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DISCRETIZATION OF LINEAR PROBLEMS IN BANACH SPACES:
RESIDUAL MINIMIZATION, NONLINEAR PETROV-GALERKIN,
AND MONOTONE MIXED METHODS*

IGNACIO MUGAT AND KRISTOFFER G. VAN DER ZEE#}

Dedicated to Leszek Demkowicz and J. Tinsley Oden

Abstract. This work presents a comprehensive discretization theory for abstract linear operator
equations in Banach spaces. The fundamental starting point of the theory is the idea of residual
minimization in dual norms, and its inexact version using discrete dual norms. It is shown that this
development, in the case of strictly-convex reflexive Banach spaces with strictly-convex dual, gives
rise to a class of nonlinear Petrov—Galerkin methods and, equivalently, abstract mixed methods
with monotone nonlinearity. Under the Fortin condition, we prove discrete stability and quasi-
optimal convergence of the abstract inexact method, with constants depending on the geometry of
the underlying Banach spaces. As part of our analysis, we obtain new bounds for best-approximation
projectors. The theory generalizes and extends the classical Petrov—Galerkin method as well as
existing residual-minimization approaches, such as the discontinuous Petrov—Galerkin method.

Key words. Operators in Banach spaces, Residual minimization, Petrov—Galerkin discretiza-
tion, Error analysis, Quasi-optimality, Duality mapping, Best approximation, Geometric constants

AMS subject classifications. 41A65, 65J05, 46B20, 65N12, 656N15

1. Introduction. The discontinuous Petrov-Galerkin (DPG) methodology de-
veloped by Demkowicz and Gopalakrishnan, and, more generally, minimal-residual
(MINRES) formulations with residual measured in a dual norm, have attracted signif-
icant attention in the numerical analysis literature [19, 20, 2], owing to their concep-
tual simplicity and striking stability properties. In this paper we provide an abstract
stability and convergence analysis of the (practical) inezact version within Banach
space settings. Our analysis extends the Hilbert-space analysis by Gopalakrishnan &
Qiu [26], and thereby opens up a convergence theory for the MINRES discretization
of partial differential equations (PDEs) in non-standard non-Hilbert settings.

1.1. MinRes methods in Banach spaces. For our analysis, we consider the
abstract problem

{FinduGU:

(1.1) Bu=f in V*,

where U and V are infinite-dimensional Banach spaces and the data f is a given
element in the dual space V*. The operator B : U — V* is a continuous, bounded-
below linear operator, that is, there is a continuity constant Mp > 0 and bounded-
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2 I. MUGA AND K. G. VAN DER ZEE

below constant yg > 0 such that
(1.2) vellwlly < |Bwlly. < Mplwlly,  VweU.

We shall assume throughout this paper the existence of a unique solution.! Note that
problem (1.1) is equivalent to the variational statement
<Bu,v>w7V = <f’v>\/*,v Yv eV,
commonly encountered in the weak formulation of PDEs, i.e., when <Bu, v>V* v =
b(u,v) and b: U x V — R is a bilinear form.
Given a discrete (finite-dimensional) subspace U,, C U, the ezact (or ideal)
MINRES formulation for the above problem is:?

Find u,, € U, :
(1.3) Uy = argwrslei%n Hf — Bwn‘ -

where the dual norm is given by

(1.4) llg] , for any g € V*.

_ <ga U>V* v
yx = Sup
veV\{0} ||UHV

This formulation is appealing for its stability and quasi-optimality without requiring
additional conditions, which was proven by Guermond [27], who studied residual
minimization abstractly in Banach spaces, and focussed on the case where the residual
is in an LP space, for 1 < p < oo.

Although the MINRES formulation (1.3) is quasi-optimal, an essential complica-
tion is that the dual norm (1.4) may be non-computable in practice, because it re-
quires the evaluation of a supremum over V that may be intractable. This is the case,
for example, when V* is a negative Sobolev space such as [WyP(Q)]* =1 W~19(Q),
where p~' +¢ ! =1, 1 < p < o0, and Q C R? is a bounded d-dimensional domain.
Situations with non-computable dual norms are very common in weak formulations
of PDEs and, therefore, these complications can not be neglected.

A natural replacement that makes such dual norms computationally tractable is
obtained by restricting the supremum to discrete subspaces V,,, C V. This idea leads
to the following inezact MINRES problem:

Find u,, € U, :

(1.5) Up = afgw{fleign I/ - Bwn”(vm)* ’
where the discrete dual norm is now given by?

<gavm>V*,V
(1.6) loll, ) =  sup lmiv

, for any g € V*.
omevar{0y  Nvmlly

Note that a notation with a separate parametrization (-),, is used to highlight the
fact that V,,, need not necessarily be related to U,,.

Lwhich is guaranteed provided f € Im B or Ker B* = {0} (B is surjective); see, e.g., [24, Appen-
dix A.2], [37, Section 5.17]. The smallest possible Mp coincides with || B|| :==  sup ||Bwly«/|lwlly,
U\{0}

we
while the largest possible v5 coincides with 1/||B~1||, where B~! : Im(B) — U.
2If V is a Hilbert space, residual minimization corresponds to the familiar least-squares mini-
mization method [4]; otherwise it requires the minimization of a convex (non-quadratic) functional.
3Strictly speaking, the discrete dual norm is a norm on (V,,)* and only a semi-norm on V*.
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DISCRETIZATION IN BANACH SPACES: MINRES, NPG & MMM 3

1.2. Main results. The main objective of our work is to present equivalent
formulations, prove the stability (uniform discrete well-posedness), and provide a
quasi-optimal convergence analysis for the inexact MINRES discretization (1.5).

