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Abstract 

The corrosion behaviour of cast and HIPed Stellite 6 analogue materials in PWR-simulating 

conditions was investigated. The cast alloy exhibited localised corrosion at the boundary 

between the matrix and the M7C3 carbides, with this being attributed to chromium depletion in 

the matrix associated with the carbide growth. In contrast, the HIPed alloy exhibited no 

localised corrosion. The carbon content of the cast Stellite 6 analogue was right at the top end 

of the range indicated in the Stellite 6 specification: this results in a high fraction of carbides 

and a general depletion of the chromium content of the matrix. 

Keywords. Stellite 6, Corrosion behaviour, PWR conditions, chromium depletion, preferential 

oxidation. 

 

Introduction 

The primary circuit of a pressurised water reactor uses water as the heat transfer medium, 

with this typically operating at a temperature of around 300oC. Boric acid, lithium hydroxide, 
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and excess hydrogen/oxygen are commonly added to the coolant in a PWR in order to assist 

in reactivity control during operation and to keep impurity and corrosion conditions within 

acceptable limits. Although metal release rates are typically low, small amounts of corrosion 

product can be activated in the reactor core resulting in a radiation field increase in the coolant 

system [1]; this issue is particularly prevalent with cobalt-containing corrosion products due to 

the transmutation of cobalt-59 to the γ-emitting isotope, cobalt-60.  

Cobalt-based alloys have traditionally been used as hardfacing materials for components in 

nuclear pressurised water reactors (PWRs) such as valves, turbines and pumps since they 

exhibit high corrosion resistance and desirable tribological behaviour under sliding wear 

conditions [2]. The cobalt-based alloy Stellite 6® (Co - 29.0 Cr - 4.5 W - 1.1 C (wt. %)) has 

been the workhorse for providing high levels of wear resistance and extended service lives in 

valve components installed in power generating facilities for over 75 years; for example, 

Stellite 6® is often used in seating faces to minimize wear and prevent both seizing and galling 

[3]. 

Stellite® alloys with a medium carbon content (0.5 - 1.2 wt.%) are designed to combat 

corrosion or simultaneous corrosion and wear [4] with these properties not only being affected 

by the alloy composition, but by the microstructure, which itself is dependent upon the route 

of manufacture. The corrosion resistance of cast Stellite 6® (including weld overlay Stellite 6®, 

which also exhibits a cast structure, albeit one which solidification is generally both more rapid 

and directional) is often limited by features such as grain boundary carbide precipitation, 

insufficient levels of chromium in the matrix following formation of both carbides and Laves 

phases, and by chemical segregation in both cast and weld overlay microstructures materials 

[5]. In contrast, HIPing of powder-formed Stellite 6® results in homogenous, fine-grained 

microstructures which are free of segregation and this often confers both superior tribological 

and corrosion properties [6, 7], and thus is being employed more widely in the manufacture of 

components for service in aggressive environments which require this combination of 

properties [8, 9]. 
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Crook and Meyer [10] conducted tests on cast UNS R30006 (which has a similar specification 

to Stellite 6®) in oxidizing and non-oxidizing acid media to assess the influence of 

microstructure upon corrosion resistance, and concluded that segregation in the cast 

microstructure is detrimental to corrosion in those media that promote localized attack. More 

specifically, in studies on the corrosion behaviour of Stellite 6® in saline solutions, corrosion 

was observed to initiate and propagate at the interface between the matrix and carbide and it 

was suggested that this was due to there being a lower chromium concentration in the matrix 

at this interface [11, 12], associated with its segregation as the chromium-rich carbide is 

formed [13]. 

The corrosion behaviour of both wrought (cast, hot rolled and heat treated) Stellite 6® and 

HIPed Stellite 6® in 3% NaCl at ambient temperature has been compared using 

electrochemical techniques by Mohamed et al. [14] who concluded that HIPing could 

potentially improve the localised crevice corrosion resistance and related their findings to the 

crevice corrosion models developed by Oldfield and Sutton [15]. It was argued that HIPing 

also improved the pitting corrosion resistance with this being attributed to the finer grain size 

combined with a fine and uniform distribution of carbides [14]. In various corrosion tests under 

a range of conditions [11, 12], HIPed Stellite 6® was observed to exhibit superior corrosion 

resistance when compared to cast Stellite 6®, with this being attributed to a lack of segregation 

in the microstructure.  

As well as the corrosion behaviour being of interest, Malayoglu and Neville [16] conducted a 

comparative study on the erosion-corrosion performance of both HIPed and investment cast 

Stellite 6® in 3.5% NaCl solution as a function of temperature and the level of erosive particle 

loading. They found that in all cases, the HIPed Stellite 6® exhibited the higher erosion-

corrosion resistance, which they attributed to the fact that the carbides are not interconnected 

in the HIPed material whereas eutectic and dendritic carbides in the cast structure form a 

network of interconnected material. Furthermore, the mean free path between carbides is 

much smaller in the HIPed material and as such the material responded homogenously to 
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erosion-corrosion. Another study comparing the erosion-corrosion behaviour of a range of 

HIPed and weld-deposited Stellite alloys in a nitric acid environment demonstrated that the 

HIPed alloys generally exhibited a lower mass loss which was again attributed to the finer 

microstructure [17]. A similar conclusion was also reached by Neville and Malayoglu [18] who 

attributed the superior corrosion resistance of HIPed Stellite 6 to its microstructure with 

equiaxed carbides and an absence of areas of chromium-depleted matrix material, due to 

reduced segregation. 

