
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/271330147

Treatment of a suspension of PCB contaminated soil using iron nanoparticles

and electric current

Article  in  Journal of Environmental Management · January 2015

DOI: 10.1016/j.jenvman.2015.01.015 · Source: PubMed

CITATIONS

11
READS

151

4 authors:

Some of the authors of this publication are also working on these related projects:

R3AW - Resource Recovery and Remediation of Alkaline Wastes View project

ion transport in porous materials View project

Helena I Gomes

University of Nottingham

49 PUBLICATIONS   773 CITATIONS   

SEE PROFILE

Lisbeth M Ottosen

Technical University of Denmark

234 PUBLICATIONS   3,524 CITATIONS   

SEE PROFILE

Alexandra B. Ribeiro

Universidade NOVA de Lisboa

146 PUBLICATIONS   2,320 CITATIONS   

SEE PROFILE

Celia Dias-Ferreira

Instituto Politécnico de Coimbra

99 PUBLICATIONS   1,052 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Helena I Gomes on 23 June 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/271330147_Treatment_of_a_suspension_of_PCB_contaminated_soil_using_iron_nanoparticles_and_electric_current?enrichId=rgreq-7e3be16f80d94e3590d7aa19304a4007-XXX&enrichSource=Y292ZXJQYWdlOzI3MTMzMDE0NztBUzo2NDA2Mzg1MDg4NTkzOTJAMTUyOTc1MTUzMTI1OQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/271330147_Treatment_of_a_suspension_of_PCB_contaminated_soil_using_iron_nanoparticles_and_electric_current?enrichId=rgreq-7e3be16f80d94e3590d7aa19304a4007-XXX&enrichSource=Y292ZXJQYWdlOzI3MTMzMDE0NztBUzo2NDA2Mzg1MDg4NTkzOTJAMTUyOTc1MTUzMTI1OQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/R3AW-Resource-Recovery-and-Remediation-of-Alkaline-Wastes?enrichId=rgreq-7e3be16f80d94e3590d7aa19304a4007-XXX&enrichSource=Y292ZXJQYWdlOzI3MTMzMDE0NztBUzo2NDA2Mzg1MDg4NTkzOTJAMTUyOTc1MTUzMTI1OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/ion-transport-in-porous-materials?enrichId=rgreq-7e3be16f80d94e3590d7aa19304a4007-XXX&enrichSource=Y292ZXJQYWdlOzI3MTMzMDE0NztBUzo2NDA2Mzg1MDg4NTkzOTJAMTUyOTc1MTUzMTI1OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-7e3be16f80d94e3590d7aa19304a4007-XXX&enrichSource=Y292ZXJQYWdlOzI3MTMzMDE0NztBUzo2NDA2Mzg1MDg4NTkzOTJAMTUyOTc1MTUzMTI1OQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Helena_Gomes?enrichId=rgreq-7e3be16f80d94e3590d7aa19304a4007-XXX&enrichSource=Y292ZXJQYWdlOzI3MTMzMDE0NztBUzo2NDA2Mzg1MDg4NTkzOTJAMTUyOTc1MTUzMTI1OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Helena_Gomes?enrichId=rgreq-7e3be16f80d94e3590d7aa19304a4007-XXX&enrichSource=Y292ZXJQYWdlOzI3MTMzMDE0NztBUzo2NDA2Mzg1MDg4NTkzOTJAMTUyOTc1MTUzMTI1OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Nottingham?enrichId=rgreq-7e3be16f80d94e3590d7aa19304a4007-XXX&enrichSource=Y292ZXJQYWdlOzI3MTMzMDE0NztBUzo2NDA2Mzg1MDg4NTkzOTJAMTUyOTc1MTUzMTI1OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Helena_Gomes?enrichId=rgreq-7e3be16f80d94e3590d7aa19304a4007-XXX&enrichSource=Y292ZXJQYWdlOzI3MTMzMDE0NztBUzo2NDA2Mzg1MDg4NTkzOTJAMTUyOTc1MTUzMTI1OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lisbeth_Ottosen?enrichId=rgreq-7e3be16f80d94e3590d7aa19304a4007-XXX&enrichSource=Y292ZXJQYWdlOzI3MTMzMDE0NztBUzo2NDA2Mzg1MDg4NTkzOTJAMTUyOTc1MTUzMTI1OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lisbeth_Ottosen?enrichId=rgreq-7e3be16f80d94e3590d7aa19304a4007-XXX&enrichSource=Y292ZXJQYWdlOzI3MTMzMDE0NztBUzo2NDA2Mzg1MDg4NTkzOTJAMTUyOTc1MTUzMTI1OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Technical_University_of_Denmark?enrichId=rgreq-7e3be16f80d94e3590d7aa19304a4007-XXX&enrichSource=Y292ZXJQYWdlOzI3MTMzMDE0NztBUzo2NDA2Mzg1MDg4NTkzOTJAMTUyOTc1MTUzMTI1OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lisbeth_Ottosen?enrichId=rgreq-7e3be16f80d94e3590d7aa19304a4007-XXX&enrichSource=Y292ZXJQYWdlOzI3MTMzMDE0NztBUzo2NDA2Mzg1MDg4NTkzOTJAMTUyOTc1MTUzMTI1OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alexandra_Ribeiro2?enrichId=rgreq-7e3be16f80d94e3590d7aa19304a4007-XXX&enrichSource=Y292ZXJQYWdlOzI3MTMzMDE0NztBUzo2NDA2Mzg1MDg4NTkzOTJAMTUyOTc1MTUzMTI1OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alexandra_Ribeiro2?enrichId=rgreq-7e3be16f80d94e3590d7aa19304a4007-XXX&enrichSource=Y292ZXJQYWdlOzI3MTMzMDE0NztBUzo2NDA2Mzg1MDg4NTkzOTJAMTUyOTc1MTUzMTI1OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidade_NOVA_de_Lisboa?enrichId=rgreq-7e3be16f80d94e3590d7aa19304a4007-XXX&enrichSource=Y292ZXJQYWdlOzI3MTMzMDE0NztBUzo2NDA2Mzg1MDg4NTkzOTJAMTUyOTc1MTUzMTI1OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alexandra_Ribeiro2?enrichId=rgreq-7e3be16f80d94e3590d7aa19304a4007-XXX&enrichSource=Y292ZXJQYWdlOzI3MTMzMDE0NztBUzo2NDA2Mzg1MDg4NTkzOTJAMTUyOTc1MTUzMTI1OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Celia_Dias-Ferreira?enrichId=rgreq-7e3be16f80d94e3590d7aa19304a4007-XXX&enrichSource=Y292ZXJQYWdlOzI3MTMzMDE0NztBUzo2NDA2Mzg1MDg4NTkzOTJAMTUyOTc1MTUzMTI1OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Celia_Dias-Ferreira?enrichId=rgreq-7e3be16f80d94e3590d7aa19304a4007-XXX&enrichSource=Y292ZXJQYWdlOzI3MTMzMDE0NztBUzo2NDA2Mzg1MDg4NTkzOTJAMTUyOTc1MTUzMTI1OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Instituto_Politecnico_de_Coimbra?enrichId=rgreq-7e3be16f80d94e3590d7aa19304a4007-XXX&enrichSource=Y292ZXJQYWdlOzI3MTMzMDE0NztBUzo2NDA2Mzg1MDg4NTkzOTJAMTUyOTc1MTUzMTI1OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Celia_Dias-Ferreira?enrichId=rgreq-7e3be16f80d94e3590d7aa19304a4007-XXX&enrichSource=Y292ZXJQYWdlOzI3MTMzMDE0NztBUzo2NDA2Mzg1MDg4NTkzOTJAMTUyOTc1MTUzMTI1OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Helena_Gomes?enrichId=rgreq-7e3be16f80d94e3590d7aa19304a4007-XXX&enrichSource=Y292ZXJQYWdlOzI3MTMzMDE0NztBUzo2NDA2Mzg1MDg4NTkzOTJAMTUyOTc1MTUzMTI1OQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf


