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Abstract. This work presents a comprehensive discretization theory for abstract linear operator5
equations in Banach spaces. The fundamental starting point of the theory is the idea of residual6
minimization in dual norms, and its inexact version using discrete dual norms. It is shown that this7
development, in the case of strictly-convex reflexive Banach spaces with strictly-convex dual, gives8
rise to a class of nonlinear Petrov–Galerkin methods and, equivalently, abstract mixed methods9
with monotone nonlinearity. Under the Fortin condition, we prove discrete stability and quasi-10
optimal convergence of the abstract inexact method, with constants depending on the geometry of11
the underlying Banach spaces. As part of our analysis, we obtain new bounds for best-approximation12
projectors. The theory generalizes and extends the classical Petrov–Galerkin method as well as13
existing residual-minimization approaches, such as the discontinuous Petrov–Galerkin method.14

Key words. Operators in Banach spaces, Residual minimization, Petrov–Galerkin discretiza-15
tion, Error analysis, Quasi-optimality, Duality mapping, Best approximation, Geometric constants16

AMS subject classifications. 41A65, 65J05, 46B20, 65N12, 65N1517

1. Introduction. The discontinuous Petrov–Galerkin (DPG) methodology de-18

veloped by Demkowicz and Gopalakrishnan, and, more generally, minimal-residual19

(MinRes) formulations with residual measured in a dual norm, have attracted signif-20

icant attention in the numerical analysis literature [19, 20, 2], owing to their concep-21

tual simplicity and striking stability properties. In this paper we provide an abstract22

stability and convergence analysis of the (practical) inexact version within Banach23

space settings. Our analysis extends the Hilbert-space analysis by Gopalakrishnan &24

Qiu [26], and thereby opens up a convergence theory for the MinRes discretization25

of partial differential equations (PDEs) in non-standard non-Hilbert settings.26

1.1. MinRes methods in Banach spaces. For our analysis, we consider the27

abstract problem28

(1.1)

{
Find u ∈ U :

Bu = f in V∗ ,
29

where U and V are infinite-dimensional Banach spaces and the data f is a given30

element in the dual space V∗. The operator B : U → V∗ is a continuous, bounded-31

below linear operator, that is, there is a continuity constant MB > 0 and bounded-32
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2 I. MUGA AND K. G. VAN DER ZEE

below constant γB > 0 such that33

γB‖w‖U ≤ ‖Bw‖V∗ ≤MB‖w‖U , ∀w ∈ U .(1.2)3435

We shall assume throughout this paper the existence of a unique solution.1 Note that36

problem (1.1) is equivalent to the variational statement37 〈
Bu, v

〉
V∗,V =

〈
f, v
〉
V∗,V ∀v ∈ V ,38

39

commonly encountered in the weak formulation of PDEs, i.e., when
〈
Bu, v

〉
V∗,V =:40

b(u, v) and b : U× V→ R is a bilinear form.41

Given a discrete (finite-dimensional) subspace Un ⊂ U, the exact (or ideal)42

MinRes formulation for the above problem is:243

(1.3)

Find un ∈ Un :

un = arg min
wn∈Un

∥∥f −Bwn∥∥V∗ ,
44

where the dual norm is given by45

‖g‖V∗ = sup
v∈V\{0}

〈g, v〉V∗,V

‖v‖V
, for any g ∈ V∗ .(1.4)46

47

This formulation is appealing for its stability and quasi-optimality without requiring48

additional conditions, which was proven by Guermond [27], who studied residual49

minimization abstractly in Banach spaces, and focussed on the case where the residual50

is in an Lp space, for 1 ≤ p <∞.51

Although the MinRes formulation (1.3) is quasi-optimal, an essential complica-52

tion is that the dual norm (1.4) may be non-computable in practice, because it re-53

quires the evaluation of a supremum over V that may be intractable. This is the case,54

for example, when V∗ is a negative Sobolev space such as [W 1,p
0 (Ω)]∗ =: W−1,q(Ω),55

where p−1 + q−1 = 1, 1 ≤ p ≤ ∞, and Ω ⊂ Rd is a bounded d-dimensional domain.56

Situations with non-computable dual norms are very common in weak formulations57

of PDEs and, therefore, these complications can not be neglected.58

A natural replacement that makes such dual norms computationally tractable is59

obtained by restricting the supremum to discrete subspaces Vm ⊂ V. This idea leads60

to the following inexact MinRes problem:61

(1.5)

Find un ∈ Un :

un = arg min
wn∈Un

∥∥f −Bwn∥∥(Vm)∗
,62

where the discrete dual norm is now given by363

‖g‖(Vm)∗ = sup
vm∈Vm\{0}

〈g, vm〉V∗,V

‖vm‖V
, for any g ∈ V∗ .(1.6)64

65

Note that a notation with a separate parametrization (·)m is used to highlight the66

fact that Vm need not necessarily be related to Un.67

1which is guaranteed provided f ∈ ImB or KerB∗ = {0} (B is surjective); see, e.g., [24, Appen-
dix A.2], [37, Section 5.17]. The smallest possible MB coincides with ‖B‖ := sup

w∈U\{0}
‖Bw‖V∗/‖w‖U,

while the largest possible γB coincides with 1/‖B−1‖, where B−1 : Im(B)→ U .
2If V is a Hilbert space, residual minimization corresponds to the familiar least-squares mini-

mization method [4]; otherwise it requires the minimization of a convex (non-quadratic) functional.
3Strictly speaking, the discrete dual norm is a norm on (Vm)∗ and only a semi-norm on V∗.
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DISCRETIZATION IN BANACH SPACES: MINRES, NPG & MMM 3

1.2. Main results. The main objective of our work is to present equivalent68

formulations, prove the stability (uniform discrete well-posedness), and provide a69

quasi-optimal convergence analysis for the inexact MinRes discretization (1.5).70

Most of our results are valid in the case that V is a reflexive Banach space such71

that V and V∗ are strictly convex 4, which we shall refer to as the reflexive smooth72

setting. This setting includes Hilbert spaces, but also important non-Hilbert spaces,73

since Lp(Ω) (as well as p-Sobolev spaces) for p ∈ (1,∞) are reflexive and strictly74

convex, however not so for p = 1 and p =∞ (see [14, Chapter II] and [7, Section 4.3]).75

We assume this special setting throughout the remainder of Section 1.76

Indispensable in developing equivalent formulations is the duality mapping JV :77

V→ V∗, which is a well-studied operator in nonlinear functional analysis that can be78

thought of as the extension to Banach spaces of the well-known Riesz map (which is79

a Hilbert-space construct). In the reflexive smooth setting, the duality mapping is a80

bijective monotone operator that is nonlinear in the non-Hilbert case.581

The main assumption in the analysis of stability and quasi-optimality, pertains82

to a compatibility requirement on the pair (Un,Vm). Analogous to the Hilbert-space83

case [26], this compatibility is stated in terms of Fortin’s condition (involving a Fortin84

operator Π : V → Vm, see Assumption 4.4 in Section 4.2), which is essentially a85

discrete inf–sup condition on (Un,Vm) [25].86

Our main results and novel contributions are as follows:87

• (Theorem 4.1) The discrete solution to the inexact MinRes problem (1.5) is88

equivalently characterized by the statement:689

(1.7)

{
Find un ∈ Un :〈

νn, J
−1
Vm

(f −Bun)
〉
V∗,V = 0 ∀νn ∈ BUn ⊂ V∗ ,90

which we refer to as an (inexact) nonlinear Petrov–Galerkin method. In turn,91

this is equivalent to a constrained-minimization formulation (or a saddle-point92

problem), which in mixed form reads:93

(1.8a)

(1.8b)


Find (rm, un) ∈ Vm × Un :〈

JV(rm), vm
〉
V∗,V +

〈
Bun, vm

〉
V∗,V =

〈
f, vm

〉
V∗,V ∀vm ∈ Vm ,〈

B∗rm, wn
〉
U∗,U = 0 ∀wn ∈ Un .

94

where the auxiliary variable rm is a discrete residual representer. Because of95

the monotone nonlinearity JV, we refer to (1.8) as a monotone mixed method.796

• (Theorem 4.5) Under the Fortin condition, the inexact MinRes method (1.5)97

(or equivalently (1.7) or (1.8)) has a unique solution that depends continu-98

ously on the data.99

• (Theorem 4.14) Under the Fortin condition, the inexact MinRes method (1.5)100

is quasi-optimal, i.e., it satisfies the a priori error estimate:101

‖u− un‖U ≤ C inf
wn∈Un

‖u− wn‖U .(1.9)102
103

4A normed space Y is said to be strictly convex if, for all y1, y2 ∈ Y such that y1 6= y2 and
‖y1‖ = ‖y2‖ = 1, it holds that ‖θy1 + (1− θ)y2‖Y < 1 for all θ ∈ (0, 1), see e.g., [17, 7, 13].

