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ABSTRACT 

Molinate is a pesticide widely used, both in space and time, for weed control in rice 

paddies. Due to its water solubility and affinity to organic matter, it is a contaminant of 

concern in ground and surface waters, soils and sediments. Previous works have showed that 

molinate can be removed from soils through electrokinetic (EK) remediation. 

In this work, molinate degradation by zero valent iron nanoparticles (nZVI) was 

tested in soils for the first time. Soil is a highly complex matrix, and pollutant partitioning 

between soil and water and its degradation rates in different matrices is quite challenging. A 

system combining nZVI and EK was also set up in order to study the nanoparticles and 

molinate transport, as well as molinate degradation.  

Results showed that molinate could be degraded by nZVI in soils, even though the 

process is more time demanding and degradation percentages are lower than in aqueous 

solution. This shows the importance of testing contaminants degradation, not only in aqueous 

solutions, but also in the soil-sorbed fraction. It was also found that soil type was the most 

significant factor influencing iron and molinate transport. The main advantage of the 

simultaneous use of both methods is the molinate degradation instead of its accumulation in 

the catholyte. 
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HIGHLIGHTS 

x Molinate is degraded in soil by zero valent iron nanoparticles (nZVI) 

x Higher contact time of nZVI with soil facilitates molinate degradation  

x Soil type was the most significant factor influencing iron and molinate transport  

x When using nZVI and EK molinate is degraded, not only transported to catholyte 
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1. Introduction 

The widespread use of pesticides in intensive agriculture leads to soil and 

groundwater contamination. One of the pesticides that causes environmental concern is 

molinate (S-ethyl N,N-hexamethylene-1-carbamate), often applied annually to flooded fields 

during rice seeding to control the overgrowth of weeds (Castro et al., 2005). In 2013, there 

were 165.5 million hectares of rice paddies worldwide (FAO, 2013). Molinate can be found 

in natural surface and ground waters and also in wastewaters (Köck-Schulmeyer et al., 2013) 

due to its high water solubility (Table 1), as well as in soils and sediments near rice paddies 

(Castro et al., 2005; Cerejeira et al., 2003; Hildebrandt et al., 2007).  

Zero valent iron nanoparticles (nZVI) degraded different pesticides in aqueous 

solutions, such as atrazine (Bezbaruah et al., 2009; Joo and Zhao, 2008; Satapanajaru et al., 

2008), lindane (Elliott et al., 2009; Joo and Zhao, 2008), chloroacetanilide (Alachlor) 

(Bezbaruah et al., 2009) and molinate (Feitz et al., 2005), and remediated soils contaminated 

with pesticides such as malathion (Singhal et al., 2012), dinoseb (Satapanajaru et al., 2009), 

and chlorpyrifos (Reddy et al., 2013). Most of the research with iron nanoparticles analyzed 

the contaminants degradation in aqueous media, showing high degradation rates, including 

molinate degradation by nZVI through an oxidative process (Feitz et al., 2005; Joo et al., 

2004). However, only a limited number of studies have assessed nanoparticle performance 

for soil-sorbed contaminants (Singh et al., 2012; Zhang et al., 2011), and as far as our 

knowledge concerns, no previous study was done for soil-sorbed molinate. 

The combination of electrokinetic remediation (EK) and nZVI allows to enhance the 

transport of iron nanoparticles in low permeability fine-grain soils (Chowdhury et al., 2012; 

Gomes et al., 2013; Gomes et al.; Jones et al., 2010; Pamukcu et al., 2008; Rosales et al., 

2014) and to degrade organic contaminants (Fan et al., 2013; Reddy et al., 2011; Yang and 

Chang, 2011; Yuan et al., 2012). With the simultaneous use of both remediation techniques 
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(EK and nZVI), the contaminant is not only removed from soil (traditional outcome in EK), 

but it is additionally degraded by nZVI, whose transport can also be enhanced by electric 

direct current. Electrokinetics can successfully remove molinate from soils to the catholyte 

due to electroosmotic transport as showed by Ribeiro et al. (2011), both by experimental 

work and modeling. 