 1 

Treatment of a suspension of PCB contaminated soil using iron 

nanoparticles and electric current 

Helena I. Gomes1,2, Lisbeth M. Ottosen3, Alexandra B. Ribeiro1, Celia Dias-Ferreira2 

 

1CENSE, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e 

Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal 

2 CERNAS – Research Center for Natural Resources, Environment and Society, Escola 

Superior Agraria de Coimbra, Instituto Politecnico de Coimbra, Bencanta, 3045-601 

Coimbra, Portugal 

3 Department of Civil Engineering, Technical University of Denmark, Brovej, Building 118, 

DK 2800 Kgs. Lyngby, Denmark 

* Corresponding author. Tel. +351 212948300, Fax. +351 212948554. E-mail address: 

hrg@campus.fct.unl.pt (Helena I. Gomes) 



 2 

ABSTRACT 

 Contaminated soils and sediments with polychlorinated biphenyls (PCB) are an 

important environmental problem due to the persistence of these synthetic aromatic 

compounds and to the lack of a cost-effective and sustainable remediation technology. 

Recently, a new experimental setup has been proposed using electrodialytic remediation and 

iron nanoparticles. The current work compares the performance of this new setup (A) with 

conventional electrokinetics (setup B). An historically contaminated soil with an initial PCB 

concentration of 258 µg kg-1 was treated during 5, 10, 20 and 45 d using different amounts of 

iron nanoparticles in both setups A and B. A PCB removal of 83% was obtained in setup A 

compared with 58% of setup B. Setup A also showed additional advantages, such as a higher 

PCB dechlorination, in a shorter time, with lower nZVI consumption, and with the use of half 

of the voltage gradient when compared with the traditional setup (B). Energy and nZVI costs 

for a full-scale reactor are estimated at 72 € for each cubic meter of PCB contaminated soil 

treated on-site, making this technology competitive when compared with average off-site 

incineration (885 € m-3) or landfilling (231 € m-3) cost in Europe and in the USA (327 USD 

m-3). 
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Highlights 

• High PCB removal (83%) was achieved with the new electrodialytic setup.  

• Short times and less nanoparticles were needed using the new electrodialytic setup.  

• Hepta and hexa chlorinated congeners were also degraded.  

• Direct current enhanced dechlorination in the conventional setup through pH change. 

• The new setup is competitive compared with incineration and landfilling. 

 

 

 

Keywords 

Electrokinetics (EK); electrodialytic remediation (EDR); nZVI; polychlorinated biphenyls; 

PCB 
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1. INTRODUCTION 

Polychlorinated biphenyls (PCB) are a family of 209 congeners, classified as 

persistent organic pollutants (POP), carcinogenic and recalcitrant, which strongly adsorb to 

soils and sediments. Despite the environmental concern regarding PCB ecotoxicity and 

accumulation in the food chain, there is no quantification of the total volumes of PCB 

contaminated soils and sediments worldwide. A review of remediation technologies available 

for PCB-contaminated soils and sediments identified the need to find cost-effective and more 

sustainable alternatives than the commonly adopted “dig and dump” and “dig and incinerate” 

solutions (Gomes et al., 2013a). 