5To give a specific example, if V = W 1,p
0 (Ω), then JV is a (normalized) p-Laplace-type operator.

We refer to Section 2 for details and other relevant properties.
6Natural injections Im : Vm → V have been ommitted for simplicity; see Section 4.1.
7As might be expected, replacing Vm by V in (1.7), (1.8) gives equivalences to the ideal case (1.3).
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4 I. MUGA AND K. G. VAN DER ZEE

A major part of our analysis concerns the sharpening of the constant C in (1.9).104

Indeed, a straightforward preliminary result (Corollary 4.8) is not sharp as it does105

not reduce to the known result C = CΠMB/γB , when restricting to Hilbert-space set-106

tings [26, Theorem 2.1], with CΠ being a boundedness constant in Fortin’s condition.107

To resolve the discrepancy, we improve the constant by including the dependence on108

the geometry of the involved Banach spaces. The proof of this sharper estimate is109

nontrivial, as it requires a suitable extension of a Hilbert-space technique due to Xu110

and Zikatanov [44] involving the classical identity ‖I − P‖ = ‖P‖ for Hilbert-space111

projectors P , which is generally attributed to Kato [32] (cf. [42]). A key idea is the re-112

cent extension ‖I − P‖ ≤ CS‖P‖ for Banach-space projectors by Stern [41], where CS113

depends on the Banach–Mazur distance, however, since that extension applies to lin-114

ear projectors, we generalize Stern’s result to a suitable class of nonlinear projectors115

(see Lemma 3.3). As a by-product, we prove two novel a priori bounds for abstract116

best approximations and exact residual minimizers, which are of independent interest117

(see Propositions 3.5 and 3.17, and Corollaries 3.6 and 3.18, respectively).118

1.3. Discussion: Unifying aspects and PDE implications. Let us empha-119

size that the above quasi-optimality theory generalizes and unifies Babuška’s theory120

for Petrov–Galerkin methods [1], Guermond’s theory for exact residual minimiza-121

tion [27], and the Hilbert-space theory for inexact residual minimization (including122

the DPG method) [26, 16, 3, 21]. For a schematic hierarchy with these connections,123

we refer to Remark 2 and Figure 2.124

While the discretization theory developed in this work is abstract and applies to125

any well-posed operator equation, we mention some of its implications in the context126

of PDEs on bounded Lipschitz domains Ω ⊂ Rd. Firstly, the general Banach-space127

setting implies that one can directly consider PDEs in (non-standard) non-Hilbert set-128

tings. For example, it provides an immediate discretization theory for second-order129

elliptic operators B : W 1,p
0 (Ω) → W 1,q

0 (Ω)∗ with p > 1, such as the Laplacian or130

diffusion-convection-reaction operator; see [30, 28] for studies of their well-posedness,131

and [29] for a recent application of the inexact MinRes method. One can also uti-132

lize inexact residual minimization to directly approximate rough right-hand sides,133

essentially thinking of the operator B being the identity in V∗ = W 1,q(Ω)∗; see [35].134

Secondly, one can consider first-order PDEs in a weak setting with B : Lp(Ω)→135

W q
B(Ω)∗, where W q

B(Ω) is a suitable graph space for B (based on Lq). This setting has136

a solution space U = Lp(Ω) that has very low regularity and accommodates discon-137

tinuous solutions (as typically expected for first-order PDEs). The recent work [36]138

explores this application in the context of the advection–reaction equation (or linear139

transport) with the additional benefit that the notorious Gibbs phenomena can be140

eliminated when p→ 1+ (cf. [29, 33]). We anticipate that the above-mentioned ben-141

efits may extend to other classes of linear PDEs, integro-partial differential equations142

and nonlocal PDEs, as well as to other Banach spaces.8143

1.4. Outline of paper. The remainder of the paper is organized as follows.144

• Section 2 is devoted to brief preliminaries on the duality mapping.145

• Section 3 considers geometric constants in Banach spaces and sharpened a pri-146

ori bounds involving these constants.147

• Section 4 contains the complete analysis of the inexact MinRes method.148

• Finally, the Appendix A contains some of the proofs in this work that were149

deemed too long to be included in the main body of the text.150

8Cf. [11, 9, 8] for nonlinear PDEs examples in Hilbert-space settings using a DPG approach.
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2. Preliminaries: Duality mappings. In this section we briefly review some151

relevant theory in the classical subject of duality mappings, which are required to ob-152

tain equivalent characterizations of (inexact) residual minimizers and best approxima-153

tions. An extensive treatment on duality mappings can be found in Cioranescu [14].9154

Let Y be a normed vector space.155

Definition 2.1 (Duality mapping).156

(i) The multivalued mapping JY : Y→ 2Y
∗

defined by157

JY(y) :=
{
y∗ ∈ Y∗ : 〈y∗, y〉Y∗,Y = ‖y‖2Y = ‖y∗‖2Y∗

}
,158

159

is the duality mapping on Y.160

(ii) When JY is a single-valued map, we use the notation JY : Y → Y∗ and call161

it the duality map on Y, in other words, in that case162

JY(y) = {JY(y)} such that 〈JY(y), y〉Y∗,Y = ‖y‖2Y = ‖JY(y)‖2Y∗ .(2.1)163164

Some classical properties of JY (and JY) are summarized in the following.165

• JY(y) ⊂ Y∗ is non-empty for all y ∈ Y, and JY(·) is a homogeneous map.166

• JY(·) is a single-valued map if and only if Y∗ is strictly convex.167

• JY : Y→ 2Y
∗

is surjective10 if and only if Y is reflexive.168

• JY is strictly monotone (hence injective) if and only if Y is strictly convex.169

Strict monotonicity is meant as follows: For all y, z ∈ Y, y 6= z,170 〈
y∗ − z∗, y − z

〉
Y∗,Y > 0 for any y∗ ∈ JY(y) and z∗ ∈ JY(z) .(2.2)171

172

Accordingly, when Y and Y∗ are strictly convex and reflexive Banach spaces, referred173

to as the reflexive smooth setting, two important straightforward consequences are:174

• JY : Y→ Y∗ and JY∗ : Y∗ → Y∗∗ are bijective.175

• JY∗ = IY ◦ J−1
Y , where IY : Y → Y∗∗ is the canonical injection. Briefly,176

JY∗ = J−1
Y , by means of canonical identification.177

We also recall the following key characteristics of duality mappings:178

• For any y∗ ∈ JY(y) (or y∗ = JY(y) if single-valued), its norm supremum is179

achieved by y itself, i.e.,180

sup
z∈Y\{0}

〈y∗, z〉Y∗,Y

‖z‖Y
=
〈y∗, y〉Y∗,Y

‖y‖Y

(
= ‖y‖Y

)
.(2.3)181

182

• The duality mapping coincides with the subdifferential of fY : Y→ R defined183

by fY(·) := 1
2‖ · ‖

2
Y, in other words, JY(y) = ∂fY(y), for all y ∈ Y. Moreover,184

if Y∗ is strictly convex, fY is Gâteaux differentiable with gradient ∇fY(·),185

hence, JY(y) = ∇fY(y) .186

Example 2.2 (The Lp case). We recall here an explicit formula for the duality187

map in Lp(Ω), where Ω ⊂ Rd, d ≥ 1. For p ∈ (1,+∞), the space Lp(Ω) is reflexive188

and strictly convex; see e.g. [14, Chapter II] and [7, Section 4.3]. For v ∈ Lp(Ω) the189

duality map is defined by the action:190

(2.4)
〈
JLp(Ω)(v), w

〉
Lq(Ω),Lp(Ω)

:=
∥∥v∥∥2−p

Lp(Ω)

∫
Ω

|v|p−1 sign(v)w, ∀w ∈ Lp(Ω) ,191

9Other relevant treatments in the context of nonlinear functional analysis are by Brezis [7, Chap-
ter 1], Deimling [17, Section 12], Chidume [12, Chapter 3] and Zeidler [45, Chapter 32.3d], while an
early treatment on duality mappings is by Lions [34, Chapter 2, Section 2.2].