This work studies for the first time the degradation of molinate in soil using nZVI. It 

also assesses the integration of nZVI and electrokinetics to enhance the nanoparticles and 

molinate transport and degradation in two different soils. 

2. Materials and Methods 

2.1 Soils 

We used two different soils: S1 (sandy), sampled near a sanitary landfill at Valadares, 

Vale de Milhaço, Portugal, and S2 (sandy loam with higher organic matter content), sampled 

in an industrial park, in central Portugal. Table 2 presents some of their physical and 

chemical characteristics.  

2.2. Chemicals and solvents 

Molinate standards were Pestanal grade, obtained from Riedel-de Haën (Seelze, 

Germany). The technical molinate (95%) used in the experiments was from Herbex (Sintra, 

Portugal). The solvents used in the present study were from Riedel-de Haën (Seelze, 

Germany), Panreac (Barcelona, Spain), Carlo Erba (Milan, Italy) and Merck (Darmstadt, 

Germany). Acetone was Gradient Grade, hexane was Pestanal grade, diethyl ether was ACS, 

methanol was HPLC grade and dichloromethane was SupraSolv grade. The water was 

distilled and purified with a Milli-Q plus system from Millipore (Bedford, MA, USA). The 

iron nanoparticles were in a slurry-stabilized suspension (NANOFER 25S, NANO IRON, 

s.r.o., Rajhrad, Czech Republic) negatively charged due to the coating with polyacrylic acid 
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(PAA), average particles size of 50 nm, average surface area of 20-25 m2 g-1, narrow particle 

size distribution of 20-100 nm and high iron content in the range of 80-90 wt. %. 

2.3. Degradation tests 

Both soils were spiked with technical molinate to obtain a final concentration of  

290 mg kg-1. After air-drying, 1 g of soil and 25 mL of deionized water and 200 µL of nZVI 

slurry (final concentration 1.0 g L-1 Fe) were placed in glass vials with a screw cap, in 

duplicate, under aerobic conditions, as the molinate degradation is an oxidative process (Joo 

et al., 2004). Blank samples were prepared as control, using the same spiked soil and without 

nZVI, for all the tested times. These soil suspensions were shaken in an orbital shaker 

(Bunsen A0 400) at 200 rpm at 25 ± 2ºC. After 24h, the samples were centrifuged for 10 min 

at 7500 rpm (Sorval RC5C Plus centrifuge). The supernatant was then removed and extracted 

through Solid Phase Extraction (SPE) using Strata X cartridges (200 mg/3mL; Phenomenex 

Torrance, CA, USA) on a vacuum rack. The molinate in the soil was extracted by 10 mL 

hexane after 20 min sonication (Bandelin Sonarex Super RK 102 H). The hexane extract was 

filtered through a 0.45 μm syringe Acrodisc PTFE filter (Pall Gelman Sciences, Ann Arbor, 

MI, USA) and concentrated under a gentle stream of nitrogen until 1.0 mL before analysis. 

2.4. Electrokinetic experiments 

2.4.1 Electrokinetic cell 

The EK experiments were carried out in a laboratorial cell modified at the New 

University of Lisbon. The cell is divided into three compartments, consisting of two electrode 

compartments (L = 7.46 cm, internal diameter = 8 cm) and a central one (L = 4 cm, internal 

diameter = 8 cm), in which the soil, saturated with deionized water, is placed (Figure 1). This 

central compartment, made of Plexiglas, was equipped with an injection reservoir (L = 1 cm) 

for the iron nanoparticles, separated with 1 mm nylon mesh and a low speed filter paper. A 

set of five cellulose filters, previously tested and known to work as passive membranes 
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(Whatman filter paper), were used to separate the soil from the electrolytes. The soil section 

near the cathode is a non-spiked S1 soil in order to assess the molinate transport towards the 

cathode (Figure 1). A power supply (Hewlett Packard E3612A, Palo Alto, USA) was used to 

maintain a constant DC and the voltage drop was monitored (Kiotto KT 1000H multimeter). 