Electroremediation comprises a group of technologies that has evolved over the last 

decades with the incorporation of enhancement techniques and the combination with other 

remediation technologies, targeting a wide range of contaminants. Electrodialytic remediation 

– a method based on the combination of the electrokinetic movement of ions in soil with the 

principle of electrodialysis – was used successfully in different matrices such as mine tailings 

(Hansen et al., 2007), soils ex situ (Ottosen et al., 2009b), different types of fly ashes 

(Ferreira et al., 2005; 2008), wood waste (Ribeiro et al., 2000), sewage sludge (Pazos et al., 

2010), freshwater sediments and harbor sediments (Kirkelund et al., 2009). Electrodialytic 

remediation of suspended soil has proven to be a faster process to be used ex situ for the 

removal of heavy metals (Ottosen et al., 2013; Sun et al., 2012) and polycyclic aromatic 

hydrocarbons (PAH) (Lima et al., 2012).  

Zero valent iron nanoparticles (nZVI) were considered a promising alternative for 

PCB dechlorination in aqueous solutions (He et al., 2010; Lowry and Johnson, 2004; Wang 

and Zhang, 1997; Zhuang et al., 2011). In general, the dechlorination can be expressed by the 

following reaction (Zhang et al., 1998): 
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CxHyClz + zH++ zFe0 → CxHy+z + zFe2++ zCl-     (1) 

in which iron acts as a reductant (electron donor) for the removal of chlorine. This reaction is 

similar to the process occurring during iron corrosion, with the beneficial effects of 

transforming chlorinated pollutants. Still a 95% PCB dechlorination in soils was just 

achieved at high temperatures (300 ºC) (Varanasi et al., 2007) and a removal efficiency of 

98% with 100 mg of nZVI was obtained at 600 °C (Liu et al., 2014). In field applications, 

nZVI can be injected in the aquifers through injection wells, or incorporated to topsoil to 

adsorb or degrade pollutants (Crane and Scott, 2012). Results in aquifers show that nZVI 

have limited mobility, ranging from 1 m (Kocur et al., 2014) to 6-10 m (Zhang and Elliott, 

2006).  

One of the methods tested to enhance nZVI mobility was the use of low-level direct 

current (DC) (Jones et al., 2010; Pamukcu et al., 2008; Yang et al., 2007), using the same 

principles of electrokinetic remediation (EKR). Electroremediation and nZVI were combined 

by Fan et al (2013) and they obtained a 20% PCB removal from soils after 14 d using Fe/Pd 

bimetallic nanoparticles in conjunction with surfactants. 

In a recent work (Gomes et al., 2014a), we presented a new experimental setup for 

on-site or ex-situ electrokinetic treatment of PCB contaminated soils in which the soil is kept 

in suspension with the simultaneous addition of nZVI and surfactants (saponin and Tween 

80). In the current work the main objectives were to: i) assess the effectiveness for the 

dechlorination of PCB by nZVI of the new setup in comparison with the traditional cell used 

in electrokinetic setups; ii) test if longer EKR experiments with nZVI could increase PCB 

dechlorination; and to iii) evaluate the effect of using direct electric current  
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2. MATERIALS AND METHODS 

2.1. Chemicals and solvents 

PCB standards were analytical grade, obtained from Fluka, Sigma-Aldrich (PCB28, 

52, 101, 138, 153, 180 and 209) and Ultrascientific (PCB30; PCB65 and PCB204). The 

solvents hexane and acetone were Pestinorm (VWR BDH Prolabo). Hydrochloric (37.6%), 

nitric (65%) and sulfuric (95-7%) acids were trace metal grade. Anhydrous Na2SO4, KMnO4, 

NaCl, and silica gel (silicic acid) were lab grade. Silica gel was cleaned up before use 

according to the USEPA method 3630C. The water was deionized with a Milli-Q plus system 

from Millipore (Bedford, MA, USA). A polyacrylic acid (PAA) slurry-stabilized suspension 

of zero valent iron nanoparticles (NANOFER 25S, NANO IRON, s.r.o., Rajhrad, Czech 

Republic) was used in the experiments, with 50 nm average particles size, an average surface 

area of 20-25 m2 g-1, a particle size distribution of 20-100 nm and iron content in the range of 

80-90 wt. %. 

2.2 Soil characterization 

The contaminated soil used in the experiments was provided by a hazardous waste 

operator in Portugal and is a mixture of contaminated soils from industrial sites with 

transformers oils spills. The soil characterization methods used were described in Jensen et al 

(2007). The elemental analysis were made using Inductively Coupled Plasma-Atomic 

Emission Spectrometer (ICP) on an Agilent ICP-OES Varian 720-ES equipment. Table 1 

presents the physical and chemical characteristics of the soil used in the experiments. 

According to the United States Department of Agriculture Natural Resources Conservation 

Service, this soil is classified as “very strongly alkaline” and this alkaline pH can be due to 

the presence of strong basis of industrial origin. The soil tested is a mixture of industrial 

contaminated soils, so it is also possible to have in the mixture fly ashes from coal fired 

boilers or power plants, rich in calcium oxide (CaO), which readily dissolves in water to form 



 7 

Ca(OH)2 (Lopareva-Pohu et al., 2011). The PCB concentrations measured are above the 

guidance values for total PCB in Denmark, even though only the most common congeners in 

environmental samples were measured. In Denmark, the limit for soil quality is 0.02 mg kg-1 

total PCB and if the concentration exceeds 50 mg kg-1 the soil is classified as hazardous waste 

(Jensen, 2009). The soil was homogenized, air dried and sieved, and only the particles with 

size < 2 mm were used in the experiments.  

Table 1. Physical and chemical characteristics of the soil. 