To allow generalisation in this paper, alloys with a composition based upon that of Stellite 6® 

(i.e. Stellite 6 analogues) will together be known as S-6 alloys. It is clear from the literature 

that the corrosion performance of an S-6 alloy is affected by its processing route, since it is 

this that governs the microstructural characteristics of the material. However, it is also 

recognised that the corrosion mechanisms of such alloys are highly dependent upon the 

corrosion conditions themselves. The corrosion conditions in the primary circuit of a PWR are 

very different to those generally reported in the literature (typically ambient conditions with a 

range of active species) [19, 20]. To the author’s knowledge, there are no reports in the 

literature in which the behaviour of cast and HIPed S-6 alloys in conditions relevant to their 

exposure in a PWR primary circuit exist, and as such, the aim of this present study is to 

investigate and explain the differences in the corrosion behaviour of HIPed and cast S-6 alloys 

in conditions simulating the primary circuit of a PWR, namely high temperature pH-adjusted 

water. 

Experimental methodology 

Materials 

Two commercially available S-6 alloys were the subject of this study, with one being cast and 

the other being formed by HIPing of powder. The cast S-6 alloy (Weartech 6 (WT-6®), 

Weartech International Ltd, Port Talbot, U.K.) was manufactured by sand casting. A bar of 30 

mm diameter by 100 mm length was supplied by the manufacturer from which disc-shaped 
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samples of 30 mm diameter by 3 mm thickness were machined. The HIPed S-6 alloy was 

sourced from LSN Diffusion Ltd (Ammanford, U.K) and was supplied in the form of disc-

shaped samples of 30 mm diameter and 10 mm thickness. HIPing of the powders was 

conducted under their standard condition, namely 1200ºC and 100 MPa pressure for 4 hours 

[21]. Table 1 shows the chemical composition of the two alloys, both measured by AMG 

Superalloys UK Limited, Rotherham, U.K.). 

Samples for corrosion testing were wet ground with silicon carbide abrasive papers down to 

1200 grit, followed by polishing with 6 µm and then 1 µm diamond abrasives. To assist in 

identification of corrosion damage, there was a need to be able to examine the same areas of 

the sample before and after corrosion exposure, so that the manner in which different 

microstructural features behaved could be characterised; accordingly, a Vickers 

macrohardness indentation (with a 20 kgf load) was used to mark the sample surface prior to 

the exposure in the autoclave to aid in locating the same regions before and after exposure. 

Autoclave corrosion testing 

To study the corrosion behaviour in conditions similar to the primary circuit of a PWR, a 

solution of lithiated water (LiOH 8.5 mg / kg) with a pH20°C of ~ 10.5 was prepared with 

approximately 1.2 litres of the solution being loaded into a 316 stainless steel autoclave. The 

test samples were placed on mesh shelves of a 316 stainless steel jig, and the jig was 

submerged in the solution in the autoclave. Following closure of the autoclave, air was purged 

out of the autoclave and the solution by bubbling of oxygen-free nitrogen into the solution at 

the bottom of the autoclave at 2 L min-1 for 90 minutes, with venting at the top. After the 

deoxygenation process, an Orion Star A329 meter (Thermoscientific, Singapore) was used to 

measure both the pH and the rugged dissolved oxygen (RDO) content of a sample of the 

solution which was extracted from the autoclave. The autoclave was then sealed, and an 

electrical band heater was employed to heat up the autoclave to a temperature of 300°C (as 

measured via a thermocouple in a thermowell) which was maintained for the 30 days of the 

exposure. This length of exposure was selected based upon previous tests in that it allowed 
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the development of corrosion to a level that facilitated its characterisation. After 30 days, the 

system was cooled down for 24 hours before the mesh jig with the samples was removed and 

the samples removed for analysis. 

Microstructural characterization  

Optical images of the microstructure of the samples before and after exposure were taken 

using a Nikon UFX optical microscope (Nikon UK Ltd, Kingston Upon Thames, U.K.). A JEOL 

6490LV microscope was used for scanning electron microscopy (SEM) (using both secondary 

electron (SE) and backscattered electron (BSE) imaging) and for energy dispersive X-ray 

(EDX) analysis. An accelerating voltage of 20 kV and a working distance of 10 mm was 

employed for all of the SEM characterization work. 

X-ray diffraction was conducted on sample surfaces both before and after autoclave exposure 

using a Siemens D500 diffractometer (Dallas, Texas, USA) with Cu Kα radiation. Peak 

identification was performed using EVA software (Bruker AXS Ltd., Coventry U.K.) using the 

PDF-database from the International Centre for Diffraction Data.  

Atomic force microscopy 

Atomic force microscopy (AFM) images were acquired using both amplitude modulated 

tapping (AC) mode and contact mode with an Asylum Research MFP-3D AFM (Santa Barbara, 

CA, USA). During contact mode electrical conductivity measurements, a bias of 6 - 10 V was 

maintained between the conductive probe tip (ElectriMulti75-G) and the sample with a 500 

MΩ resistor being placed in series to limit the tip sample current. Current and topography 

maps of the sample surfaces were obtained simultaneously, enabling correlation between the 

topography and the electrical conductivity of features observed. 