The electrodes were platinized titanium bars, with an L = 5 cm and a diameter of 3 mm 

(Bergsøe Anti Corrosion A/S, Herfoelge, Denmark). The fresh electrolyte was a 10−2 M 

NaNO3 solution, with pH 7.0, and a peristaltic pump (Watson-Marlow 503 U/R, Watson-

Marlow Pumps Group, Falmouth, Cornwall, UK) distributed it to the electrodes 

compartments. In all experiments, the electrolytes were collected into flasks and samples 

were analyzed.  

2.4.2. Experimental conditions 

Five different laboratory experiments (A–E) were carried out, according to the 

experimental conditions presented in Table 3. The variables considered were: i) the type of 

soil (two different soils with different texture, cation exchange capacity and organic matter 

content), ii) pH control as an EK enhancement method, and iii) absence of current as control 

experiments. No pH control experiment was made with soil S1 because its characteristics 

(sandy texture, low cation exchange capacity and low organic matter content) facilitate both 

molinate and nZVI transport.  

The electrolyte used, in both anode and cathode compartments, was 10-2 M NaNO3, 

with a flow rate of 1 mL min-1. All experiments lasted 6 days (~145 h). A daily injection of 1 

mL nZVI slurry – NANOFER 25S was made at the same time, after 10 min sonication, 

performing a total of 5 mL injected in each experiment. Electrolyte samples (catholyte and 

anolyte) were collected daily during the experiments, and their pH and volume were 

registered. At the end of each experiment, the total soil in the cell was sectioned into three 

“slices” and the center one was further divided into three (down, center and top) for iron and 
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molinate analysis. Subsamples were collected for humidity measurements. In experiments B 

and C, pH control was performed in the anolyte, through the manual addition of NaOH 1M, 

in order to keep the pH neutral (~7).  

2.5. Iron analysis 

The iron was extracted from soil by the sodium dithionite-citrate-bicarbonate (DCB) 

method (Mehra and Jackson, 1960) and from the electrokinetic cell and the membranes with 

concentrated hydrochloric acid. The iron analyses were made using Inductively Coupled 

Plasma-Atomic Emission Spectrometer (ICP) on a Horiba Jobin-Yvon equipment.  

2.6 Molinate analysis 

2.6.1. Aqueous samples: electrolyte solutions  

The extraction of the molinate present in the electrolyte solutions was performed by 

SPE, using Strata X cartridges (500 mg/6 mL; Phenomenex, Torrance, CA, USA). The SPE 

cartridges were conditioned by washing with 2 × 3 mL of methanol, followed by 2 × 3 mL of 

Milli-Q water. The pH of the anolyte and catholyte daily samples was adjusted to values 

between 5 and 7, adding HCl or NaOH, before extraction. The aqueous samples were passed 

through the cartridge approximately at a flow-rate of 10 mL min−1 by applying a moderate 

vacuum. After that, the cartridges were washed with water and dried for approximately 1 min 

by vacuum. The analytes trapped in the cartridges were eluted sequentially with 2 × 2 mL of 

dichloromethane. The sample extracts were concentrated under a gentle stream of nitrogen to 

1 mL. The samples were transferred to a vial and kept at −20ºC until GC analysis. 

2.6.2. Solid samples: soils and passive membranes 

Solid samples were extracted three times by sonication using 50 mL of methanol for 

10 min to assure molinate maximum recovery. All the extracts were collected, as one and 

concentrated to 10 mL using 250 and 50 mL pear-shaped evaporating flasks on a rotary 

evaporator, Büchi RE 111 (35ºC/moderate vacuum). The concentrated extracts were 
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transferred to a Kuderna Danish concentrator tube and evaporated to approximately 5 mL. In 

order to remove the particulate matter, the extracts were filtered through 0.5 µm glass 

microfiber filters (MFV-5, 47 mm; Filter-Lab, Barcelona, Spain), prior to the concentration 

step, and through 0.2 µm syringe Chromafil PTFE filters (Macherey-Nagel, Duren, 

Germany) prior to the evaporation step. 