10Surjective in the following sense: Every y∗ ∈ Y∗ belongs to a set JY(y), for some y ∈ Y.
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6 I. MUGA AND K. G. VAN DER ZEE

which can be shown by computing the Gâteaux derivative of v 7→ 1
2 (
∫

Ω
|v|p)2/p, or by192

verifying the identities in Definition 2.1.11193

Finally, we prove a useful Lemma and Corollary concerned with the duality map194

on subspaces. The Lemma shows that the duality map on subspaces can simply be195

constructed from the standard duality map and the natural injection (inclusion map).196

The Corollary subsequently establishes a unitarity property for the natural injection.197

Lemma 2.3 (Duality map on a subspace). Let Y be a Banach space, Y∗ strictly198

convex, and JY : Y → Y∗ denote the duality map on Y. Let M ⊂ Y denote a linear199

subspace of Y, and JM : M→M∗ denote the corresponding duality map on M. Then,200

JM = I∗MJY ◦ IM ,201202

where IM : M→ Y is the natural injection.203

Proof. Given any z ∈ M, consider the functional JM(z) ∈M∗. Using the Hahn–204

Banach extension (see, e.g., [7, Corollary 1.2]), we extend this functional to an element205

J̃M(z) ∈ Y∗ such that ‖J̃M(z)‖Y∗ = ‖JM(z)‖M∗ .12 Observe that206

‖J̃M(z)‖Y∗ = ‖IMz‖Y and 〈J̃M(z), IMz〉Y∗,Y = 〈JM(z), z〉M∗,M = ‖IMz‖2Y.207208

So, as a matter of fact, J̃M(z) = JY(IMz). Therefore, by the extension property209

of J̃M(z) we obtain I∗MJY(IMz) = I∗MJ̃M(z) = JM(z).210

Corollary 2.4 (Natural injection). Under the conditions of Lemma 2.3, the211

natural injection IM : M → Y is a generalized unitary operator in the following212

sense: It is a bounded operator whose range coincides with its domain, and structure-213

preserving in the sense that214 〈
JY(IMz1), IMz2

〉
Y∗,Y =

〈
JM(z1), z2

〉
M∗,M ∀z1, z2 ∈M .215

216

3. Geometric constants for Banach spaces, and sharpened a priori217

bounds. In this section, we consider two geometric constants in Banach spaces: the218

Banach–Mazur constant and the (new) asymmetric-orthogonality constant. We show219

that these constants arise in the sharpening of a priori bounds for best approximations220

and (inexact) residual minimizers.221

3.1. Banach–Mazur constant and nonlinear projector estimate. We re-222

call the Banach–Mazur constant introduced by Stern [41, Definition 2].223

Definition 3.1 (Banach–Mazur constant). Let Y be a normed vector space224

with dimY ≥ 2, and let `2(R2) be the 2-D Euclidean space endowed with the 2-norm.225

The Banach–Mazur constant of Y is defined by226

CBM(Y) := sup
{(
dBM(W, `2(R2))

)2
: W ⊂ Y , dimW = 2

}
,227

228

where dBM(·, ·) is the (multiplicative) Banach–Mazur distance:229

dBM(W, `2(R2)) := inf
{
‖T‖‖T−1‖ : T is a linear isomorphism W→ `2(R2)

}
.230

231

11In the case p = 1, the formula in the right-hand side of (2.4) also works and defines an element
in the set JL1(Ω)(v). Note however that L1 is not a special Banach space as discussed above.

12In fact, the Hahn–Banach extension is unique on account of strict convexity of Y∗.

This manuscript is for review purposes only.



DISCRETIZATION IN BANACH SPACES: MINRES, NPG & MMM 7

Since the definition only makes sense when dimY ≥ 2, henceforth, whenever CBM(·) is232

written, we assume this to be the case. (Note that dimY = 1 is often an uninteresting233

trivial situation.)234

Remark 3.2 (Elementary properties of CBM). It is known that 1 ≤ CBM(Y) ≤ 2,235

CBM(Y) = 1 if and only if Y is a Hilbert space, and CBM(Y) = 2 if Y is non-reflexive;236

see [41, Section 3]. For Y = `p(R2), CBM(Y) = 2|
2
p−1|; cf. [43, Section II.E.8] and [31,237

Section 8], which is also true for Lp and Sobolev spaces W k,p (k ∈ N); see [41].238

The Banach–Mazur constant is used in the Lemma below to state a fundamental239

estimate for an abstract nonlinear projector. This nonlinear projector estimate, is an240

extension of Kato’s identity ‖I − P‖ = ‖P‖ for Hilbert-space projectors [32], and a241

generalization of the estimate in [41, Theorem 3] (for linear Banach-space projectors).242

Lemma 3.3 (Nonlinear projector estimate). Let Y be a normed space, I : Y→ Y243

the identity and Q : Y→ Y a nonlinear operator such that:244

(i) Q is a nontrivial projector: 0 6= Q = Q ◦Q 6= I .245

(ii) Q is homogeneous: Q(λy) = λQ(y), ∀y ∈ Y and ∀λ ∈ R .246

(iii) Q is bounded in the sense that ‖Q‖ := sup
y∈Y\{0}

‖Q(y)‖Y
‖y‖Y

< +∞ .247

(iv) Q is a quasi-linear projector in the sense that248

Q(y) = Q
(
Q(y) + η (I −Q)(y)

)
, for any η ∈ R and any y ∈ Y .249

250

Then the nonlinear operator I −Q is also bounded and satisfies251

‖I −Q‖ ≤ CS‖Q‖, with CS := min
{

1 + ‖Q‖−1
, CBM(Y)

}
.252

253

Proof. The proof of this result follows closely Stern [41, Proof of Theorem 3].254

Although Stern considers linear projectors, his result generalizes to projectors with255

the properties in (i)–(iv). See Section A.1 for the complete proof.256

Remark 3.4 (Quasi-linear projectors). Requirement (iv) in Lemma 3.3 is a key257

nonlinear property. We point out that it is satisfied by linear projectors, by best-258

approximation projectors, by I minus best-approximation projectors (as in the proof259

of Proposition 3.5), and by (inexact) nonlinear PG projectors (see Corollary 4.13).260

3.2. First a priori bounds for best approximations and residual mini-261

mizers. By applying Lemma 3.3, we now obtain a priori bounds for best approxima-262

tions and exact residual minimizers.263

Proposition 3.5 (Best approximation: A priori bound I). Let Y be a Banach264

space and M ⊂ Y a closed subspace. Suppose y0 ∈M is a best approximation in M of265

a given y ∈ Y, i.e.,266

‖y − y0‖Y ≤ ‖y − z0‖Y , ∀z0 ∈M ,267268

then y0 satisfies the a priori bound:269

(3.1) ‖y0‖Y ≤ CBM(Y)‖y‖Y .270

Proof. We assume M 6= {0} and M 6= Y (otherwise the result is trivial). Consider271

a (nonlinear) map P⊥ : Y → Y such that P⊥(y) = y − y0, where y0 ∈ M is a best272

This manuscript is for review purposes only.



8 I. MUGA AND K. G. VAN DER ZEE

approximation to y ∈ Y. The map P⊥ can be chosen in a homogeneous way, i.e.,273

satisfying λP⊥(y) = P⊥(λy) for any λ ∈ R. Observe that274

(3.2) ‖P⊥(y)‖Y = ‖y − y0‖Y ≤ ‖y − 0‖Y = ‖y‖Y .275

Hence, ‖P⊥‖ ≤ 1. Additionally, it can be verified that P⊥(P⊥(y)) = y − y0 − 0 =276

P⊥(y). Thus, Q = P⊥ satisfies (i)–(iii) of Lemma 3.3. To verify requirement (iv),277

notice that for any η ∈ R,278

P⊥
(
P⊥(y) + η (I − P⊥)(y)

)
= P⊥

(
y − y0 + ηy0

)
= y − y0 ,279

280

since ηy0 is a best approximation in M to y − y0 + ηy0. Therefore, by Lemma 3.3,281

‖y0‖Y =
∥∥(I − P⊥)y

∥∥
Y ≤ min

{
1 + ‖P⊥‖−1 , CBM(Y)

}
‖P⊥‖‖y‖Y ,282

283

and (3.1) follows since ‖P⊥‖ ≤ 1 and CBM(Y) ≤ 2 .284

Corollary 3.6 (Residual minimization: A priori bound I). Let un ∈ Un be a285

solution of the exact MinRes problem (1.3), then un satisfies the a priori bound:286