Modelling of microstructural development 

The commercial software package Thermo-Calc (Version 2017b) with the SSOL-5, SGTE 

Alloy solutions database V5.0 [22] was used to assist in the understanding of the 
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microstructures of both the cast and the HIPed S-6 alloys. For both alloys, the measured 

compositions of the alloys (Table 1) were used in the models.  

For the cast S-6, a Scheil-Gulliver solidification simulation was used to model the solidification 

and microsegregation. Use of the Scheil-Gulliver approach to determine the solidification path 

is useful for practical casting modelling [23] and is often applied to estimate the extent of 

microsegregation during solidification [24] since, for non-equilibrium solidification processes 

occurring over typical microstructural length scales, it is seen to provide a better approximation 

of the solute segregation than does the equilibrium lever rule [25, 26]. The Scheil–Gulliver 

model assumes no diffusion in solid phases except for carbon, which is assumed to achieve 

equilibrium partition; however, perfect mixing (theoretically infinite diffusivity) is assumed in 

any liquid phases.  

Using its measured composition (Table 1), the phase composition of the HIPed S-6 at the 

HIPing temperature of 1200oC was also modelled using Thermo-Calc. In addition, in an 

attempt to understand the sensitivity of the chromium content of the cobalt-rich matrix phase 

to the carbon content of the alloy, the phase make-up of the alloy was modelled across the 

range of carbon contents allowable in the Stellite 6 alloy specification (0.9 wt% to 1.4 wt%); in 

this modelling, all other alloying elements were held at their measured values except for cobalt 

which was employed to balance the change in carbon content.  

Results 

Microstructure and corrosion behaviour of the cast S-6 alloy 

The measured chemical composition of the cast S-6 is presented in Table 1, both in weight 

and atomic fractions. Figure 1 is a BSE-SEM image showing the hypoeutectic microstructure 

of the cast S-6 which consists of Co-rich metallic dendrites (grey), Cr-rich carbides (dark) and 

a small fraction of W-rich carbides (bright). Various authors [12, 27, 28] have reported similar 

microstructural features in cast Stellite 6® (or its analogues), whilst some [29] have identified 
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instead that only two phases are observed in the microstructure of sand cast Stellite 6®, with 

M7C3 carbides in the interdendritic regions of a Co-rich face-centred cubic matrix.  

Table 2 presents the measured proportion of the metallic elements in the three phases 

identified in Figure 1; other elements (including carbon) are excluded from the analyses. The 

Co-rich matrix has a cobalt content of 60.3 at% with chromium (26.3 at%) as the major alloying 

element. The metal content of the Cr-rich carbide is dominated by chromium (83.4 at%) with 

cobalt (12.9 at%) as the major alloying element. In the W-rich carbides, the metallic sites were 

filled by chromium and cobalt in almost equal amounts (~ 35 at%), with tungsten and silicon 

also making up significant fractions (18.1 at% and 8.9 at% respectively).  

Figure 2(a) is a BSE-SEM micrograph of the polished cast S-6 microstructure before autoclave 

exposure, with the box highlighting a region for which the AFM height map is presented in in 

Figure 2(b). By comparing the images in Figures 2(a) and 2(b), it can be seen that the polishing 

process has resulted in preferential removal of the softer matrix material, with the carbides 

(dark phase) in Figure 2(a) corresponding to the higher (brighter) regions the AFM image 

(Figure 2(b)). A profilometric line profile was taken across a representative carbide / matrix 

boundary region (its position indicated by the red line in Figure 2(b)) and is presented in Figure 

3 (along with other equivalent profiles following autoclave exposure which will be described 

later in the paper). In this case, it can be seen that the carbide is standing proud of the matrix 

by around 20 nm, with this height transition taking place over a distance of around 2 µm (i.e. 

a slope of ~ 1:100 in the transition between these two regions).  

Figure 4 shows XRD patterns of the cast S-6 before and after autoclave exposure; given the 

coarse microstructure of the cast material, an attempt was made to eliminate effects of 

microstructural texture on the patterns by using the same sample placed in the same location 

(including orientation) in the diffractometer. Both patterns exhibit peaks associated with the 

two main phases, namely Co fcc and Cr7C3, confirming that the Cr-rich carbide phase 

observed in Figure 1 has the Cr7C3 structure, as previously described [30]. Due to its small 

fraction in the microstructure, no evidence of the W-rich carbide was observed in the XRD 
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pattern. No significant differences were observed in the XRD pattern following autoclave 

exposure (both in peak position and relative height) indicating that any corrosion product 

retained on the surface was either amorphous in nature or too thin to be a significant influence 

on the XRD pattern.  

Micrographs of the cast S-6 both before and after autoclave exposure are presented in Figure 

5(a) - (f). The images are presented in pairs, with the same regions being imaged before and 

after exposure at the same magnifications so that specific microstructural changes can be 

readily identified; Figures 5(a) – (d) are optical micrographs, whilst Figures 5(e) – (f) are BSE-

SEM micrographs. 