Parameter  
Soil particles (%)  
    Coarse sand (200 < Ø < 2000 μm) 19.1 
    Fine sand (20 < Ø < 200 μm) 67.3 
    Silt (2 < Ø < 20 μm) 12.7 
    Clay (Ø < 2 μm) 0.9 
Textural classification Loamy sand 
  

pH (H2O) 12.2 
Conductivity (mS cm-1) 18.76  
  

Exchangeable cations (cmol(c) kg-1)  
    Ca2+ 83.75 
    Mg2+ 3.2 
    K+ 26.88 
    Na+ 9.37 
Sum of exchangeable cations (cmol(c) kg-1) 123.2 
  

Calcium carbonate (%) 18.0 
Organic matter (%) 16.46 
  
Total PCBa (µg kg-1) 258 ± 24 
  
Metalsb (mg kg-1)  
    Al 20980 ± 590 
    As 8.6 ± 2.0 
    Cd 0.68 ± 0.14 
    Cr 51.66 ± 2.69 
    Cu 141.73 ± 94.62 
    Fe 13162 ± 301 
    Ni 31.98 ± 1.26 
    Pb 45.43 ± 3.31 
    Zn 2155 ± 40 

a Sum of PCB28, 30, 52, 65, 101, 138, 153, 180, 204 and 209 
b Acid digestion with HNO3 according to the Danish Standard DS259. 
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2.3 PCB analysis 

For PCB analysis, the soil extraction method used was the USEPA method 3550C, in 

which 10 g of soil was extracted with 3 × 30 mL of acetone-hexane (1:1) in a glass vial by 

ultrasonication (20 kHz) for 60 min. After vacuum filtration and concentration, the extracts 

were cleaned following the USEPA methods 3665A and 3630C. Aqueous samples (soil 

filtrate and catholyte) were extracted according to the method used by Lowry and Johnson 

(2004), after adjusting the pH of the acid samples to pH 7 with NaOH. The PCB congeners 

were analyzed by gas chromatography (GC) with an ECD detector (HP 6890 Series, Hewlett-

Packard, Palo Alto, California, USA). The column used was a TRB–5–MS with 30 m × 0.25 

mm i.d. and 0.25 µm film thickness (Phenomenex, Torrance, CA, USA). The oven 

temperature was programmed starting at 70 ºC for 2 min, increased to 150 ºC at a rate of 

25 ºC min−1 and then increased 4 ºC min−1 to 200 ºC, 8 ºC min−1 to 280 ºC where it holds for 4 

min and finally 10 ºC min−1 to 300 ºC, where it holds for 2 min. Pure nitrogen was used as the 

carrier gas. The injector was splitless set at 260 °C. The injections of 1.00 µl were performed 

manually. 

2.4 Electroremediation experiments 

The electroremediation experiments were carried out in two different cylindrical 

Plexiglas-cells.  The electrodialytic cell (setup A) had two compartments [Figure 1 a)]. In one 

compartment (L = 10 cm, Ø = 8 cm) the anode was placed directly into the soil slurry and the 

plastic-flaps attached to a glass-stick overhead stirrer (Lab-egg Bie&Bernsten, Denmark, 

~350 rpm) maintained the soil in suspension during the treatment. A cation-exchange 

membrane (CAT, GE Water & Process Technologies Bvba - ED, Cation, CR67, MKIII, 

Blank) separates this compartment from the cathode compartment (L = 5 cm, Ø = 8 cm) 

[Figure 1 b)]. The catholyte was recirculated by a mechanical pump (Plastomec magnet 

pump, model P05) between the chamber and a glass bottle.  
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Figure 1. Schematic representation of the experimental setups used in the experiments: a) 

setup A - new electrodialytic cell (CAT – cation exchange membrane); b) electrokinetic cell 

(setup B).  
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The electrokinetic cell (setup B) consists of three compartments: two electrode 

compartments (L = 5 cm, internal diameter Ø = 4 cm) and a central compartment. The central 

compartment subdivided in three parts (L = 1.5 cm each, total of 4.5 cm, Ø = 4 cm). The 

nZVI were placed in the middle part (2) and the soil in the other two [1 and 3, Figure 1 b)]. 

The soil was saturated with deionized water before the experiments. Cellulose filters (passive 

membranes) were used to assure the separation between the soil and electrolytes, and the soil 

and the iron nanoparticles.  

 In both setups, a power supply (Hewlett Packard E3612A, Palo Alto, USA) was used 

to maintain a constant voltage and the current was monitored (Fluke 179 multimeter). The 

electrodes were platinized titanium bars, with a diameter of 3 mm and a length of 

10 cm in setup A and 5 cm in setup B (Permascand®).  

Six different laboratory experiments (A–F) were carried out, according to the 

experimental conditions presented in Table 2, in order to compare the two setups and to 

evaluate the effect of a variable duration in setup B (as the maximum duration of the 

experiments in the literature was 14 d (Fan et al., 2013)). The iron nanoparticles were placed 

in the center of both cells. In setup B (experiments A, B, C and D), the central reservoir was 

filled at the beginning of the experiments with nZVI. In experiment C more nZVI was added 

(2 mL), in days 7 and 9, to test if the addition of fresh nanoparticles could enhance the PCB 

dechlorination. In setup A (experiments E and F), two injections of 5 mL nZVI were made at 

24 and 48 h, when the soil suspension pH was neutral. The electrolyte used in all experiments 

was 10-2 M NaCl. In the electrodialytic setup (experiment F), the catholyte pH was manually 

maintained approximately at 2 by the periodic addition of HCl 5 M to avoid alkaline pH in 

the catholyte.  

 



 11 

Table 2. Summary of experimental conditions.  

