choose the current destination. Otherwise, the
agent needs to judge whether the opponent will arrive at the
destination earlier than the agent in the third step. In the
case of destination collision, the agent can choose the current
destination only if the opponent will not arrive earlier than the
agent. Otherwise, the agent is in danger of being dominated
and should go to the fourth step. The fourth step is to change
the destination to a city that the agent will arrive earlier than
the opponent. If such a city does not exist, choose the nearest
neighbor city. If there exists more than one alternatives, choose
the nearest one.

When TD mechanism is adopted by an agent, some waste
moves will be avoided in the competition against the opponent.
Assume that agent 0 adopts TD in the previous example of
CTSP as shown in Fig. 2. The new result is shown in the Fig.
4. Agent 0 dominates agent 1 in the path in red.

IV. SIMULATION RESULTS ANALYSIS

The computation scenario in this simulation is a two-agent
CTSP with 20 cities. The locations of 20 cities are randomly
chosen in a 100*100 square area. The benefit of visiting a city
is set to be 150 and the distance cost is 0.2 times the travelling
distance. The moving speed of both agents is 50. To fully
verify the reliability of heuristics in multiple competitions, the
locations of cities and the departure cities of both agents are
randomly set in every competition. To offset the impact of
agents’ initial locations, each competition will be run twice.
Two agents swap their initial locations while keeping locations

Authorized licensed use limited to: UNIVERSITY OF NOTTINGHAM. Downloaded on September 02,2023 at 06:13:55 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Flowchart of the TD mechanism

Fig. 4. A two-agent CTSP in which agent 0 adopts TD. Agent 0 starts from
city 1 and moves to cities 2, 3, 4, 5, and 1 in sequence. Agent 1 starts from
city 0 and moves to cities 2, 3, 4, 5, and 0 in sequence. The path of agent
0 and 1 are illustrated by brown and green arrows respectively. Red arrows
represent the identical path of both agents.

of other cities in the second run. Finally, the competition
result which includes win, draw, and lose of an algorithm,
is determined by the sum of individual payoffs received in
two CTSP.

The state of art evaluation mechanism for heuristics in the
CTSP only considers the average payoff and best payoff. The
payoffs of agents may not reflect the performance of heuristics
accurately because these values depend on the locations of
cities and they vary in different scenarios. A heuristic algo-
rithm that receives lower payoffs than another heuristic in
competitions is not necessarily a poor algorithm. On the other
hand, a heuristic may gain high payoffs in some competitions
while losing in other competitions. We adopt winning rate
together with payoffs to evaluate the performance of heuristics.
This evaluation criterion measures the rate of win against the
opponent heuristic in competitions. For example, if a heuristic
wins 40 times and lose 20 times in totally 100 competitions,
then the winning rate of the heuristic is 0.4 and the winning
rate of the opponent is 0.2. In this case, the heuristic performs
better than the opponent in winning rate.

To compare the performance of IAC and ACS, we run
a sequence of 500 competitions with randomly generated
locations of cities. The experiment results are shown in Table
I.

Table I. Experiment result between IAC and ACS

Heuristics Winning Rate Average Payoff

IAC versus ACS [0.734, 0.266] [3189.002, 2556.022]

Table I shows that the performance of the IAC is superior
to ACS in both winning rate and average payoffs. To further
illustrate the performance of IAC and ACS in the competitions,
the difference between the payoffs of IAC and ACS are shown
by the scatter diagram in Fig. 5.

Fig. 5. Payoff difference between IAC and ACS.

Each point denotes the payoff of IAC subtracts the payoff of
ACS in one competition. The black horizontal line stands for
the situation that the payoff difference is 0. The points above
the black horizontal line indicates the situations that the agents
who adopt IAC outperforms the opponent adopting ACS.

Authorized licensed use limited to: UNIVERSITY OF NOTTINGHAM. Downloaded on September 02,2023 at 06:13:55 UTC from IEEE Xplore. Restrictions apply.

We also run competitions to compare IAC with the heuris-
tics of nearest neighbour (NN) heuristic and random neighbour
(RN). The results are shown in Table II.

Table II. Experiment result between IAC and NN, RN

Heuristics Winning Rate Average Payoff

IAC versus NN [0.568, 0.408] [3061.997, 2695.163]

IAC versus RN [0.788, 0.212] [3172.271, 2566.949]

Simulation results show that IAC outperforms both NN and
RN, which denotes the robustness of IAC in competing against
common heuristics in CTSP.