2.6.3. Gas chromatography (GC) 

Molinate analyses were performed by gas chromatography/mass spectrometry 

(GC/MS) on a HP5890 series II GC coupled to a HP5972 MSD (Hewlett-Packard, Palo Alto, 

California, USA). The column used was a ZB-5 (5%-phenyl 95%-dimethylpolysiloxane) with 

30 m × 0.25 mm i.d. and 0.25 µm film thickness (Phenomenex, Torrance, CA, USA).   

The oven temperature was programmed starting at 80ºC for 2 min, increased to 100ºC 

at a rate of 4ºC min−1 and then increased 8ºC min−1 to 250ºC, where it holds for 5 min. 

Helium was used as carrier gas at a flow rate of 1.0 mL min-1. The injector was a 

split/splitless set at 250°C. The injections of 1.00 µl were performed at splitless mode (1 min) 

using an HP7673 autosampler (Hewlett-Packard, Palo Alto, California, USA). 

The mass spectrometer was operated in the electron ionization mode (EI, 70 eV). The 

interface temperature was set at 280ºC and the EI source at 176ºC. Molinate analysis was 

carried out by full scan for identification (scan range 40–300 amu) and selected ion 

monitoring (SIM) for quantitative analysis using the base peak of molinate. The HP5972 

MSD was tuned before analysis using PFTBA (perfluorotributylamine) as tuning standard. 

The data was registered and analyzed using ChemStation software (G1701BA, Version 

B.01.00). 
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3. Results and Discussion 

3.1. Degradation tests 

For both soils, the molinate concentrations in the supernatant are similar with and 

without iron nanoparticles. We would expect to find also identical concentrations in soils, but 

that does not occur (Figure 2), with molinate concentrations in soil being residual when iron 

nanoparticles are used. Comparing the molinate final amount in the experiments with and 

without nanoparticles (one-way analysis of variance – ANOVA), we found a significant 

difference for the concentrations of molinate in soils (p < 0.01). This supports the hypothesis 

that the iron nanoparticles degraded molinate added to the soil.  

Molinate degradation occurs via an oxidative pathway that requires oxygen and the 

formation of hydrogen peroxide and hydroxyl radical (Joo et al., 2004). The degradation in 

aqueous solution can shift the molinate equilibrium between water and soil, facilitating 

molinate desorption from soil, and its subsequent degradation while in solution. We can also 

hypothesize that part of molinate degradation occurred during the centrifugation and the 

extraction of the soil samples. Iron nanoparticles were removed from the aqueous solution 

and were visible in the solid phase – here they remained in contact with the soil for about 30 

to 45 minutes and molinate degradation could occur. Iron nanoparticles, because they are 

very strong reducing agents, are traditionally used for dechlorination of organochlorines 

(Elliott et al., 2008; Liu et al., 2005; Lowry and Johnson, 2004; Wang and Zhang, 1997). In 

reduction, the reaction occurs in the surface of the nanoparticles (Masciangioli and Zhang, 

2003; Yan et al., 2013). However, in the oxidative pathway, the reaction is dependent on the 

formation of hydrogen peroxide and the hydroxyl radical, and only occurs in aerobic media, 

being consequently favored in the supernatant where molinate can more easily react with the 

hydroxyl radical.  
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A lower recovery of molinate was found in soil S2 (55±15%), when compared to 

recovery in soil S1 (76±17%), what may be related to its higher soluble organic matter 

content that, probably, overloaded the SPE columns that presented a dark brown colour after 

the extraction. Potential losses due to hydrolysis, biodegradation, photolysis and evaporation 

processes (Köck-Schulmeyer et al., 2013) can also contribute to this low recovery. 

3.2 Electrokinetic experiments 

3.2.1 Transport of iron nanoparticles 

In all experiments, the aqueous solution in the anode compartment presented higher 

Fe concentrations than the one in the cathode compartment. In the majority of the catholyte 

samples, the iron concentrations were below the detection limit (100% of the samples in 

experiment A, 43% in experiment B, 86% in experiment C and 57% in experiment D, Table 

S2 in the Supplementary materials).  