Exp. nZVI 
(mL)  Type of injection Setup Voltage  

(V cm-1) 
Soil (g, dry 

weight) 
Duration 

(d) 

A 13  Unique (in the beginning of 
experiment) 

B 2 65.30 10 

B 13  Unique (in the beginning of 
experiment) 

B 0 49.84 10 

C 20  Repeated (additional iron in 
days 7 and 9) 

B 2 67.50 20 

D 13  Unique (in the beginning of 
experiment) 

B 2 69.94 45 

E 10  2 injections of 5 mL at 24 and 
48 h 

A  0 50.01 5 

F 10  2 injections of 5 mL at 24 and 
48 h 

A 1 50.05 5 

  

The current between electrodes, the soil suspension pH and in the electrolytes were 

measured every 24 h. In setup A at the end of the experiments, the suspension from the 

central compartment was filtered by gravity through 0.45 µm filter paper. In setup B samples 

from the anode and the cathode side were collected separately. Subsamples were prepared for 

humidity measurements. For both setups, the soil was air-dried and crushed slightly in a 

mortar before the PCB extraction and pH measurements. At the end of the experiments the Fe 

contents in the different parts of the cell (membranes, soil, solutions, and electrodes) were 

determined. The Fe contents in the CAT membranes and at the electrodes were measured 

after extraction in 1 M HNO3 and 5 M HNO3, respectively. The Fe was extracted from soil by 

the sodium dithionite-citrate-bicarbonate method (Mehra and Jackson, 1960) and from the 

passive membranes with concentrated HCl. 

3. RESULTS AND DISCUSSION 

3.1 Comparison between the two experimental setups 

Setup A shows PCB removal percentages of 83% with direct current and 29% 

without, as shown in Figure 2. The best removals are higher than in previous studies with 

conventional electrokinetics (Fan et al., 2013), higher than batch tests without current (Chen 
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et al., 2014), and also higher than in previous experiments using this setup with different 

surfactants (Gomes et al., 2014a). The suspension and stirring of the soil enhances the PCB 

dechlorination by nZVI, probably due to an increase in desorption from soil and/or to a 

higher contact and reaction between nZVI and PCB. In the traditional electrokinetic setup 

(setup B), the iron has to be transported across the compacted saturated soil to reach the 

contaminants. Even a low proportion of carbonate minerals may cause an increase in the 

deposition of PAA-nZVI particles and aggregates, due to a weaker negative surface charge 

(Laumann et al., 2013). As the soil used in the experiments has high carbonate content (18%), 

the limited dechlorination (12-58%) observed in setup B (Figure 2) can be due to this soil 

characteristic. 
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Figure 2. Average concentration of the sum of PCB congeners (PCB28, 52, 65, 101, 138, 

153, 180, 204 and 209) in soil before and after the experiments using conventional 

electrokinetics (setup B) and the new electrodialytic setup (A). Percentages on the top of each 

column represent PCB removal regarding the sum of congeners analyzed in the initial soil. 

PCB – polychlorinated biphenyls, DC – Direct Current, nZVI – zero valent iron 

nanoparticles. 
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In both setups, there are chemical reactions that deplete the Fe0 reductant power 

(Tosco et al., 2014; Zhang, 2003) and are occurring in the cell center compartment due to the 

presence of water, oxygen, H+ from water electrolysis, and carbonates from the soil: 

2Fe0
(s) + 4H+

(aq) + O2 (aq) ¦ 2Fe2+
(aq) + 2H2O(l)      (2) 

Fe0
(s) + 2H2O(l) ¦ Fe2+

(aq) + H2(g) + 2OH-
(aq)      (3) 

Fe2+
(aq) + CO3

2-
(aq)  ¦ FeCO3(s)        (4) 

Also, the presence of transformer oil was found to adversely affect the PCB 

degradation (Chang et al., 2010). Despite the introduction of H+ (resultant of hydrolysis in the 

anode) and the atmospheric O2 dissolved by the slurry stirring that promotes Fe0 oxidation, a 

higher PCB removal is obtained in the electrodialytic setup (A) compared 

with the conventional eletrokinetic setup (B). In both setups, in none of the aqueous samples 

(electrolyte and filtrates) PCB were detected. The electrokinetic setup (B) is more prone to 

nZVI aggregation and settling, as other experiments with molinate contaminated soils 

showed (Gomes et al., 2014c).  

In other remediation techniques (Beckingham and Ghosh, 2011; Li et al., 2013; 

Vasilyeva et al., 2010; Wu et al., 2012), lower chlorinated congeners (tri and 

tetrachlorobiphenyls) were the ones with highest removal. In this study, lower chlorinated 

congeners were degraded, namely PCB28, PCB52 and PCB65 (particularly in setup B), but 

higher chlorinated congeners were also degraded (Experiment F). In some experiments an 

increase of PCB65 occurred (two, five and six times more the initial amount in the 

experiments D, E and F, respectively) likely due to the dechlorination of higher chlorinated 

congeners, such as PCB204. In setup B removal percentages for each congener are lower 

than in setup A. The dechlorination pathways of congeners by nZVI were proposed by Chen 

et al. (2014) for PCB153 and by Gomes et al (2014a) for PCB138 and PCB180. 
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3.2 Different duration experiments 

The experiments using the conventional electrokinetic setup (B) had different 

durations to assess if longer times would increase PCB dechlorination. Comparing the 10 d 

experiment (A) with the 45 d experiment (D), the PCB removal has a small increase (27% vs. 

36%) (Figure 2). Although the removal percentages are higher than in previous studies with 

14 d experiments (Fan et al., 2013), their values are not encouraging for a scale up of the 

process (pilot and full scale) for the remediation of PCB contaminated soils and sediments. 