‖un‖U ≤
CBM(V∗)
γB

‖f‖V∗ .(3.3a)287
288

Proof. First note that un is a best approximation to u in the (energy) norm289

‖ · ‖E := ‖B(·)‖V∗ (which is an equivalent norm to ‖ · ‖U because of (1.2)), indeed290

‖u− un‖E = ‖Bu−Bun‖V∗ = ‖f −Bun‖V∗ ≤ ‖f −Bwn‖V∗ = ‖u− wn‖E ,(3.4)291292

for any wn ∈ Un. Thus, applying Proposition 3.5 shows that293

‖un‖U ≤
1

γB
‖un‖E ≤

CBM(V∗)
γB

‖u‖E =
CBM(V∗)
γB

‖f‖V∗ .294
295

Remark 3.7 (Sharpness of (3.1)). The bound in (3.1) improves the classical bound296

‖y0‖Y ≤ 2‖y‖Y (see e.g., [40, Sec. 10.2]), in the sense that (3.1) shows an explicit de-297

pendence on the geometry of the underlying Banach space. In particular, (3.1) con-298

tains the standard result ‖y0‖Y ≤ ‖y‖Y for a Hilbert space, as well as the classical299

bound ‖y0‖Y ≤ 2‖y‖Y for non-reflexive spaces such as `1(R2) and `∞(R2) (for which300

the bound is indeed sharp; see Example 3.8). However, (3.1) need not be sharp for301

intermediate spaces; see Example 3.11.302

Example 3.8 (`1(R2)). In R2 with the norm ‖(x1, x2)‖1 = |x1| + |x2|, i.e. Y =303

`1(R2), the best approximation of the point (1, 0) over the line {(t, t) : t ∈ R} is the304

whole segment {(t, t) : t ∈ [0, 1]}. Moreover, the point (1, 1) is a best approximation305

and ‖(1, 1)‖1 = 2 = 2‖(0, 1)‖1. Since the Banach–Mazur constant equals 2, Eq. (3.1) is306

sharp for this example.307

3.3. Asymmetric-orthogonality constant and strengthened triangle in-308

equality. We now introduce a new geometric constant, which will appear in alterna-309

tive a priori bounds for best approximations and (inexact) residual minimizers.310
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Definition 3.9 (Asymmetric-orthogonality constant). Let Y be a normed vector311

space with dimY ≥ 2. The asymmetric-orthogonality constant is defined by:13312

CAO(Y) := sup
(z0,z)∈OY
z∗0∈JY(z0)

〈z∗0 , z〉Y∗,Y

‖z‖Y‖z0‖Y
,(3.5)313

314

where the above supremum is taken over the set OY consisting of all pairs (z0, z) which315

are orthogonal in the following sense:316

OY :=
{

(z0, z) ∈ Y× Y : ∃ z∗ ∈ JY(z) satisfying 〈z∗, z0〉Y∗,Y = 0
}
.(3.6)317

318

Remark 3.10 (Elementary properties of CAO). The constant CAO(Y) is a geo-319

metric constant since it measures the degree to which the orthogonality relation (3.6)320

fails to be symmetric. It is easy to see that 0 ≤ CAO(Y) ≤ 1. If Y is a Hilbert space,321

then CAO(Y) = 0, since then JY(·) coincides with the self-adjoint Riesz map, and322

〈JY(·), ·〉Y∗,Y coincides with the (symmetric) inner product in Y. On the other hand,323

the maximal value CAO(Y) = 1 holds for example for Y = `1(R2). Indeed taking324

z0 = (1,−1) and z = (α, 1), with α > 0, then (2,−2) ∈ JY(z0) and (1 + α, 1 + α) ∈325

JY(z), so that upon taking α→ +∞ one obtains 〈z∗0 , z〉Y∗,Y/(‖z0‖Y‖z‖Y)→ 1.326

Example 3.11 (CAO(`p)). Consider the Banach space `p ≡ `p(R2) with 1 < p <327

+∞ (i.e., R2 endowed with the p-norm). In this case the duality map is given by:328

〈
J`p(x1, x2), (y1, y2)

〉
(`p)∗,`p

=
∥∥(x1, x2)

∥∥2−p
`p

2∑
i=1

|xi|p−1 sign(xi) yi ,329

330

for all (x1, x2), (y1, y2) ∈ R2, which allows the computation of CAO(`p) as a constrained331

maximization problem. Figure 1 shows the dependence of CAO(`p) versus p − 1. It332

also illustrates the Banach–Mazur constant CBM(`p) and the best-approximation pro-333

jection constant Cbest(`p) := maxu∈`p(R2) ‖un‖/‖u‖, with un the best approximation334

to u on the worst 1-dimensional subspace of `p(R2). The figure shows that335

Cbest(`p) < CBM(`p) < 1 + CAO(`p)(3.7)336337

except for p = 1, 2 and +∞, for which they coincide.14338

We conclude our discussion of CAO with a Lemma describing three important339

properties that are going to be used later in Section 4.4.340

Lemma 3.12 (CAO in reflexive smooth setting). Assume Y and Y∗ are strictly341

convex and reflexive Banach spaces. The following properties hold true:342

(i) CAO(Y) = sup
(z0,z)∈Y×Y: 〈JY(z),z0〉Y∗,Y=0

〈JY(z0), z〉Y∗,Y

‖z‖Y‖z0‖Y
.343

(ii) CAO(Y∗) = CAO(Y) .344

(iii) CAO(M) = CAO(Y) , for any closed subspace M ⊂ Y endowed with norm ‖ · ‖Y.345

Proof. See Section A.2.346

13As in the case of CBM(Y), CAO(Y) only makes sense when dimY ≥ 2. Therefore as before,
whenever CAO(·) is written, we assume this to be the case.

14It is unknown if (3.7) holds more generally than in this example.
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Fig. 1. Three different geometric constants and its dependence on p− 1.

Example 3.13 (CAO(Lp)). Let Ω ⊂ Rd be an open set and consider the Banach347

space Y := Lp(Ω), 1 < p < +∞. Let Ω1 and Ω2 be two open bounded disjoint348

subsets. Define the functions fi ∈ Lp(Ω) (i = 1, 2) by fi := |Ωi|−
1
p1Ωi

and let349

M := span{f1, f2} ⊂ Y. It is easy to see that M is isometrically isomorphic to `p(R2)350

and thus, using Lemma 3.12(iii), we have CAO(`p) = CAO(M) = CAO(Lp) .351

We now use the constant CAO to state a strengthened triangle inequality.15 This352

inequality can be thought of as an extension of the inequality ‖y0‖ ≤ ‖y‖ in Hilbert353

spaces whenever (y − y0, y0) = 0. In the worst Banach spaces (having CAO = 1), the354

below inequality reduces to the standard triangle inequality ‖y0‖ ≤ ‖y‖+ ‖y − y0‖.355

Lemma 3.14 (Strengthened triangle inequality). Let Y be a Banach space. Sup-356

pose y0, y ∈ Y such that357

∃z∗ ∈ JY(y − y0) satisfying 〈z∗, y0〉Y∗,Y = 0358359

(or simply
〈
JY(y − y0), y0

〉
Y∗,Y = 0 in the case Y∗ is strictly convex), then360

‖y0‖Y ≤ ‖y‖Y + CAO(Y)‖y − y0‖Y .(3.8)361362

Proof. If y0 = 0 or y0 = y, the result is obvious. Note that y = 0 implies y0 = 0,363

hence is also a trivial situation. Thus, assume 0 6= y0 6= y 6= 0. Consider any364

y∗0 ∈ JY(y0) (or y∗0 = JY(y0) when Y∗ is strictly convex), then365

‖y0‖Y =
〈y∗0 , y0〉Y∗,Y

‖y0‖Y
=
〈y∗0 , y〉Y∗,Y

‖y0‖Y
− 〈y

∗
0 , y − y0〉Y∗,Y

‖y0‖Y‖y − y0‖Y
‖y − y0‖Y366

367

Because 〈z∗, y0〉Y∗,Y = 0 by assumption, the absolute value of the second fraction on368

the right-hand side is bounded by CAO(Y), from which the proof follows.369

Example 3.15 (`1(R2) continued). Recall from Example 3.8, the points y0 =370

(1, 1) and y = (1, 0) in `1(R2), and observe that ‖y0‖1 = ‖y‖1+‖y − y0‖1. Define z∗ =371