Following autoclave exposure, optical microscopy revealed regions with different colouration 

on the surface; these are interference colours associated with the corrosion product formed, 

and if it assumed that these are akin to the colours associated with heat tinting of stainless 

steels, the yellow / brown colour indicates a film thickness of up to ~ 75 nm, with the blue 

colouration being associated with thicker films, typically between 100 - 175 nm [31]. In 

correlating the colours with the microstructural features (Figures 5(a) and (b)), a brown 

colouration is observed on the dendritic regions of the Co-rich matrix whilst the blue 

colouration was observed in the regions with the Cr-rich carbide. 

Higher magnification optical microscopy (Figures 5(c) and (d)) showed that the blue 

colouration (associated with a thicker corrosion film) was actually associated not with the 

carbide itself, but instead was associated with the regions of the Co-rich matrix close to the 

Cr-rich carbide, with the Cr-rich carbide and the bulk of the Co-rich matrix exhibiting a brown 

colouration, indicating preferential corrosion of the Co-rich matrix in regions close to a 

boundary with the Cr-rich carbide. Figures 5(e) and (f) are a BSE-SEM image pair of the cast 

S-6 microstructure before and after autoclave exposure, and were chosen so that a region 

where the W-rich carbides had formed was included; Figure 5(e) shows that a thin layer of the 

W-rich carbide has formed at the boundary between the Co-rich matrix and the Cr-rich carbide, 

although it is noted that not all of the boundary of this type is decorated in this way. 
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Following autoclave exposure, a dark boundary layer is observed to have formed at the 

boundary between the Co-rich matrix and the Cr-rich carbide, but only in regions which were 

not decorated with the W-rich carbide. More specifically, the dark boundary layer was not 

observed either at the boundary between the Cr-rich carbide and the W-rich carbide or at the 

boundary between the W-rich carbide and the Co-rich matrix, except where the amount of W-

rich carbide was very small, in which case engulfment was sometimes observed, an example 

of which is highlighted in Figure 5(f). Careful comparison between Figure 5(e) (before 

exposure) and Figure 5(f) (after exposure) indicates that the dark layer that has appeared after 

the autoclave exposure is formed from the Co-rich matrix rather than from the Cr-rich carbide; 

an example of an area where it is clear the it is the matrix which is corroding to form the dark 

boundary layer is highlighted in Figure 5(f). 

Figure 6(a) is a BSE-SEM image of the region of the exposed sample highlighted in the optical 

image shown in Figure 5(d) with Figures 6(b)-(g) being the corresponding EDX maps of cobalt, 

chromium, iron, oxygen, silicon and tungsten The blue / white regions in the optical image 

(Figure 5(d)) can be clearly identified as the Co-rich matrix, with the BSE-SEM image in Figure 

6(a) clearly revealing a dark boundary layer at some (but not all) of the interface between the 

Co-rich matrix and the Cr-rich carbide after exposure. The EDX maps show that there is no 

clear segregation of the metallic elements within either of the two phases themselves 

(although the preferential partition between the phases is clear and is in accord with the data 

presented in Table 2). The oxygen map in Figure 6(e) confirmed that the dark layer observed 

at the boundary between the Co-rich matrix and the Cr-rich carbide in Figure 6(a) was rich in 

oxygen. 

A slightly reduced region of the area of the exposed cast S-6 investigated by EDX in Figure 6 

was also investigated by AFM. The BSE, optical and AFM maps (both height and current) of 

this region are presented in Figures 7(a) to (d) respectively, with the correlation between 

features using the four techniques being readily observed. The cAFM contact mode height 

map indicates that, following exposure, the Cr-carbide region is still higher than the Co-rich 
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matrix. To compare this quantitatively with the height map before exposure, a line profile was 

extracted from this map (see the red line in Figure 7(c)) with this line profile being presented 

alongside one taken from the unexposed cast S-6 in Figure 3; here, it can be seen that 

following exposure, the height difference between the Cr-rich carbide and the Co-rich matrix 

is more than 60 nm (much greater than the equivalent height difference before exposure) 

indicating that the Co-rich matrix recedes faster than the Cr-rich carbide during exposure.  

Conductive AFM (cAFM) was conducted with the map of the same area presented in Figure 

7(d). In this map, the highest resistance (lowest current) following autoclave exposure is 

observed in the Co-rich matrix regions close to the Cr-rich carbide, with the current flow both 

in the Cr-rich carbide itself and in the Co-rich matrix further away from its boundary with the 

Cr-rich carbide being higher. This observation is in accord with the optical image of the same 

area presented in Figure 7(b) and indicates that the high resistance is associated with the 

formation of a thicker oxide layer (which gives the blue / white interference colour) on the Co-

rich matrix close to its boundary with the Cr-rich carbide.  

Microstructure and corrosion behaviour of the HIPed S-6 alloy 

The measured chemical composition of the HIPed S-6 is presented in Table 1, both in weight 

and atomic fractions. The HIPed S-6 has a significantly lower carbon content than the cast S-

6 (1.0 wt. % compared to 1.5 wt. %) along with significantly lower iron and nickel contents. A 

BSE-SEM micrograph of unexposed the HIPed S-6 is presented in Figure 8 which shows a 

Cr-rich carbide phase (dark) and a Co-rich matrix phase (grey). The Cr-rich carbides have a 

size range of 1 - 5 μm and are uniformly distributed in the Co-rich matrix. The W-rich carbide 

phase which was observed in the cast S-6 was not observed in the HIPed S-6. 