To further investigate the effect of the time dominance (TD)
mechanism of IAC, one more comparative experiment was
conducted. In one set of competitions, both agents adopt NN.
The simulation results are shown in Fig 6.

Fig. 6. NN vs. NN. Agent 0 starts from city 5 while agent 1 starts from
city 15. The path of agent 0 and 1 are illustrated by brown and green arrows
respectively. Blue arrows represent the identical path of both agents.

In the figure, agent 0 at city 1 chooses to move towards
city 0. After that, agent 0 will be dominated by agent 1 in the
remaining time and make a number of wasted moves. The pay-
offs of two agents are 523.1091 and 2317.9213 respectively.

In the second set of competitions agent 0 and 1 adopt IAC
and NN respectively. The results are shown in Fig 7.

Agent 0 starting from city 1 chooses city 18 as the first
destination because agent 1 has time dominance in arriving
city 0. According to the TD mechanism, city 18 is chosen to
replace city 0. Furthermore, directly moving to city 18 helped
the agent 0 to dominate agent 1 in the following moves. The
payoffs of two agents are 2173.9057 and 665.9516 respectively
in this competition.

V. CONCLUSION

We have proposed an algorithm for CTSP which reduces
the computational complexity of the Ant Colony System by
adopting a time-dominance mechanism and the pheromone

Fig. 7. IAC vs. NN. Agent 0 adopts IAC. Red arrows represent the identical
path of both agents.

reinforcement method. In order to evaluate the performance of
proposed algorithm, a new criterion, the winning rate, together
with the payoffs of agents is adopted in the simulations of a set
of two-agent CTSP. Simulation results show that the proposed
algorithm outperforms ACS with higher winning rate and less
computation time. Agents adopt ACS receive higher payoffs
and win rate in competing against the heuristics of NN and
RN. The method applies to CTSP with three or more agents as
well. Machine learning methods for games have the potential
to solve CTSP and it will be our future research.

REFERENCES

[1] Fekete, S. P., Fleischer, R., Fraenkel, A., Schmitt, M. ”Traveling
salesmen in the presence of competition.” Theoretical Computer Science
313.3 (2004): 377-392.

[2] Padberg M., Rinaldi G. ”A branch-and-cut algorithm for the resolution
of large-scale symmetric traveling salesman problems” SIAM review
31.1 (1991): 60-100.

[3] Taha, Mushreq Luay, et al. ”Solving competitive traveling salesman
problem using Gray Wolf Optimization Algorithm.” Periodicals of
Engineering and Natural Sciences (PEN) 8.3 (2020): 1331-1344.

[4] Jasim, Taiser Samer, and Esam Taha Yassen. ”An Inspired Algorithm for
Solving Competitive Travelling Salesmen Problem.” 7.15(2020): 4188-
4198.

[5] Kendall, Graham, and Jiawei Li. ”Competitive travelling salesmen prob-
lem: A hyper-heuristic approach.” Journal of the Operational Research
Society 64.2 (2013): 208-216.

[6] Colorni, Alberto, Marco Dorigo, and Vittorio Maniezzo. ”Distributed
optimization by ant colonies.” Proceedings of the first European confer-
ence on artificial life. 142 (1991): 134-142.

[7] Dorigo, Marco, and Thomas Stützle. ”Ant colony optimization algo-
rithms for the traveling salesman problem.” (2004): 65-119.

[8] Mohtadi, M., and Kazem Nogondarian. ”Solving the traveling salesman
problem in competitive situations using the game theory.” Appl. Math.
Eng. Manage. Technol 2.3 (2014): 311-325.

[9] Li, Jiawei, and Graham Kendall. ”A hyperheuristic methodology to
generate adaptive strategies for games.” IEEE Transactions on Com-
putational Intelligence and AI in Games 9.1 (2015): 1-10.

[10] Al-Kubaisi, Mohannad and Al-Khateeb, Belal and Mohammed, Muamer.
”An Ant Colony algorithm with dynamic cities allocation for solving
competitive travelling salesmen problem.” Journal of Engineering and
Applied Sciences. 13.6 (2018): 1400-1406.

[11] Roughgarden, T. ”Algorithmic game theory.” Communications of the
ACM, 53.7 (2010): 78-86.

[12] Bektas, T. ”The multiple travelling salesman problem: an overview of
formulations ans solution procedures.” Omega, 34.3 (2006): 209-219.

Authorized licensed use limited to: UNIVERSITY OF NOTTINGHAM. Downloaded on September 02,2023 at 06:13:55 UTC from IEEE Xplore. Restrictions apply.