(1,−1) and note that z∗ ∈ J`1(y − y0) ∈ `∞(R2) and 〈z∗, y0〉 = 0. Hence, since372

CAO(`1) = 1, Eq. (3.8) is sharp in this case.373

3.4. Second a priori bounds for best approximations and residual mini-374

mizers. The second set of a priori bounds for best approximations and exact residual375

minimizers involves the asymmetric-orthogonality constant, and is based on the fol-376

lowing key characterization for best approximations.377

15So named for its similarity to the strengthened Cauchy–Schwartz inequality; see, e.g. [22].
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Lemma 3.16 (Best approximation characterization). Let Y be a Banach space,378

and y ∈ Y. Suppose M ⊂ Y is a closed subspace, then the following are equivalent:379

(i) y0 is a best approximation in M to y, i.e., y0 = arg min
z0∈M

‖y − z0‖Y.380

(ii) ∃z∗ ∈ JY(y − y0) that annihilates M, i.e., 〈z∗, z0〉Y∗,Y = 0, ∀z0 ∈M.381

Proof. In case of y ∈ Y \M see, e.g., Singer [39] or Braess [6]. The case of y ∈M382

is trivial, because in that case y0 = y and one can choose z∗ = 0.383

Proposition 3.17 (Best approximation: A priori bound II). Suppose the con-384

ditions of Proposition 3.5. Then y0 satisfies the a priori bound:385

‖y0‖Y ≤
(
1 + CAO(Y)

)
‖y‖Y .(3.9)386387

Proof. If y0 = 0 or y0 = y, then the result is obvious. Hence, consider ‖y0‖Y > 0388

and ‖y− y0‖Y > 0. Next, by Lemma 3.16, there exists z∗ ∈ JY(y− y0) which annihi-389

lates M, hence in particular 〈z∗, y0〉Y∗,Y = 0. Conclude by applying the strengthened390

triangle inequality (Lemma 3.14), and recalling that ‖y − y0‖Y ≤ ‖y‖Y (see (3.2)).391

Corollary 3.18 (Residual minimization: A priori bound II). Let un ∈ Un be a392

solution of the exact MinRes problem (1.3), then un satisfies the a priori bound:393

‖un‖U ≤
(
1 + CAO(V)

)
γB

‖f‖V∗ .(3.10a)394
395

Proof. Similar to the proof of Corollary 3.6 (but now uses Proposition 3.17) and396

Lemma 3.12(ii).397

4. Analysis of the inexact method. In this section, we present the analysis398

for the inexact MinRes method (1.5).399

4.1. Equivalent formulations. We summarize the equivalent formulations in400

the following result, which utilizes the duality map (recall from Section 2).401

Theorem 4.1 (Equivalent characterizations). Let U and V be two Banach spaces402

and let B : U→ V∗ be a linear, continuous and bounded-below operator. Assume that403

V and V∗ are reflexive and strictly convex. Consider finite-dimensional subspaces404

Un ⊂ U and Vm ⊂ V, together with the natural injections Im : Vm → V and I∗m :405

V∗ → (Vm)∗, and duality maps JV : V→ V∗ and JVm
: Vm → (Vm)∗. Given f ∈ V∗,406

the following statements are equivalent:16407

(i) un ∈ Un minimizes the discrete residual, i.e.,408

(4.1)
∥∥I∗m(f −Bun)

∥∥
(Vm)∗

= min
wn∈Un

∥∥I∗m(f −Bwn)
∥∥

(Vm)∗
,409

and rm = J−1
Vm
◦I∗m(f−Bun) is the associated minimal-residual representative.410

(ii) (rm, un) ∈ Vm × Un solves the discrete mixed problem:411

(4.2a)

(4.2b)


〈
JV(rm), vm

〉
V∗,V +

〈
Bun, vm

〉
V∗,V =

〈
f, vm

〉
V∗,V ∀vm ∈ Vm ,〈

B∗rm, wn
〉
U∗,U = 0 ∀wn ∈ Un .

412

(iii) un ∈ Un solves the inexact non-linear Petrov-Galerkin discretization:413 〈
νn , ImJ

−1
Vm
◦ I∗m(f −Bun)

〉
V∗,V

= 0 , ∀νn ∈ BUn .(4.3)414
415

and rm = J−1
Vm
◦ I∗m(f −Bun).416

16The presumed existence of solutions in these statements will be established in Theorem 4.5.
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(iv) (rm, un) ∈ Vm × Un solves the discrete saddle-point problem:417

(4.4) L(rm, un) = min
vm∈Vm

max
wn∈Un

L(vm, wn) ,418

where the Lagrangian L : V× U→ R is defined by:

L(v, w) :=
1

2
‖v‖2V − 〈f, v〉V∗,V + 〈B∗v, w〉U∗,U .

419

Proof. Step (i) ⇒ (ii). To verify (4.2a), notice the following direct equivalences:420

rm = J−1
Vm
◦ I∗m(f −Bun)421

⇔ JVm
(rm) = I∗m(f −Bun)422

⇔ I∗mJV(Imrm) = I∗m(f −Bun)(by Lemma 2.3)423

⇔ 〈JV(rm), vm〉V∗,V + 〈Bun, vm〉V∗,V = 〈f, vm〉V∗,V , ∀vm ∈ Vm.424
425

Next, to verify (4.2b), first recall the identification J(Vm)∗ = J−1
Vm

due to the426

reflexive smooth setting. Now, if un ∈ Un is a minimizer of (4.1) and rm = J−1
Vm
◦427

I∗m(f −Bun), then by Lemma 3.16, with M = I∗mBUn ⊂ (Vm)∗ = Y, rm satisfies:428

0 = 〈I∗mBwn, rm〉(Vm)∗,Vm
= 〈Bwn, Imrm〉V∗,V = 〈B∗rm, wn〉U∗,U, ∀wn ∈ Un .429430

Step (ii) ⇒ (iii). If (un, rm) ∈ Un × Vm is a solution of (4.2), then, by the431

direct equivalences in Step (i) ⇒ (ii), rm = J−1
Vm
◦ I∗m(f −Bun), and (4.2b) is nothing432

but (4.3).433

Step (iii) ⇒ (i). Observe that for any wn ∈ Un we have :434

∥∥I∗m(f −Bun)
∥∥

(Vm)∗
= sup
vm∈Vm

〈I∗m(f −Bun), vm〉(Vm)∗,Vm

‖vm‖V
435

=
〈JVm(rm), rm〉(Vm)∗,Vm

‖rm‖V
=
〈I∗m(f −Bun), rm〉(Vm)∗,Vm

‖rm‖V
(by (2.3))436

=
〈I∗m(f −Bwn), rm〉(Vm)∗,Vm

‖rm‖V
≤ ‖I∗m(f −Bwn)‖(Vm)∗ .(by (4.3))437

438

Thus, un is a minimizer of (4.1).439

Step (ii) ⇔ (iv). This is a classical result; see, e.g., Ekeland & Témam [23,440

Chapter VI, Proposition 1.6] (use that v 7→ 1
2‖v‖

2
V is (strictly) convex, and that it is441

Gâteaux differentiable, owing to strict convexity of V∗).442

Remark 4.2 (Vm = V). All the equivalences of Theorem 4.1 still hold true when443

Vm = V, which are relevant to the exact (or ideal) MinRes problem (1.3).444

Remark 4.3 (Optimal test-space norm). As proposed in [46] (cf. [16]), if V is445

reflexive andB is bijective (henceB∗ : V→ U∗ is bijective), one can endow the space V446

with the equivalent optimal norm ‖ · ‖Vopt
:= ‖B∗(·)‖U∗ . In that case, the exact447

MinRes problem (1.3) precisely coincides with finding the best approximation in Un448

to u measured in ‖ · ‖U, i.e., ‖u− un‖U = ‖f −Bun‖(Vopt)∗
= infwn∈Un

‖u − wn‖U .449

Besides, the duality map for this topology satisfies JVopt
(·) = BJ−1

U ◦B∗(·).450
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4.2. Well-posedness of the inexact method. We now focus on the mono-451

tone mixed method (1.8) (see also (4.2)), as this is the most convenient equivalent452

formulation for the ensuing well-posedness and error analysis.453

Assumption 4.4 (Fortin condition). Let {(Un,Vm)} be a family of discrete sub-454

space pairs, where Un ⊂ U and Vm ⊂ V. For each pair (Un,Vm) in this family, there455

exists an operator Πn,m : V → Vm and constants CΠ > 0 and DΠ > 0 (independent456

of n and m) such that the following conditions are satisfied:457

(4.5a)

(4.5b)

(4.5c)