The higher dechlorination in experiment C is related with the additional nZVI injected at 

days 7 and 9, not with the exposure duration. Comparing the congeners concentrations 

obtained in the soil (duplicate samples), we observed that they are not statistically different in 

the three experiments (A, C and D) at a 0.05 level of significance [one-way ANOVA, F(2,20) 

= 2.14, p = 0.14].  This means that PCB dechlorination in setup B does not increase over 

time. 

3.3 Experiments with and without direct current 

Direct current can be used to enhance nZVI transport in different porous matrices or 

model soils (Gomes et al., 2013b) but, in the electrodialytic setup (A), the contact between 

the nanoparticles and the contaminated soil is ensured by the stirring so the current may not 

be needed for PCB dechlorination. However, results show that the experiment with direct 

current (exp. F) had a much higher PCB removal (83%) than the experiment just with the iron 

nanoparticles (exp. E) (29%). We believe that due to the high pH and buffer capacity of the 

soil (Table 1 and Figure 3) in the experiment without current (exp. E) the soil kept a constant 

alkaline pH that promoted the passivation of the iron nanoparticles. On the contrary, in the 

experiment with current (exp. F) water electrolysis (eq. 5 and 6) produces H+ in the anode, 

thus lowering the pH of the soil slurry 

2H2O - 4e- ¦ O2(g)  + 4H+            E0 = - 1.229 V (anode)      (5) 
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2H2O + 2e- ¦ H2(g) + 2OH-         E0 = - 0.828 V (cathode)      (6) 

A slightly acidic pH (4.90–5.10) increases the dechlorination of PCB by nZVI and 

nZVI/Pd (Wang et al., 2012). The effect of the acidification of the soil slurry favors the PCB 

dechlorination when a direct current is used, explaining the higher removals obtained in exp. 

F compared with exp. E. Table 4 shows the pH values after the experiments. Only in 

experiment F a lower pH is obtained due to the high buffer capacity of the soil. 

 

Figure 3. Evolution of pH in the soil suspension during the experiments using the new 

electrodialytic setup (A). DC – direct current, nZVI – zero valent iron nanoparticles. 

 

Table 4. Soil pH at the end of the experiments in both setups. Initial soil pH is 12.2. 

Setup A    Setup B  
Exp. Soil pH   Exp. Anode side Cathode side  

    A 11.28 12.18  
E 9.47   B 12.25 12.07  
F 5.70   C 11.60 11.83  

 
   D 11.21 11.69  

 

0

2

4

6

8

10

12

14

0 20 40 60 80 100 120

pH
 so

il 
su

sp
en

sio
n

Time (h)

Exp. E (nZVI)

Exp. F (DC + 
nZVI)

Injection of
nZVI



 17 

 Figure 4 shows the current values measured in the experiments, using both cells. The 

highest current values were measured in setup A and are related to the high metal content of 

the tested soil. When the metals are dissolved or desorbed by the H+ generated at the anode, 

the conductivity of the suspension increases. In setup B (Figure 4), the current values reached 

a peak immediately after the experiment start, when the quantity of ions in the pore solution 

was higher due to the dissolution of salts associated with soil particles. The current dropped 

abruptly in the first hours and stabilized thereafter, with little oscillations, in all experiments.  

The H+ generated at the anode can solubilize transition metals such as Fe and Ni from soil, 

that can degrade PCB via catalytic hydrodechlorination with H2 successively removing 

chlorine atoms from PCB generating biphenyl, according to the general chemical equation 

(Wu et al., 2012): 

C12H(10-m) Clm + nH2 → C12H(10-m+n)Clm-n + nHCl, m ≧ n   (7) 

Although this hydrodechlorination has been reported for aqueous or organic solvents, in the 

tested setup there are all the needed conditions for it to occur. However, further research is 

needed to evaluate the importance of this dechlorination process, to assess how iron (natural 

and manufactured) and other metals act as catalysts. 
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Figure 4. Current variation during the experiments. 

3.4 Upscale of the new electrodialytic setup (A) 

Based on the preliminary results obtained in this work, a rough estimate of the 

operation cost of using the new electrodialytic setup (A) for ex situ remediation of PCB 

contaminated soil was made. Basically, considering the energy consumption for the stirring 

and electrodialytic remediation of a full-scale reactor for a cubic meter of contaminated soil 

and the nZVI costs (at current commercial prices 61 € kg-1), the costs are 72 €. The energy 

consumption was extrapolated from the lab scale cell (0.88 Wh g-1). For the calculation of the 

energy costs, we considered the average cost of energy in the European Union (EUROSTAT 

2011). If we are only dealing with organic contaminants that can be completely degraded, 

there is no need to treat and dispose the anolyte after separation from the solids. Even adding 

the excavation and transport costs, this solution is competitive when compared with the off-
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site incineration average costs (885 € m-3) and off-site landfilling costs (231 € m-3) in Europe 

(Summersgill, 2006) and the off-site landfilling costs for hazardous waste in the USA (327 

USD m-3, approximately 239 € m-3) (Ram et al., 2013). 

4. CONCLUSIONS 

In summary, the new electrodialytic setup tested in this work allowed PCB 

dechlorination from contaminated soil ex situ at a higher percentage, in a shorter time, with 

lower nZVI consumption, and with the use of half of the voltage gradient when compared 

with the traditional electrokinetic setup. In addition, there is no need to treat and dispose of 

the anolyte. However, additional testing with different soils, repeated application of the 

technique on the same material (also with different duration experiments), testing of 

enhancement methods and further optimization and scale up of the process are needed to 

prove the versatility of the electrodialytic setup. 