Table 3 presents the proportion of metallic elements in the two phases identified in Figure 8; 

other elements (including carbon) are excluded from the analyses. The Co-rich matrix has 

chromium and iron contents of 25.2 at% and 0.9 at% respectively, notably less than the 

equivalent values for the Co-rich matrix of the cast S-6 (26.3 at% and 3.2 at% respectively – 

see Table 2); in the case of the chromium content, this is unexpected given that the carbon 
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content of the HIPed S-6 is significantly lower than that of the cast S-6 (increasing carbon 

results in chromium depletion of the matrix due to carbide formation) and may result from the 

EDX interaction volume being of the same scale as the microstructural features, with signal 

therefore coming from the carbides as well as the matrix. The composition of the Cr-rich 

carbide in the HIPed S-6 is very similar to that of the Cr-rich carbide observed in the cast S-6 

(Table 2), with the metallic fraction being dominated by chromium with cobalt as the main 

secondary element.  

Figure 9 shows the XRD patterns of the HIPed S-6 before and after autoclave exposure; as 

for the cast S-6, both patterns exhibit peaks associated with the two main phases, namely of 

Co fcc and Cr7C3, confirming that the Cr-rich carbide phase observed in Figure 8 has the Cr7C3 

structure. Again, no significant differences were observed in the XRD pattern following 

autoclave exposure (both in peak position and relative height) indicating that any corrosion 

product retained on the surface was either amorphous in nature or too thin to be a significant 

influence on the XRD pattern. 

As before, micrographs of the HIPed S-6 both before and after autoclave exposure are 

presented in Figures 10(a) - (d). The images are presented in pairs, with the same regions 

being imaged before and after exposure at the same magnifications so that specific 

microstructural changes can be identified. Comparing the optical micrographs in Figures 10(a) 

and (b) indicates a general brown-blue colouration of the sample surface as a result of the 

autoclave exposure; these images are at the same magnification as those presented for the 

cast S-6 in Figures 5(a) and (b), but due to the fine scale of the HIPed microstructure, the 

nature of corrosion across the different microstructural phases cannot be resolved optically in 

this case. Figures 10(c) and Figure 10(d) are BSE-SEM micrographs of the same region of 

HIPed S-6 before and after exposure. Figure 10(d) shows very little evidence of corrosion 

having taken place following autoclave exposure; specifically, no dark boundary layer between 

the Cr-rich carbide and Co matrix phases (as seen in the cast S-6 sample in Figure 5(f)) was 

observed.  
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In the examination of the cast S-6 following autoclave exposure, AFM was conducted on a 

particular region that had already been examined by SEM; however, due to the fine scale of 

the microstructure, this correlation between SEM and AFM imaging was not possible for the 

HIPed S-6. Figure 11(a) is a high magnification optical micrograph of exposed HIPed S-6 

where it can be seen that the colouration due to corrosion during exposure is less apparent 

on the carbides than it is on the matrix. AFM maps of the autoclave-exposed surface are 

presented in Figures 11(b) and (c); the cAFM tapping mode height map (Figure 11(b)) 

indicates that after exposure, the Cr-rich carbides were higher than the Co-rich matrix as 

previously observed for the cast S-6 after exposure; to compare these quantitatively, a line 

profile was extracted from this map (see the red line in Figure 11(b)) and this line profile is 

presented alongside that taken from the exposed cast S-6 in Figure 3; here, it can be seen 

that following exposure of the HIPed S-6, the height difference between the Cr-rich carbide 

and the Co-rich matrix is very similar to that observed in the cast S-6, namely around 60 nm.  

cAFM of the autoclave exposed HIPed S-6 is presented in Figure 11(c); as observed for the 

cast S-6, the carbide regions exhibit the highest current flow, indicating that these are not as 

effectively covered by a higher resistance corrosion product as the matrix phase. There are 

variations in the current flow in the matrix itself, with some evidence that the regions of lowest 

current flow are in the matrix close to the carbides.  

Microstructural development in the cast S-6 and HIPed S-6 alloys 

It is clear that the cast and HIPed S-6 materials are microstructurally different, and that they 

also exhibit very different corrosion behaviours. In seeking to understand these differences, it 

must be recognised that as well as being manufactured by very different processes, the two 

materials also have different compositions, and thus there is a need to understand the 

microstructural development in these two alloys in order to better understand the factors which 

control the corrosion behaviour.  