‖Πn,mv‖V ≤ CΠ‖v‖V , ∀v ∈ V ,
‖(I −Πn,m)v‖V ≤ DΠ‖v‖V , ∀v ∈ V ,
〈Bwn, v −Πn,mv〉V∗,V = 0, ∀wn ∈ Un, ∀v ∈ V,

458

where I : V→ V is the identity map in V. For simplicity, we write Π instead of Πn,m.17459

For the existence of Π, note that the last identity (4.5c) requires that dimVm ≥460

dim Im(B|Un
) = dimUn (for a bounded-below operator B). Schaback [38, Theorem 3]461

essentially guarantees the existence of Π for sufficiently large Vm compared to Un,462

but it is unknown how much larger exactly Vm needs to be compared to Un in the463

non-Hilbert Banach case. Note that (4.5a) implies (4.5b) with DΠ = 1 + CΠ, but to464

allow for sharper estimates, we prefer to retain the independent constant DΠ.465

Theorem 4.5 (Discrete well-posedness). Consider the same hypotheses of The-466

orem 4.1. Let MB > 0 and γB > 0 be as in (1.2). Let the finite-dimensional subspaces467

Un ⊂ U and Vm ⊂ V satisfy Assumption 4.4.468

(i) For any f ∈ V∗, there exists a unique solution (rm, un) ∈ Vm×Un to discrete469

problem (1.8).18 19470

(ii) Moreover, if u ∈ U is such that Bu = f , then we have the a priori bounds:471

(4.6a)

(4.6b)


‖rm‖V ≤ ‖f‖V∗ ≤MB‖u‖U and

‖un‖U ≤
CΠ

γB
(1 + CAO(V))‖f‖V∗ ≤ CΠ

γB
(1 + CAO(V))MB‖u‖U ,

472

where CAO(V) is the asymmetric-orthogonality constant of V (see Def. 3.9).473

Proof. To prove existence, consider the equivalent discrete constrained minimiza-474

tion problem (4.4). The existence of a minimizer rm ∈ Vm ∩ (BUn)⊥ is guaran-475

teed since the functional vm 7→ 1
2‖vm‖

2
V − 〈f, vm〉V∗,V is convex and continuous, and476

Vm ∩ (BUn)⊥ is a closed subspace.477

Next, we claim that there exists a un ∈ Un such that478

〈Bun, vm〉V∗,V = 〈f − JV(rm), vm〉V∗,V , ∀vm ∈ Vm.479
480

To see this, consider the restricted operator Bn : Un → V∗ such that Bnwn = Bwn,481

∀wn ∈ Un, and recall the injection Im : Vm → V. Then, the above translates into482

I∗mBnun = I∗m
(
f − JV(rm)

)
in (Vm)∗.483484

17The Fortin condition is equivalent to the discrete inf-sup condition on {(Un,Vm)}; see [25]. It
classically appears in the study of mixed FEM [5, Section 5.4].

18Note that we do not require Im(B) = V∗. Indeed, for part (i), f need not be in the range Im(B).
19Assumption 4.4 is not needed for the existence of (rm, un), nor the uniqueness of rm.
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Thus, to prove existence of un, I∗m(f − JV(rm)) needs to be in the (closed) range of485

I∗mBn : Un → (Vm)∗. Since rm is the minimizer of (4.4), we have486

0 = 〈JV(rm)− f, Imvm〉V∗,V = 〈I∗m(JV(rm)− f), vm〉(Vm)∗,Vm
,487

488

∀vm ∈ Vm∩(BUn)⊥ = ker(B∗nIm), i.e., I∗m(f−JV(rm)) ∈ (ker(B∗nIm))⊥ = Im(I∗mBn).489

To prove uniqueness, assume to the contrary that (un, rm) and (ũn, r̃m) are two
distinct solutions. Then, by subtraction, it is immediate to see that:

〈JV(rm)− JV(r̃m), rm − r̃m〉V∗,V = 0,

which implies that r̃m = rm by strict monotonicity of JV (see (2.2)). Going back490

to (1.8a) we now obtain 〈B(un − ũn), vm〉V∗,V = 0, for all vm ∈ Vm. Therefore, by491

the Fortin-operator property (4.5c),492

〈B(un − ũn), v〉V∗,V = 〈B(un − ũn),Πv〉V∗,V = 0, ∀v ∈ V.493
494

Thus, B(un − ũn) = 0 which implies un − ũn = 0 since B is bounded below.495

To prove the bound (4.6a), replace vm = rm in (1.8a), and use (1.8b) together496

with the Cauchy–Schwartz inequality. For (4.6b), see Proposition 4.12 in Section 4.4.497

Although Vm should be sufficiently large for stability, there is no need for it to be498

close to the entire V. The following proposition essentially shows that the goal of Vm499

is to resolve the residual r ∈ V of the ideal MinRes formulation (1.3) (cf. [18]).500

Proposition 4.6 (Optimal Vm). Consider the same hypotheses of Theorem 4.5.501

Let un ∈ Un be the solution of the ideal MinRes problem (1.3), and let r = J−1
V (f −502

Bun). If r ∈ Vm, then (r, un) is also the unique solution to the inexact case (1.8).503

Proof. Notice that JV(r) = f−Bun, so in particular (1.8a) is satisfied by (r, un) ∈504

Vm × Un. Recalling (3.4), and using Lemma 3.16 with M = BUn ⊂ V∗ = Y, we get:505

〈Bwn, r〉V∗,V = 〈Bwn, JV∗(Bu−Bun)〉V∗,V = 0, ∀wn ∈ Un ,506507

where we used that JV∗ = J−1
V (recall from Section 2). This verifies (1.8b).508

4.3. Error analysis. We next present an error analysis for the inexact MinRes509

discretization (1.5). Since the method is fundamentally related to (discrete) residuals,510

the most straightforward error estimate is of a posteriori type. This estimate happens511

to coincide with the Hilbert case; see [10] and [15, Proposition 3.2]. Immediately512

after, an a priori error estimate follows naturally from the a posteriori estimate. The513

constant in the resulting a priori error estimate can however be improved by resorting514

to an alternative analysis technique, which we present in Section 4.4.515

Theorem 4.7 (A posteriori error estimate). Consider the same hypotheses of516

Theorem 4.5. Let f = Bu ∈ V∗ and let (rm, un) ∈ Vm × Un be the unique solution517

to (1.8). Then un satisfies the following a posteriori error estimate:518

(4.7) ‖u− un‖U ≤
1

γB
osc(f) +

CΠ

γB
‖rm‖V ,519

where the data-oscillation term osc(f) and ‖rm‖V satisfy:520

osc(f) := sup
v∈V

〈f, v −Πv〉
‖v‖V

≤MBDΠ inf
wn∈Un

‖u− wn‖U ≤MBDΠ‖u− un‖U ,(4.8a)521

‖rm‖V ≤MB inf
wn∈Un

‖u− wn‖U ≤MB‖u− un‖U .(4.8b)522
523
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Proof. Using that B is bounded from below, and that Bu = f , we get:524

‖u− un‖U ≤
1

γB
‖Bu−Bun‖V∗ =

1

γB
sup
v∈V

〈f −Bun, v −Πv + Πv〉V∗,V

‖v‖V
(by (1.2))525

≤ 1

γB
sup
v∈V

〈f, v −Πv〉V∗,V

‖v‖V
+

1

γB
sup
v∈V

〈f −Bun,Πv〉V∗,V

‖v‖V
(by (4.5c))526

≤ 1

γB
osc(f) +

CΠ

γB
sup
v∈V

〈JV(rm),Πv〉V∗,V

‖Πv‖V
(by (4.5a), (1.8a))527

≤ 1

γB
osc(f) +

CΠ

γB
‖JV(rm)‖V∗ =

1

γB
osc(f) +

CΠ

γB
‖rm‖V .(by (2.1))528

529

Next, using f = Bu, (4.5c), (1.2) and (4.5b), observe that for all wn ∈ Un,530

osc(f) = sup
v∈V

〈Bu−Bwn, v −Πv〉V∗,V

‖v‖V
≤MBDΠ‖u− wn‖U ,531

532

while noting that ‖rm‖V = 〈JV(rm), rm〉V∗,V/‖rm‖V by (2.1), and using (1.8), we have533