The results show that the soil characteristics are important and affect the reactions 

between nZVI and the target contaminant, especially pH and carbonate content. Direct 

current can enhance dechlorination in this new electrodialytic setup. 

ACKNOWLEDGMENTS 

This work was funded by the European Regional Development Fund (ERDF) through 

COMPETE – Operational Programme for Competitiveness Factors (OPCF), by Portuguese 

National funds through “FCT - Fundação para a Ciência e a Tecnologia” under project 

«PTDC/AGR-AAM/101643/2008 NanoDC», by FP7-PEOPLE-IRSES-2010-269289-

ELECTROACROSS and by the research grant SFRH/BD/76070/2011. Prof. Jorge Varejão 

and Helena Silva are acknowledged for GC analysis and Sabrina Madsen for ICP analysis. 

NANO IRON, s.r.o. kindly provided NANOFER 25S samples.  

 



 20 

REFERENCES 

Beckingham, B., Ghosh, U., 2011. Field-scale reduction of PCB bioavailability with 

activated carbon amendment to river sediments. Environ. Sci, Technol. 45, 10567-

10574. 

Chang, Y., Achari, G., Langford, C., 2010. Effect of cocontaminants on the remediation of 

PCB-impacted soils by hydrogen peroxide. Pract. Period. Hazard. Toxic Radioact. 

Waste Manag. 14, 266-268. 

Chen, X., Yao, X., Yu, C., Su, X., Shen, C., Chen, C., Huang, R., Xu, X., 2014. 

Hydrodechlorination of polychlorinated biphenyls in contaminated soil from an e-waste 

recycling area, using nanoscale zerovalent iron and Pd/Fe bimetallic nanoparticles. 

Environ. Sci.Pollut. Res., 1-10. 

Crane, R.A., Scott, T.B., 2012. Nanoscale zero-valent iron: Future prospects for an emerging 

water treatment technology. J. Hazard. Mater. 211-212, 112-125. 

Fan, G., Cang, L., Qin, W., Zhou, C., Gomes, H.I., Zhou, D., 2013. Surfactants-enhanced 

electrokinetic transport of xanthan gum stabilized nano Pd/Fe for the remediation of 

PCBs contaminated soils. Sep. Purif. Technol. 114, 64-72. 

Ferreira, C., Jensen, P., Ottosen, L.M., Ribeiro, A.B., 2008. Preliminary treatment of MSW 

fly ash as a way of improving electrodialytic remediation, J. Environ. Sci. Healt A 43, 

837-843. 

Ferreira, C., Ribeiro, A., Ottosen, L., 2005. Effect of major constituents of MSW fly ash 

during electrodialytic remediation of heavy metals. Sep. Sci. Technol. 40, 2007-2019. 

Gomes, H.I., Dias-Ferreira, C., Ottosen, L.M., Ribeiro, A.B., 2014a. Electrodialytic 

remediation of polychlorinated biphenyls contaminated soil with iron nanoparticles and 

two different surfactants. J.Colloid Interface Sci. 433, 189-195. 



 21 

Gomes, H.I., Dias-Ferreira, C., Ribeiro, A.B., 2013a. Overview of in situ and ex situ 

remediation technologies for PCB-contaminated soils and sediments and obstacles for 

full-scale application. Sci.. Total Environ. 445-446, 237-260. 

Gomes, H.I., Dias-Ferreira, C., Ribeiro, A.B., Pamukcu, S., 2013b. Enhanced transport and 

transformation of zerovalent nanoiron in clay using direct electric current. Water Air 

Soil Poll. 224, 1-12. 

Gomes, H.I., Fan, G., Mateus, E.P., Dias-Ferreira, C., Ribeiro, A.B., 2014b. Assessment of 

combined electro–nanoremediation of molinate contaminated soil. Sci. Total Environ. 

493, 178-184. 

Hansen, H.K., Ribeiro, A.B., Mateus, E.P., Ottosen, L.M., 2007. Diagnostic analysis of 

electrodialysis in mine tailing materials. Electrochim. Acta 52, 3406-3411. 

He, F., Zhao, D., Paul, C., 2010. Field assessment of carboxymethyl cellulose stabilized iron 

nanoparticles for in situ destruction of chlorinated solvents in source zones. Water Res. 

44, 2360–2370. 

Jensen, S.F., 2009. PCB in Soil. The contamination of PCB in selected locations around 

Roskilde and Copenhagen. Report. Roskilde University, Denmark. 

Jones, E.H., Reynolds, D.A., Wood, A.L., Thomas, D.G., 2010. Use of electrophoresis for 

transporting nano-iron in porous media. Ground Water 49, 172-183. 

Kirkelund, G.M., Ottosen, L.M., Villumsen, A., 2009. Electrodialytic remediation of harbour 

sediment in suspension—Evaluation of effects induced by changes in stirring velocity 

and current density on heavy metal removal and pH. J. Hazard. Mater. 169, 685-690. 

Kocur, C.M., Chowdhury, A.I., Sakulchaicharoen, N., Boparai, H.K., Weber, K.P., Sharma, 

P., Krol, M.M., Austrins, L.M., Peace, C., Sleep, B.E., O'Carroll, D.M., 2014. 

Characterization of nZVI mobility in a field scale test. Environ. Sci. Technol., DOI: 

10.1021/es4044209. . 



 22 

Laumann, S., Micić, V., Lowry, G.V., Hofmann, T., 2013. Carbonate minerals in porous 

media decrease mobility of polyacrylic acid modified zero-valent iron nanoparticles 

used for groundwater remediation. Environ. Poll.179, 53-60. 