During solidification of complex alloys such as S-6, dendritic and eutectic microstructures are 

often observed, with these resulting in substantial segregation of some alloying elements 
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(such as chromium [32]) and resulting in cored structures across the dendrites. Figure 12 

presents EDX data relating to the coring of a dendrite arm within the cast S-6 structure, with 

Figure 12(a) indicating the location of an EDX linescan, and Figure 12(b) showing the 

measured concentrations of both chromium and silicon across the dendrite arm. The dendrite 

arm is around 30 µm in width and is bounded on both sides by M7C3; close to these boundaries 

with the M7C3, depletion in chromium and enrichment in silicon was observed across the 

dendrite arm. Given that the carbides themselves are higher in chromium and poorer in silicon 

than the matrix, the respective depletion and enrichment in the dendrite arms in the regions 

up to around 5 µm from the carbides cannot be attributed to EDX interaction volumes 

overlapping with the carbides themselves; indeed, given the interaction volumes, the actual 

depletion of chromium and enrichment of silicon in the C-rich matrix close to the Cr-rich 

carbide is expected to be much higher than indicated by the EDX data presented in Figure 

12(b). 

To understand the microstructural development in the cast S-6, Thermo-Calc was employed; 

Scheil-Gulliver solidification was employed to account for the microsegregation (coring) that 

is a consequence of the rejection of solutes by the solid into the interdendritic liquid [33] with 

carbon being retained as a fast-diffuser. The predicted mass fraction of solid as a function of 

temperature is shown in Figure 13(a) with indications of the temperatures that certain phases 

begin to form in the microstructure. At 1272°C, the formation of both Co fcc and M7C3 begins 

and continues as the temperature continues to fall, with only ~ 9  wt.% of the material predicted 

to remain as liquid by the time that the temperature had fallen to 1200°C. Solidification 

continues as the temperature falls further, with the model predicting that M12C will begin to 

form from the liquid at around 984°C. It is noted that although both M6C and M12C were allowed 

in the solidification model, the model did not predict formation of M6C. The prediction of M12C 

as a minor phase is in accord with the micrograph presented in Figure 5(e) and with the 

identification of M12C in sand cast Stellite 6® by Yu et al [30]. For comparison, the equilibrium 

solidification of material with the cast S-6 composition was also modelled. In this case, in 
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contrast to the Scheil-Gulliver solidification model, Co (fcc) and M7C3, are the only phases 

predicted to form upon solidification, with a carbide fraction of 15 wt.% at the solidus 

temperature.  

Figure 13(b) shows the predicted change in the composition of the cobalt-rich matrix formed 

at each temperature on cooling during Scheil-Gulliver solidification of the cast S-6. As can be 

seen, strong partition of both chromium and silicon are observed, with the first matrix to solidify 

(i.e. the centre of the dendrite arms) being enriched in chromium and depleted in silicon, with 

the last material to solidify (that bounding the M7C3) being depleted in chromium and enriched 

in silicon. The change in composition is significant between the first matrix to solidify and the 

matrix formed when there is just 9 wt. % liquid remaining (at about 1200°C), with the chromium 

level falling from ~ 24 at% to ~ 21 at% over this temperature range. It should be noted that 

these values cannot be directly compared with the values in Table 2 and Figure 12(b) since 

the carbon values are included in the data in Figure 13(b) but not included in the measured 

values. However, it should be noted that the highest predicted values of the chromium content 

of the matrix are around 24 at%, whereas the measured values reported in Table 2 and Figure 

12(b) are generally greater than 26 at. %.  

For the HIPed S-6, it is assumed that the equilibrium phase fractions and composition are 

achieved during the HIPing process which takes place at 1200°C; moreover, due to relatively 

slow diffusion in the solid state on cooling from the HIPing temperature, the phase 

compositions and fractions in the material at room temperature are assumed to be those of 

predicted by equilibrium conditions at the HIPing temperature. Accordingly, Thermo-Calc was 

employed to predict the equilibrium composition and phase fractions at the HIPing temperature 

for the HIPed S-6 material, using the measured compositional information (as presented in 

Table 1). Under equilibrium conditions, the solidus temperature is just below 1260°C, and at 

the HIPing temperature (1200°C), the microstructure is made up of 11 wt% M7C3 and 89 wt% 

Co-rich matrix. Table 4 shows the predicted compositions of the two phases at the HIPing 

temperature; it is noted that the predicted chromium content of the cobalt-rich matrix (24 at%) 
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is slightly less than the EDX-measured value of 25.2 at% reported in Table 3, but that in 

general, there is good correlation between the predicted composition of the matrix (Table 4) 

and that measured by EDX analysis (Table 3). It is noted that the predicted chromium content 

in the matrix phase of the HIPed S-6 is similar to the highest matrix chromium content 

predicted for the cast S-6 (Figure 13b), but it is noted that the chromium content in the cast S-

6 is predicted to fall significantly as solidification proceeds.  

Discussion 

Microstructural characteristics of the cast S-6 and HIPed S-6 alloys 

Although both materials examined in this work can be classified as S-6 alloys, there are a 

number of significant differences between the microstructures of the cast and the HIPed 

materials. In the cast S-6, a coarse microstructure is observed, with a dendritic matrix and 

M7C3 carbides in a semi-continuous network, with a small fraction of M12C carbides which 

decorate the boundaries between the M7C3 and the matrix. In the HIPed S-6, the M7C3 

carbides are both much smaller and evenly dispersed and no M12C carbides are observed; in 

both cases, the experimental results are generally in accord with Thermo-Calc microstructural 

predictions The fine, evenly distributed carbide in the HIPed S-6 is typical of that of an alloy of 

this type produced from a gas-atomised powder [5]; during the solid state HIPing process, the 

carbides will grow only sluggishly due to the low diffusion rates, especially when compared to 

the growth of the carbides from the melt in the cast alloy.  