We measured the highest iron concentrations in the aqueous solutions in the diffusion 

experiments (D and E) and more specifically in the anode compartment, due to the lower 

distance from the injection reservoir (only 1 cm, Figures 1 and 3). A strong orange color and 

nanoparticles sedimentation in the anode compartment was visible in these diffusion 

experiments, which explains the peaks in the last segment of the cumulative Fe curves 

(Figure 3). This sedimentation did not occur in the cathode. Concerning the variable soil, we 

measured near the double of iron (16.24 mg vs. 8.38 mg) in the anolyte in experiment E (soil 

S1, sandy soil) when compared with experiment D (soil S2, loamy soil with high organic 

matter content). Similarly, more iron was found at the anolyte for experiment B (soil S1) than 

experiment C (soil S2). The difference in the soils texture contributes to this difference in 

transport. The sandy soil S1 will allow a faster transport of the iron nanoparticles, due to its 

higher pore volume (Gomes et al., 2013). Adsorption phenomena (Zhang et al., 2011) in soil 

particles and humic acid accumulation on the nZVI surface (Kim et al., 2013) most likely 
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hinder iron transport and this can also contribute to the lower iron concentrations in the 

anolyte in experiments with soil S2, when compared to those with soil S1 under similar 

operational conditions (Figures 3 and 4).  

In the experiments with direct current (A, B and C), lower amounts of Fe were 

measured in the anolyte than in the diffusion experiments (D and E). Even though 

nanoparticles have a negative surface charge due to the polymer (PAA) coating, being 

expected to be electrophoretically transported towards the anode, electroosmotic flow 

generally occurs in the opposite direction (towards the cathode), and may hinder transport 

towards the anode, explaining lower concentrations found in the anolyte when direct current 

was applied. In the experiment with pH control (Exp. C, soil S2) 10 times more iron was, in 

average, found in the anolyte than in experiment A without pH control (soil S2), possibly 

because in this last case the advance of the acid front (H+) oxidizes nanoparticles (Fe0 

�̂Fe2+), and the resulting positively charged iron ion is transported towards the cathode. 

However, only very small amounts of iron were measured in the catholyte in all experiments, 

probably because there was not enough time to reach the cathode compartment. 

Comparing the amount of iron added and the remaining iron in the injection reservoir 

by the end of the experiments, the higher mobilization rate (1 - Cf/C0 x 100) was obtained for 

the experiment B (72%), followed by C (70%), E (62%), D (47%) and A (29%). The 

experiments with pH control (B and C) show an identical mobilization rate.  

An analysis of variance (ANOVA) with the iron concentrations in the aqueous phase 

showed that the observed variance can be explained, at a 0.05 level, by the type of soil (S1 

and S2) and the electric current (0 and 10 mA) (Table S1, Supplementary materials). The pH 

control was not significant to explain this variance. 

In addition to iron in the electrolyte, its presence in the soil was also analyzed and 

compared to the initial content. Iron enrichment in the different soil slices is shown in Figure 
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4. Experiment A had more additional iron in the soil (Figure 4), followed by experiments D, 

C, B and E. This higher iron concentration in the soil in experiment A may be explained by 

the change of the soil charge with the advance of the acid front from the anode end due to the 

absence of pH control. In these conditions, ions of H+ may adsorb to soil particles and 

increase the zeta-potential resulting in an increased adsorption of the PAA-coated iron 

nanoparticles. In all experiments, most of the iron was in the sections immediately after the 

injection reservoir. The section near the cathode (Section 5) presented the lowest amounts of 

additional iron (Figure 4), what is consistent with the concentrations found in the catholyte. 

This means that the iron accumulates in the nearest sections to the injection point. 

Nevertheless, no major differences existed in the three samples in the middle section (top, 

central and bottom) in experiments B, C and D, with relative standard deviation (RSD) of 

9%, 6% and 5%, respectively; while in experiments A and E was higher (22% and 37%). 

There was no iron accumulation or deposition in the bottom part of this section (section 3), 

when compared to the central and top samples.  