‖rm‖V =
〈f −Bun, rm〉V∗,V

‖rm‖V
=
〈Bu−Bwn, rm〉V∗,V

‖rm‖V
≤MB‖u− wn‖U .534

535

Corollary 4.8 (A priori error estimate I). Under the same conditions of The-536

orem 4.7, un satisfies the following a priori error estimate:537

‖u− un‖U ≤ C inf
wn∈Un

‖u− wn‖U , with C =
(DΠ + CΠ)MB

γB
.(4.9)538

539

Remark 4.9 (Oscillation). In the context of finite-element approximations, the540

data-oscillation term osc(f) can generally be expected to be of higher order than541

indicated by the upper bound in (4.8a); see discussion in [10].542

Remark 4.10 (Ideal MinRes). If Vm = V, then osc(f) = 0, DΠ = 0 and CΠ = 1543

(set Π = I), so that (4.9) holds with C = MB

γB
, which recovers the estimate in [27] for544

the ideal MinRes discretization.545

4.4. Direct a priori error analysis. A direct a priori error analysis is possible546

for the inexact MinRes discretization, without going through the a posteriori error547

estimate. The benefit of the direct analysis is that the resulting estimate is sharper548

than given in (4.9), as it explicitly includes geometric constants for U and V.549

The direct analysis is based on the sequence of inequalities (formalized below):550

‖u− un‖U ≤ ‖I − Pn‖‖u− wn‖U ≤ C‖Pn‖‖u− wn‖U , ∀wn ∈ Un ,(4.10)551552

where I is the identity, Pn is the projector defined below in Definition 4.11, and the553

norm ‖ · ‖ corresponds to the standard operator norm.554

Definition 4.11 (Nonlinear PG projector). Under the conditions of Theo-555

rem 4.5, the (inexact) nonlinear Petrov–Galerkin projector is defined by the map556

Pn : U→ Un such that Pn(u) := un,557558

with un the second argument of the solution (rm, un) of (1.8) with input data f = Bu.559
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The next result establishes important properties of Pn, including a fundamental560

bound that depends on the geometric constant CAO(V) ∈ [0, 1] (recall Definition 3.9).561

Proposition 4.12 (Nonlinear PG projector properties).562

(i) Pn is a nontrivial projector: 0 6= Pn = Pn ◦ Pn 6= I .563

(ii) Pn is homogeneous: Pn(λu) = λPn(u), for all u ∈ U and all λ ∈ R .564

(iii) Pn is bounded, in particular,20565

‖Pn‖ = sup
u∈U

‖Pn(u)‖U
‖u‖U

≤ CΠ

γB

(
1 + CAO(V)

)
MB .(4.11)566

567

(iv) Pn is distributive as follows: Pn
(
u−Pn(w)

)
= Pn(u)−Pn(w), for all u,w ∈ U.568

(v) Pn is a quasi-linear projector as defined in Lemma 3.3(iv).569

Proof. See Section A.3.570

Property (iv) is key to establishing the first inequality in (4.10), indeed, for wn ∈ Un,571

‖u− Pn(u)‖U = ‖u− wn − Pn(u− wn)‖U ≤ ‖I − Pn‖‖u− wn‖U .(4.12)572573

On the other hand, the second inequality in (4.10) can be established through prop-574

erties (i)–(iii) and (v), as they correspond to the four requirements for the abstract575

nonlinear projector Q of Lemma 3.3. Hence, that Lemma immediately provides a576

bound for ‖I − Pn‖ depending on the Banach–Mazur geometric constant CBM(U):577

Corollary 4.13 (Nonlinear PG projector estimate). I − Pn satisfies:578

‖I − Pn‖ ≤ CS‖Pn‖ , with CS := min
{

1 + ‖Pn‖−1
, CBM(U)

}
.(4.13)579

580

In conclusion, by combining (4.12), (4.13) and (4.11), we obtain our main result:581

Theorem 4.14 (A priori error estimate II). Consider the same hypotheses of582

Theorem 4.5. Let f = Bu and let (rm, un) ∈ Vm×Un be the unique solution to (1.8).583

Then un satisfies the following a priori error estimate:584

‖u− un‖U ≤ C inf
wn∈Un

‖u− wn‖U ,585
586

with C = min

{
CΠ

γB

(
1 + CAO(V)

)
MB CBM(U) , 1 +

CΠ

γB

(
1 + CAO(V)

)
MB

}
.587

Remark 4.15 (DPG). If U,V are Hilbert spaces, then CBM(U) = 1 and CAO(V) =588

0, hence Theorem 4.14 holds with C = CΠMB/γB , which recovers the DPG result [26].589

Corollary 4.16 (Petrov–Galerkin). Consider the same hypotheses of Theo-590

rem 4.14. If dimVm = dimUn or rm = 0, then a Petrov–Galerkin statement holds:591

〈Bun, vm〉V∗,V = 〈f, vm〉V∗,V , ∀vm ∈ Vm, and un satisfies the a priori error estimate:592

‖u− un‖U ≤ C inf
wn∈Un

‖u− wn‖U , with C = min

{
CΠ

γB
MBCBM(U) , 1 +

CΠ

γB
MB

}
.593

594

Proof. If dimVm = dimUn, then (1.8b) implies rm = 0 (under the Fortin condi-595

tion), which in turn reduces (1.8a) to a Petrov–Galerkin statement. Eq. (A.5) in the596

proof of Proposition 4.12 implies the simpler bound ‖Pn‖U ≤ CΠ

γB
MB , instead of (4.11).597

Thus, combining this bound with (4.12) and (4.13) yields the error estimate.598

20It is also possible to prove ‖Pn‖ ≤ CΠ
γB

CBM((Vm)∗)MB , by using Proposition 3.5 (with Y =

(Vm)∗) instead of Proposition 3.17 in the proof in Section A.3.
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inexact MinRes Quasi-optimality constant: C = CBM(1 + CAO)CΠ
M

γ

DPG C = CΠ
M

γ
PG C = CBM

M

γ̂

PG-H C =
M

γ̂

o-PG C =
M

γ

MRes C =
M

γ

U,V Hilbert Vm = V (or r ∈ Vm)dimUn = dimVm

dimUn = dimVm U,V Hilbert

Vm = R−1
V BUnVm = V

(or r ∈ Vm)
U,V Hilbert

Fig. 2. Hierarchy of discretization methods, their connections, and their quasi-optimality con-
stant C in the a priori error estimate ‖u− un‖U ≤ C infwn∈Un ‖u− wn‖U. To lighten the notation,
γ ≡ γB, M ≡MB, CBM ≡ CBM(U), CAO ≡ CAO(V). Furthermore, γ̂ is the discrete inf-sup constant
in PG methods, and RV is the Riesz map in V. Note that Theorem 4.14 has the complete result
for C = min{·, ·}, while the figure only shows the non-trivial minimum. Legend: PG = Petrov–
Galerkin, PG-H = PG in Hilbert spaces, o-PG = optimal PG, DPG = discontinuous PG, MRes =
exact (or ideal) MinRes.

Remark 4.17 (Connections). The above error analysis unifies existing quasi-599

optimality theories, because the inexact MinRes formulation directly encompasses600

the following more specialized methods: The exact (or ideal) MinRes method (see Re-601

mark 4.10 and Proposition 4.6), the inexact MinRes method in Hilbert spaces such602

as the DPG method (see Remark 4.15), and the Petrov–Galerkin method (see Corol-603

lary 4.16). Figure 2 shows how the various methods can be obtained from the general604

inexact MinRes formulation. It additionally shows further specialized methods: the605

PG method in Hilbert spaces and the optimal PG method (with ideal test space).606

Appendix A. Appendix: Proofs.607

A.1. Proof of Lemma 3.3. The inequality ‖I−Q‖ ≤ 1+‖Q‖ = (1+‖Q‖−1)‖Q‖
is trivial, so we focus on proving

‖y −Q(y)‖Y ≤ CBM(Y) ‖Q‖ ‖y‖Y , ∀y ∈ Y.

If y − Q(y) = 0, the result holds true immediately. If Q(y) = 0 then, because
requirement (i) implies ‖Q‖ ≥ 1 and CBM(Y) ≥ 1 (recall Remark 3.2), we have

‖y −Q(y)‖Y = ‖y‖Y ≤ CBM(Y) ‖Q‖ ‖y‖Y.