The XRD patterns of the cast S-6 in Figure 4 and the HIPed S-6 in Figure 9 showed the same 

peaks but with very different intensities. The XRD pattern of the cast S-6 had peaks at 

39°,44.8°,51.7° and 82.8° associated with Cr7C3 which exhibited higher intensities than the 

same Cr7C3 peaks in the XRD pattern of the HIPed S-6. The remaining Co fcc peaks had a 

higher intensity in the HIPed S-6 than in the cast S-6. In the cast S-6, each dendrite has one 

prevalent crystal orientation, and the coarse cast S-6 structure has therefore resulted in very 
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different relative intensities of the various peaks when compared with the less textured HIPed 

S-6.  

The measured chemical compositions of both the cast S-6 and HIPed S-6 are presented in 

Table 1; it is notable that the former contains higher amounts of carbon, iron and nickel (6.6, 

3.0 and 2.6 at% respectively for the cast alloy compared to 4.5, 0.7 and 0.8 at% respectively 

for the HIPed alloy). The higher carbon content in the cast S-6 results in an increase in the 

carbide fraction (predicted to be 15 wt. % at the solidus temperature), which will result in more 

chromium (the strongest carbide former) being tied up in the carbides, and thus in its depletion 

from the matrix. In contrast, the significantly lower carbon content in the HIPed S-6 will result 

in a lower fraction of carbides (predicted to be 11 wt. % at the HIPing temperature), but also 

in less chromium depletion from the matrix. However, it is recognised that the measured 

chromium contents of the cobalt-rich matrices in the two cases do not align with this prediction, 

with that in the cast S-6 being 26.3 at% (Table 2) and that in the HIPed S-6 being 25.2 at% 

(Table 3).  

Table 1 indicates that there are some other significant differences in the basic compositions 

of the two alloys, the most notable being the iron content, with the cast S-6 and HIPed S-6 

alloys having iron contents of 3.0 and 0.7 at% respectively. A previous investigation by Crook 

[34] stated that iron may be detrimental to the corrosion resistance of cobalt-based alloys, and 

in this regard, the higher iron content and greater tendency for corrosion of the cast S-6 are 

noted.  

Corrosion behaviour of the cast S-6 and HIPed S-6 alloys 

The corrosion behaviour of the cast S-6 and HIPed S-6 alloys under the conditions examined 

are very different. Both show general corrosion as evidenced by the colouration following 

exposure; the interference colours observed indicate that the corrosion films are relatively thin 

(less than ~ 150 nm) and thus indicate that both alloys exhibit high corrosion resistance. 

Similar behaviour was observed by Hocking and Lister [35] who investigated the corrosion of 
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Stellite 6® in conditions simulating the primary circuit of an operating PWR and attributed this 

to the formation of a chromium-rich oxide over both the matrix and carbide phases.  

It has been argued that HIPing results in enhanced in corrosion resistance due to reduced 

chemical segregation [36] and this is in accord with the observations presented in this paper. 

In contrast to the high levels of corrosion resistance observed for the HIPed S-6, the cast S-6 

exhibited preferential corrosion of the Co-rich matrix close to the matrix-carbide boundary; this 

preferential corrosion was observed in the form of both a thicker corrosion film in this region 

(blueing as seen in Figure 5(d)) along with the formation of an oxide film between the carbide 

and the matrix (Figures 5(f) and 6(e)). It is proposed that there are two reasons why these 

types of corrosion are promoted, both of which depend upon the fact that the matrix close to 

the M7C3 is depleted in chromium due to segregation during solidification, with this being 

supported by both experimental evidence (Figure 12) and thermodynamic modelling (Figure 

13(b)). Similar behaviour was seen in the corrosion of Stellite 6® weld-deposit in deaerated pH 

adjusted water which was attributed to chromium depletion in the matrix surrounding the 

carbides [37]. This chromium depletion in the matrix promotes: (i) general corrosion of the 

depleted matrix material (resulting in the blueing observed and formation of a dark boundary 

and a halo ); (ii) enhanced interfacial corrosion of the depleted material promoted by the high 

electrical potential between the matrix and the electrically conducting M7C3 carbide (as also 

observed in a Stellite 3 analogue alloy [20]) which results in the interfacial corrosion as seen 

in Figure 5(f). It is notable that in the work on the Stellite 3 analogue which was exposed under 

similar conditions to those employed in this work [20], the interfacial corrosion was seen to 

have a width of around 300 nm on the surface and penetrated to a depth of around 1 µm below 

the surface. Moreover, although the Stellite 3 analogue had carbides of both M7C3 and M12C 

types (both of which are electrical conductors), corrosion was observed to occur only between 

the M7C3 and the matrix and not between the M12C and the matrix, with this difference being 

ascribed to the differences in electrical potentials; again, in the current work, in places where 

the grain boundary between the M7C3 and the matrix has been decorated with a film of silicon-
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rich M12C (Figure 5(f)), interfacial corrosion is not observed. For the exposed cast S-6 (Figure 

7(d)), the highest current was measured in the Cr-rich carbide with a lower current being 

carried through the Co-rich matrix due to it being covered with a more insulating oxide 

corrosion product; the thicker oxide region with the blue colour (Figure 5(d) and 7(b)) had a 

high electrical resistance hence the lowest current was measured (Figure 7(d)). 