The mass balance of the iron shows that most of it stays in the injection reservoir of 

the cell, followed by the sum found in the soil and the passive membranes (Figure 5). This 

balance indicates a low mobility of the iron nanoparticles inside the experimental 

electrokinetic cell, most likely due to aggregation and sedimentation as also showed in other 

experimental setups with columns (Kocur et al., 2013; Phenrat et al., 2009; Saleh et al., 

2008).  

3.2.2. Transport and degradation of molinate 

Our results confirm the transport of molinate towards the cathode with EK (Figure 6), 

as the experimental data and modeling by Ribeiro et al. (2011) showed. In the diffusion 

experiments (D and E) more molinate is found in the anode than in the cathode due to direct 

contact between molinate-spiked soil and the anode compartment, while at the cathode side a 
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non-contaminated soil layer is placed adjacent to the cathode compartment (Figures 1 and 6), 

hindering the appearance of molinate in the catholyte. Table 4 presents the electroosmotic 

transport of molinate towards the cathode, the diffusion towards the anode, the final content 

in the soils and its removal rate. Removal rate includes molinate transport from the soil and 

molinate degradation, calculated as the percentage of the quotient between the difference of 

the initial and final concentrations, and the initial concentration.  

Previous studies have showed the strong adsorption of molinate in soils with high 

organic matter content (Alister et al., 2010) and this explains the 10-fold decrease in molinate 

in the anolyte of experiment D (soil S2, sandy-loam, 12.8% organic matter) when compared 

to experiment E (soil S1, sandy, 0.4% organic matter) (Figure 7). 

The soil type is statistically significant to explain the molinate variance in the 

electrolyte (Table S1, Supplementary materials). Comparing the data of all experiments, the 

direct current and pH control are not statistically significant (p = 0.05) to explain molinate 

concentrations in the aqueous phase.  

When an electric current is applied (experiments A, B, C) the amount of molinate in 

the anolyte decreases and molinate appears in soil section 5 (initially clean) near the cathode 

(Figure 7). This shows the electrokinetic transport of molinate towards the cathode. Once 

again, the higher amount of molinate in soil S2 (experiment C) compared to soil S1 

(experiment B) can be explained by adsorption to soil organic matter, resulting in lower 

molinate removal efficiencies in these experiments (around 70% in B versus almost 90% in 

C).  

The cumulative amounts of molinate found in the electrolyte (anolyte and catholyte) 

are less than 6% the initial amount in the soil (Table 4). In previous studies with EK but 

without nanoparticles (Santos, 2008), approximately 60% of the molinate was found in the 

catholyte, less than 2% in the anolyte and a maximum of 9% was found in soil. These 
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differences support the hypothesis that there was molinate degradation by nZVI in our 

experiments as, in identical conditions, fewer molinate was found in the electrolytes 

(catholyte).  

The results now obtained show no enhancement in molinate degradation when both 

EK and nZVI are used, contrary to what was found for nitrates (Yang et al., 2008), 

dinitrotoluene (Reddy et al., 2011) and (Yuan et al., 2012). Although in those studies no 

diffusion tests were made, we must remark that the degradation rates are dependent on 

reduction reactions and molinate is degraded by nano Fe0 via an oxidative pathway with 

hydroxyl radicals (Joo et al., 2004), not via the most common reductive pathway. This 

requires desorption of molinate and higher contact times than the reductive pathway. In our 

experiments, the diffusion tests were more effective for soil S2, most likely because EK, by 

transporting the molinate out of the system faster, reduced the contact times with iron 

nanoparticles. For soil S1 with lower resistance for molinate mobility, the applied direct 

current is not significant for its removal. 

4. Conclusions 

Results show that molinate degradation by zero valent iron nanoparticles via an 

oxidative pathway can also occur in soils. The soil-sorbed molinate degradation results show 

the importance of testing contaminants degradation with nZVI not only in aqueous solutions, 

but also in matrices increasingly more complex, such as synthetic groundwaters, real 

groundwaters, model soils and real soils. The degradation results in soils now obtained are 

much lower and more time demanding than in deionized water. 