We can thus consider y −Q(y) 6= 0 and Q(y) 6= 0.608

First observe that y −Q(y) and Q(y) are linearly independent. Indeed, suppose609

to the contrary that there exists t ∈ R \ {0} such that y − Q(y) = tQ(y), then610

y = (1 + t)Q(y), hence applying Q and using homogeneity (requirement (ii)), we get611

t = 0 (a contradiction).612

The proof follows using a 2-D geometrical argument. Define W := span{Q(y),613

y−Q(y)}, and note dimW = 2. Let T : W→ `2(R2) be any linear isomorphism. Set614

(A.1) 0 6= α := ‖T (y −Q(y))‖2 and 0 6= β := ‖TQ(y)‖2 ,615
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18 I. MUGA AND K. G. VAN DER ZEE

and subsequently, let ỹ ∈W be defined by616

ỹ :=
α

β
Q(y) +

β

α
(y −Q(y)) .(A.2)617

618

The proof will next be divided into four steps: (S1) shows that ‖y −Q(y)‖Y ≤619 (
‖T‖‖T−1‖

)
‖αβQ(y)‖

Y
; (S2) shows that ‖αβQ(y)‖

Y
≤ ‖Q‖‖ỹ‖Y; (S3) shows that620

‖ỹ‖Y ≤
(
‖T‖‖T−1‖

)
‖y‖Y; and (S4) concludes that ‖y −Q(y)‖Y ≤ CBM(Y) ‖Q‖ ‖y‖Y .621

(S1) This follows from elementary arguments since β 6= 0:622

‖y −Q(y)‖Y ≤ ‖T
−1‖‖T (y −Q(y))‖2 = ‖T−1‖α623

= ‖T−1‖ α
β
‖TQ(y)‖2 ≤ ‖T−1‖ ‖T‖

∥∥∥α
β
Q(y)

∥∥∥
Y
.(by (A.1))624

625

(S2) Use requirement (iv) with η = β2

α2 , and subsequently (ii) and (iii), to obtain:626 ∥∥∥α
β
Q(y)

∥∥∥
Y

=
∥∥∥α
β
Q
(
Q(y) +

β2

α2
(I −Q)(y)

)∥∥∥
Y

=
∥∥Q(ỹ)

∥∥
Y ≤ ‖Q‖‖ỹ‖Y .627

628

(S3) The key point here is to observe that ‖T ỹ‖2 = ‖Ty‖2, indeed,629

‖T ỹ‖22 =
∥∥∥α
β
TQ(y) +

β

α
T (y −Q(y))

∥∥∥2

2
(by (A.2) and (A.1))630

= α2 + 2TQ(y) · T (y −Q(y)) + β2 =
∥∥∥T (y −Q(y)) + TQ(y)

∥∥∥2

2
= ‖Ty‖22 .631

632

Therefore, ‖ỹ‖Y ≤ ‖T−1‖ ‖T ỹ‖2 = ‖T−1‖ ‖Ty‖2 ≤ ‖T−1‖ ‖T‖ ‖y‖Y .633

(S4) Combining (S1)–(S3) we get ‖y−Q(y)‖Y ≤
(
‖T‖‖T−1‖

)2 ‖Q‖ ‖y‖Y . Finally,634

taking the infimum over all linear isomorphisms T : W→ `2(R2) we obtain635

‖y −Q(y)‖Y ≤
(
dBM(W, `2(R2))

)2 ‖Q‖ ‖y‖Y ≤ CBM(Y) ‖Q‖ ‖y‖Y .636637

A.2. Proof of Lemma 3.12. Recall that JY and JY∗ are single-valued bijections638

and JY∗ = J−1
Y . Property (i) is a direct consequence of the definition of CAO(Y)639

(see (3.5)) and the fact that JY is single-valued.640

To prove property (ii), we make use of property (i) replacing Y by Y∗. We get

CAO(Y∗) = sup
(z∗,z∗0 )∈OY∗

〈JY∗(z∗), z∗0〉Y∗∗,Y∗

‖z∗0‖Y∗‖z∗‖Y∗
= sup

(z∗,z∗0 )∈OY∗

〈z∗0 , J−1
Y (z∗)〉Y∗,Y

‖z∗0‖Y∗‖z∗‖Y∗
.

Defining z = J−1
Y (z∗) and z0 = J−1

Y (z∗0) we obtain641

CAO(Y∗) = sup
(z∗,z∗0 )∈OY∗

〈JY(z0), z〉Y∗,Y

‖z0‖Y‖z‖Y
,(A.3)642

with OY∗ =
{

(z∗, z∗0) ∈ Y∗ × Y∗ : 〈JY∗(z∗0), z∗〉Y∗∗,Y∗ = 0
}

643

=
{

(JY(z), JY(z0)) ∈ Y∗ × Y∗ : 〈JY(z), z0〉Y∗,Y = 0
}

644

=
{

(JY(z), JY(z0)) ∈ Y∗ × Y∗ : (z0, z) ∈ OY
}
.645646

Hence the supremum in (A.3) can be taken over all (z0, z) ∈ OY which proves (ii).647
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For the last property (iii) we make use of Corollary 2.4 to show that

CAO(M) = sup
(z0,z)∈OM

〈
JM(z0), z

〉
M∗,M

‖z‖Y‖‖z0‖Y
= sup

(z0,z)∈OM

〈
JY(IMz0), IMz

〉
Y∗,Y

‖z‖Y‖‖z0‖Y
.

The fact CAO(M) ≤ CAO(Y) follows by noting that the supremum in CAO(Y) is over a
larger set (i.e., IMOM ⊂ OY). Indeed, if (z0, z) ∈ OM, then (IMz0, IMz) ∈ Y× Y and〈

JY(IMz), IMz0

〉
Y∗,Y =

〈
JM(z), z0

〉
M∗,M = 0 ,

by Corollary 2.4. Hence (IMz0, IMz) ∈ OY. The last inequality combined with (ii)648

implies (iii) because CAO(Y) = CAO(Y∗) ≤ CAO(M∗) = CAO(M) ≤ CAO(Y).649

A.3. Proof of Proposition 4.12. We proceed item by item.650

(i) Take u ∈ U, un = Pn(u), and substitute f = Bun in (1.8a). Then the unique651

solution of (1.8) is (0, un). Therefore Pn(Pn(u)) = Pn(un) = un. The fact652

that Pn 6= 0 and Pn 6= I is easy to verify whenever Un 6= {0} and Un 6= U.653

(ii) The result follows by multiplying both equations of the mixed system (1.8) by654

λ ∈ R and using the homogeneity of the duality map (recall from Section 2).655

(iii) Set f = Bu and let (rm, un) ∈ Vm × Un denote the solution to (1.8). Then656

(A.4) ‖Pn(u)‖U = ‖un‖U ≤
1

γB
sup
v∈V

〈Bun, v〉V∗,V

‖v‖V
≤ CΠ

γB
sup
v∈V

〈Bun,Πv〉V∗,V

‖Πv‖V
.657

Let ym = ImJ
−1
Vm

(I∗mBun) and note that ym ∈ Vm ⊂ V is the supremizer of658

the last expression in (A.4). Hence, using (1.8a) we get659

‖Pn(u)‖U ≤
CΠ

γB

〈Bun, ym〉V∗,V

‖ym‖V
660

=
CΠ

γB

(
〈Bu, ym〉V∗,V

‖ym‖V
− 〈JV(rm), ym〉V∗,V

‖rm‖V‖ym‖V
‖rm‖V

)
.(A.5)661

662

The first term in brackets is ≤MB‖u‖U. To bound the second term, note663

〈JV(ym), rm〉V∗,V = 〈Bun, rm〉V∗,V = 0 ,664665

where we used (1.8b). Thus, (rm, ym) ∈ OV (see Lemma 3.12) which implies666

that the second term is bounded by CAO(V)‖rm‖V . Using (4.6a), we get667

‖Pn(u)‖U ≤
CΠ

γB

(
1 + CAO(V)

)
MB‖u‖U . ∀u ∈ U(A.6)668

669

We note that an alternative proof can be given based on Proposition 3.17670

(with Y = (Vm)∗) and Lemma 3.12.671

(iv) Let (rm, un) be the solution of the mixed system (1.8) and for some w̃ ∈ U,672

let w̃n = Pn(w̃) ∈ Un. By subtracting 〈Bw̃n, vm〉V∗,V on both sides of (1.8),673

we get that (rm, un− w̃n) is the unique solution of (1.8) with right-hand side674

〈B(u− w̃n), vm〉V∗,V. Therefore675

P (u− w̃n) = un − w̃n .676677
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(v) Statement (v) follows from statements (ii) and (iv). Indeed, for any η ∈ R,678

Pn

(
Pn(u) + η

(
u− Pn(u)

))
= Pn

(
ηu+ Pn

(
(1− η)u

))
(by (ii))679

= Pn(ηu) + Pn
(
(1− η)u

)
(by (iv))680

= Pn(u) .(by (ii))681682
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