Figure 3 indicates that whilst there is a small height difference between the carbide and matrix 

phase before autoclave exposure (due to preferential material removal in the grinding and 

polishing processes), this is much more pronounced following autoclave exposure, indicating 

that the general corrosive recession of the metallic matrix is faster than that of the carbides, 

with this observation in accord with the rest of the body of experimental evidence presented.  

In contrast to the behaviour of the cast S-6, there is clear evidence that the HIPed S-6 does 

not exhibit preferential corrosion at the boundary between the Co-rich matrix and the Cr-rich 

carbide. Given that the carbide and matrix will be broadly similar to those in the cast S-6 (with 

similar electrical potentials between them), it is concluded that the matrix in the HIPed S-6 has 

a high enough chromium content to successfully resist interfacial corrosion. It is proposed that 

it is the chromium depletion in the matrix of the cast S-6 close to its interface with the Cr-rich 

carbide that results in preferential corrosion here; it is again noted that EDX measurements 

lacked the spatial resolution to adequately quantify the chromium depletion in the matrix close 

to the boundary with the Cr-rich carbide, and the measured values of ~ 26 at% are likely to be 

an overestimate due to signal emanating from the Cr-rich carbide itself. This is substantiated 

via the Scheil-Gulliver solidification modelling which indicates that the chromium content of 

the matrix solidifying at a particular temperature will have fallen to 21 at. % even by 1200°C.  

Even where there is no chromium segregation in the matrix (such as is assumed to be the 

case in the HIPed S-6), the chromium concentration in the matrix (required to confer corrosion 

resistance) depends not only upon the overall chromium content, but also critically upon the 

carbon content of the alloy (with the carbon preferentially tying up the chromium in the form of 

carbides). For the HIPed S-6 alloy composition, Thermo-Calc was employed to make 
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predictions of the effect of the overall carbon content of the alloy on both the equilibrium 

carbide content and on the equilibrium chromium content in the matrix at 1200°C (to simulate 

the HIPing conditions). As can be seen in Figure 14, the mass fraction of carbide increases 

with the carbon content (which will result in higher hardness, and potentially to higher wear 

resistance), but the chromium content of the matrix falls with increasing carbon level at a rate 

of approximately 7 at.% Cr for each 1 wt.% carbon. As such, it is argued that care needs to 

be exercised with the alloy specification of S-6 alloys, as it is clear that over the allowed range 

of carbon contents (0.9 – 1.4 wt%), there will be a significant difference in the chromium 

content of the matrix. The allowed range of the overall chromium content in the Stellite 6 

specification ranges from 27 – 32 wt%, and it is notable that the HIPed S-6 is towards the 

bottom of this range whilst the cast S-6 is in the middle of this range (Table 1). However, whilst 

the HIPed S-6 has an overall carbon content at the lower end of the allowed range (1.0 wt. 

%), the cast S-6 has a carbon content just above the upper end of the allowed range (1.5 wt. 

%), and this combined with the significant chromium segregation in the matrix as a result of 

its solidification results in the localised corrosion observed in the cast S-6. It is suggested that 

in looking for S-6 alloys with high levels of corrosion resistance, then the chromium content 

should be towards the upper end of the range and the carbon content at the lower end of the 

range, especially when specifying a cast material where chromium segregation will take place 

during processing.  

 

Conclusion 

The corrosion behaviour of two commercially available Stellite 6 analogue materials in 

conditions designed to simulate conditions in a PWR primary circuit was examined. The two 

alloys differed both in their chemical composition but also (as a result of the different 

manufacturing methods) in their microstructures. Both alloys were made up of a Co-rich matrix 

and a Cr-rich carbide, with a small amount of W-rich carbide also in the cast alloy. Using a 
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variety of techniques, it was demonstrated that in both alloys (cast S-6 and HIPed S-6), the 

Co-rich matrix corrodes more rapidly than the carbides, resulting in the formation of an 

electrically resistive oxide. In the HIPed S-6 alloy, the matrix is homogeneous in nature as the 

HIPing process will tend to promote equilibrium in the system, and this homogeneity means 

that no preferential corrosion of the matrix phase is observed in this material. In contrast, the 

cast S-6 exhibits significant segregation of chromium and silicon in the matrix phase, with 

chromium depletion close to the boundaries with the Cr-rich carbide. This segregation results 

in preferential corrosion of the matrix in these regions.  

The corrosion behaviour has thus been shown to depend upon the inhomogeneities in the 

chromium content of the matrix, but it is also noted that it will depend not just upon the variation 

in the chromium content but also upon its absolute value. As well as casting giving rise to a 

microstructure which is more prone to corrosion, it is noted that high ratios of carbon to 

chromium (even within the allowed specifications for the alloy type) will lead to lower levels of 

chromium in the matrix, which will again make the alloy more prone to corrosion. In the alloys 

examined in this work, it is noted that the cast S-6 has a much higher carbon to chromium 

ratio that the HIPed S-6 alloy which may also have resulted in the corrosion behaviour 

observed. 
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