Soil type was the most significant variable for iron and molinate transport. In the 

tested conditions, iron moves preferentially to anode and molinate to cathode. Diffusion was 

the transport mechanism that yielded higher Fe concentrations in the anolyte. In the EK 

experiments, electrophoretic transport of iron nanoparticles was counteracted by 
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electroosmosis (higher in soil S2). For these experimental conditions, direct current was a 

significant variable to explain iron concentrations in the aqueous solutions, but it was not 

significant for molinate. In the tested conditions, there was no advantage in using the electric 

current to enhance the iron nanoparticles transport. We also observed limited mobility of the 

iron nanoparticles, with an average of 54% of the nanoparticles remaining in the injection 

reservoir. 

Fe0 nanoparticles and electrokinetics can degrade and remove molinate from soils, 

respectively. With electrokinetics, molinate can be removed from soil to an aqueous solution, 

and with nZVI molinate can be degraded in situ. The major advantage of the simultaneous 

use of both methods is the molinate degradation instead of its accumulation in the catholyte. 
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Figure 1. Schematic representation of the laboratory cell. Legend: M Anode 
compartment; N Reservoir for the iron nanoparticles injection; O Cathode 
compartment. The separation between the soil and the compartments containing 
liquids was made through passive membranes (filter paper). 
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Figure 2. Molinate concentrations in the soil and supernatant after 24 h, with and without nZVI 
(control) in S1 sandy soil and S2 sandy-loam soil. Initial molinate concentration in soil was 290 
mg kg-1. Data plotted as mean of duplicates, error bars indicate standard deviation.  
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Figure 3. Cumulative amounts of total iron (mg) in the anolyte solutions during the experiments 
A (Soil 2, no pH control),. a) Experiments with soil 1 (sandy soil): B (Soil 1,EK with pH control) 

and E (diffusion); 
b) Experiments with soil 2 (sandy loam with high organic matter content): A (EK without pH 
control), C (Soil 2,EK with pH control), D (Soil 2, diffusion) and E (Soil 1, D (diffusion). In the 
cathode compartment, iron was detected in very low concentrations and in most of the samples 

was bellowbelow the detection limit. 
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Figure 4. Iron enrichment (g kg-1) in soil sections (compared to initial soil concentration: 18.43 g 

kg-1 in Soil S1 and 0.85 g kg-1 in Soil S2) in experiments A-E. Section 1: between the anode 
compartment and the injection reservoir; Section 2: central soil section after the injection 

reservoir, top; Section 3: central soil section after the injection reservoir, bottom; Section 4: 
central soil section after the injection reservoir, center; Section 5: between the central soil section 

and the cathode compartment. 
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Figure 5. a) Average mass balance of iron after the experiments. Average recovery of iron was 
86%. b) Photo of the experimental cell showing the iron accumulation in the injection reservoir. 
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Figure 6. Cumulative amounts of molinate (mg) in the anolyte and catholyte solutions during the 
experiments A (Soil 2, no pH control), B (Soil 1, with pH control) and C (Soil 2, with pH control), 

D (Soil 2, diffusion) and E (Soil 1, diffusion). In the diffusion experiments higher molinate 
content was found in the anolyte due to the direct contact with the spiked soil. 
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 a) Experiments with soil 1 (sandy soil): B (EK with pH control) and E (diffusion);  
b) Experiments with soil 2 (sandy loam with high organic matter content): A (EK without pH 

control), C (EK with pH control) and D (diffusion). In the diffusion experiments (D and E) 
higher molinate content was found in the anolyte due to the direct contact with the spiked soil. 
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Figure 7. Mass of molinate in different compartments by the end of the experiments. 
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Table 1. Chemical and physical properties of molinate (Mabury et al., 1996).  

Chemical Name Molinate 
CAS No. 2212-67-1 

Structure 
 

Molecular Formula C9H17NOS 
Boiling point 202°C (10 mm Hg) 
Density 1.06 

 

Water solubility 800-912 mg L-1 
Half-life 21 d 
Koc 190 mL g-1 OC 
log Kow 3.21 
 

Table
Click here to download Table: Tables.docx

http://ees.elsevier.com/stoten/download.aspx?id=690181&guid=9eabd593-f6f5-45bb-a09d-8b5f7eed5b5d&scheme=1


Table 2. Physical and chemical characteristics of the soils used. 