Li, Y., Liang, F., Zhu, Y., Wang, F., 2013. Phytoremediation of a PCB-contaminated soil by 

alfalfa and tall fescue single and mixed plants cultivation. J. Soils Sediments 13, 925-

931. 

Lima, A.T., Ottosen, L.M., Heister, K., Loch, J.P.G., 2012. Assessing PAH removal from 

clayey soil by means of electro-osmosis and electrodialysis. Sci.Total Environ. 435–

436, 1-6. 

Liu, J., Chen, T., Qi, Z., Yan, J., Buekens, A., Li, X., 2014. Thermal desorption of PCBs 

from contaminated soil using nano zerovalent iron. Environ. Sci. Pollut.Res., 1-8. 

Lopareva-Pohu, A., Pourrut, B., Waterlot, C., Garçon, G., Bidar, G., Pruvot, C., Shirali, P., 

Douay, F., 2011. Assessment of fly ash-aided phytostabilisation of highly contaminated 

soils after an 8-year field trial: Part 1. Influence on soil parameters and metal 

extractability. Sci. Total Environ. 409, 647-654. 

Lowry, G., Johnson, K., 2004. Congener-specific dechlorination of dissolved PCBs by 

microscale and nanoscale zerovalent iron in a water/methanol solution. Environ. Sci. 

Technol. 38, 5208-5216. 

Mehra, O.P., Jackson, M.L., 1960. Iron oxide removal from soils and clays by a dithionite-

citrate system buffered with sodium bicarbonate. Clays Clay Miner. 7, 317-327. 

Ottosen, L., Jensen, P., Kirkelund, G., Hansen, H., 2013. Electrodialytic remediation of 

different heavy metal-polluted soils in suspension. Water Air Soil Poll. 224, 1-10. 

Pamukcu, S., Hannum, L., Wittle, J.K., 2008. Delivery and activation of nano-iron by DC 

electric field. J. Environ. Sci. Health A 43, 934-944. 



 23 

Pazos, M., Kirkelund, G.M., Ottosen, L.M., 2010. Electrodialytic treatment for metal removal 

from sewage sludge ash from fluidized bed combustion. J. Hazard. Mater. 176, 1073-

1078. 

Ram, N.M., McTiernan, L., Kinney, L., 2013. Estimating remediation costs at contaminated 

sites with varying amounts of available information. Remediation J. 23, 43-58. 

Ribeiro, A.B., Mateus, E.P., Ottosen, L.M., Bech-Nielsen, G., 2000. Electrodialytic removal 

of Cu, Cr and As from chromated copper arsenate-treated timber waste. Environ. 

Sci.Technol. 34, 784-788. 

Summersgill, M., 2006. Remediation technology costs in the UK & Europe; Drivers and 

changes from 2001 to 2005, in: Telford, T. (Ed.), Proceedings of the 5th International 

GeoEnviro Conference, June 2006, Cardiff. 

Sun, T.R., Ottosen, L.M., Jensen, P.E., Kirkelund, G.M., 2012. Electrodialytic remediation of 

suspended soil – Comparison of two different soil fractions. J. Hazard. Mater. 203–204, 

229-235. 

Tosco, T., Petrangeli Papini, M., Cruz Viggi, C., Sethi, R., 2014. Nanoscale zerovalent iron 

particles for groundwater remediation: a review. J. Clean. Prod. 77, 10-21. 

Varanasi, P., Fullana, A., Sidhu, S., 2007. Remediation of PCB contaminated soils using iron 

nano-particles. Chemosphere 66, 1031–1038. 

Vasilyeva, G.K., Strijakova, E.R., Nikolaeva, S.N., Lebedev, A.T., Shea, P.J., 2010. 

Dynamics of PCB removal and detoxification in historically contaminated soils 

amended with activated carbon. Environ. Poll. 158, 770–777. 

Wang, C.-B., Zhang, W., 1997. Synthesizing Nanoscale Iron Particles for Rapid and 

Complete Dechlorination of TCE and PCBs. Environ. Sci. Technol. 31, 2154-2156. 



 24 

Wang, Y., Zhou, D., Wang, Y., Wang, L., Cang, L., 2012. Automatic pH control system 

enhances the dechlorination of 2,4,4'-trichlorobiphenyl and extracted PCBs from 

contaminated soil by nanoscale Fe0 and Pd/Fe0. Environ. Sci. Pollut. Res. 19, 448-457. 

Wu, B.-Z., Chen, H.-Y., Wang, S.J., Wai, C.M., Liao, W., Chiu, K., 2012. Reductive 

dechlorination for remediation of polychlorinated biphenyls. Chemosphere 88, 757-

768. 

Yang, G.C.C., Tu, H.C., Hung, C.-H., 2007. Stability of nanoiron slurries and their transport 

in the subsurface environment. Sep. Purif. Technol. 58 166-172. 

Zhang, W., 2003. Nanoscale iron particles for environmental remediation: an overview. J. 

Nanoparticle Res. 5, 323-332. 

Zhang, W., Elliott, D.W., 2006. Applications of iron nanoparticles for groundwater 

remediation. Remediation, 7-21. 

Zhang, W., Wang, C.B., Lien, H.L., 1998. Treatment of chlorinated organic contaminants 

with nanoscale bimetallic particles. Catal. Today 40, 387-395. 

Zhuang, Y., Ahn, S., Seyfferth, A.L., Masue-Slowey, Y., Fendorf, S., Luthy, R.G., 2011. 

Dehalogenation of polybrominated diphenyl ethers and polychlorinated biphenyl by 

bimetallic, impregnated, and nanoscale zerovalent iron. Environ. Sci. Technol. 45, 

4896-4903. 

 

View publication statsView publication stats

https://www.researchgate.net/publication/271330147