Parameter S1 S2 
Textural classification Sandy Sandy loam 
Organic matter (g kg-1) 4 128.3 
pH (H2O) 5.9 6.1 
pH (KCl) 4.5 5.4 
Exchangeable cations (cmol(c) kg-1)   
    Ca2+ 0.34 16.18 
    Mg2+ 0.05 3.98 
    K+ 0.05 0.70 
    Na+ 0.04 0.18 
Sum of exchangeable cations (cmol(c) kg-1) 0.48 21.04 
Cation exchange capacity (cmol(c) kg-1) 1.39 23.38 
Saturation (%) 35 90 
 

 

 

 

 



Table 3. Summary of experimental conditions. The electrolyte used was 10-2 M 

NaNO3 and the duration of the experiments was 6 days. 

Exp. Soil Current 
(mA) 

Soil - dry weight 
(g) 

Molinate added  
to soil (mg) pH Control 

A S2 10 321.46 51.2 No 
B S1 10 381.41 55.8 NaOH 1M added to anolyte 
C S2 10 344.31 52.7 NaOH 1M added to anolyte 
D S2 0 251.89 52.6 No 
E S1 0 387.42 52.6 No 



Table 4. Molinate removal rate. 

Experiment Soil 
Initial 

content in 
soils (mg) 

Transported 
to the anode 

(mg) 

Transported to 
the cathode (mg) 

Final content 
in soils (mg) 

Removal rate 
(%) 

A S2 51.2 0.004 0.237 10.46 72.3 
B S1 55.8 1.323 1.886 1.01 89.9 
C S2 52.7 0.003 0.125 9.22 71.2 
D S2 52.6 0.349 0.003 0.74 97.5 
E S1 52.6 4.540 0.044 0.00 91.3 
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Figure 1. Schematic representation of the laboratory cell. Legend: M Anode 
compartment; N Reservoir for the iron nanoparticles injection; O Cathode 
compartment. The separation between the soil and the compartments containing 
liquids was made through passive membranes (filter paper). 
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Figure 2. Molinate concentrations in the soil and supernatant after 24 h, with and without nZVI 
(control) in S1 sandy soil and S2 sandy-loam soil. Initial molinate concentration in soil was 290 
mg kg-1. Data plotted as mean of duplicates, error bars indicate standard deviation.  
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Figure 3. Cumulative amounts of total iron (mg) in the anolyte solutions during the experiments. 

a) Experiments with soil 1 (sandy soil): B (EK with pH control) and E (diffusion); 
b) Experiments with soil 2 (sandy loam with high organic matter content): A (EK without pH 

control), C (EK with pH control) and D (diffusion). In the cathode compartment, iron was 
detected in very low concentrations and in most of the samples was below the detection limit. 
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Figure 4. Iron enrichment (g kg-1) in soil sections (compared to initial soil concentration: 18.43 g 

kg-1 in Soil S1 and 0.85 g kg-1 in Soil S2) in experiments A-E. Section 1: between the anode 
compartment and the injection reservoir; Section 2: central soil section after the injection 

reservoir, top; Section 3: central soil section after the injection reservoir, bottom; Section 4: 
central soil section after the injection reservoir, center; Section 5: between the central soil section 

and the cathode compartment. 
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Figure 5. a) Average mass balance of iron after the experiments. Average recovery of iron was 
86%. b) Photo of the experimental cell showing the iron accumulation in the injection reservoir. 
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Figure 6. Cumulative amounts of molinate (mg) in the anolyte and catholyte solutions during the 

experiments. 
 a) Experiments with soil 1 (sandy soil): B (EK with pH control) and E (diffusion);  

b) Experiments with soil 2 (sandy loam with high organic matter content): A (EK without pH 
control), C (EK with pH control) and D (diffusion). In the diffusion experiments (D and E) 

higher molinate content was found in the anolyte due to the direct contact with the spiked soil. 
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Figure 7. Mass of molinate in different compartments by the end of the experiments. 
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