Most of our results are valid in the case that V is a reflexive Banach space such
that V and V* are strictly convez*, which we shall refer to as the reflexive smooth
setting. This setting includes Hilbert spaces, but also important non-Hilbert spaces,
since LP(Q) (as well as p-Sobolev spaces) for p € (1,00) are reflexive and strictly
convex, however not so for p = 1 and p = oo (see [14, Chapter II] and [7, Section 4.3]).
We assume this special setting throughout the remainder of Section 1.

Indispensable in developing equivalent formulations is the duality mapping Jv :
V — V*, which is a well-studied operator in nonlinear functional analysis that can be
thought of as the extension to Banach spaces of the well-known Riesz map (which is
a Hilbert-space construct). In the reflexive smooth setting, the duality mapping is a
bijective monotone operator that is nonlinear in the non-Hilbert case.’

The main assumption in the analysis of stability and quasi-optimality, pertains
to a compatibility requirement on the pair (U, V,,). Analogous to the Hilbert-space
case [26], this compatibility is stated in terms of Fortin’s condition (involving a Fortin
operator II : V — V,,,, see Assumption 4.4 in Section 4.2), which is essentially a
discrete inf-sup condition on (U,,V,,) [25].

Our main results and novel contributions are as follows:

e (Theorem 4.1) The discrete solution to the inexact MINRES problem (1.5) is
equivalently characterized by the statement:%

Find u, € U, :
(1.7) (Vn: Jy 1 (f = Bun))y. y =0 Vv, € BU, CV*,

which we refer to as an (inexact) nonlinear Petrov—Galerkin method. In turn,
this is equivalent to a constrained-minimization formulation (or a saddle-point
problem), which in mixed form reads:

Find (rp,un) € Vy, x U,
(1.8a) (F7(rm), vm ey + (Bttn, Vi) = (Fr0m)ye y Vo € Vi,

(1.8b) <B*rm,wn>U*7U =0 Yw, € U, .
where the auxiliary variable r,, is a discrete residual representer. Because of
the monotone nonlinearity Jy, we refer to (1.8) as a monotone mized method.”

e (Theorem 4.5) Under the Fortin condition, the inexact MINRES method (1.5)
(or equivalently (1.7) or (1.8)) has a unique solution that depends continu-
ously on the data.

o (Theorem 4.14) Under the Fortin condition, the inexact MINRES method (1.5)
is quasi-optimal, i.e., it satisfies the a priori error estimate:

(1.9) lu—tnlly <€ inf [u—wn ]y
wn€Up

4A normed space Y is said to be strictly convez if, for all y1,y2 € Y such that y; # y» and
lly1ll = lly2ll = 1, it holds that [|@y1 + (1 — 8)y2|ly < 1 for all § € (0,1), see e.g., [17, 7, 13].

5To give a specific example, if V = VVO1 'P(2), then Jy is a (normalized) p-Laplace-type operator.
We refer to Section 2 for details and other relevant properties.

SNatural injections I, : Vi, — V have been ommitted for simplicity; see Section 4.1.

7As might be expected, replacing V,,, by Vin (1.7), (1.8) gives equivalences to the ideal case (1.3).

This manuscript is for review purposes only.
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4 I. MUGA AND K. G. VAN DER ZEE

A major part of our analysis concerns the sharpening of the constant C in (1.9).
Indeed, a straightforward preliminary result (Corollary 4.8) is not sharp as it does
not reduce to the known result C' = CyMp /v, when restricting to Hilbert-space set-
tings [26, Theorem 2.1], with Cy being a boundedness constant in Fortin’s condition.
To resolve the discrepancy, we improve the constant by including the dependence on
the geometry of the involved Banach spaces. The proof of this sharper estimate is
nontrivial, as it requires a suitable extension of a Hilbert-space technique due to Xu
and Zikatanov [44] involving the classical identity ||I — P|| = || P|| for Hilbert-space
projectors P, which is generally attributed to Kato [32] (cf. [42]). A key idea is the re-
cent extension ||I — P|| < Cs||P|| for Banach-space projectors by Stern [41], where Cg
depends on the Banach—Mazur distance, however, since that extension applies to lin-
ear projectors, we generalize Stern’s result to a suitable class of nonlinear projectors
(see Lemma 3.3). As a by-product, we prove two novel a priori bounds for abstract
best approzimations and exact residual minimizers, which are of independent interest
(see Propositions 3.5 and 3.17, and Corollaries 3.6 and 3.18, respectively).

1.3. Discussion: Unifying aspects and PDE implications. Let us empha-
size that the above quasi-optimality theory generalizes and unifies Babuska’s theory
for Petrov—Galerkin methods [1], Guermond’s theory for exact residual minimiza-
tion [27], and the Hilbert-space theory for inexact residual minimization (including
the DPG method) [26, 16, 3, 21]. For a schematic hierarchy with these connections,
we refer to Remark 2 and Figure 2.

While the discretization theory developed in this work is abstract and applies to
any well-posed operator equation, we mention some of its implications in the context
of PDEs on bounded Lipschitz domains @ C R?. Firstly, the general Banach-space
setting implies that one can directly consider PDEs in (non-standard) non-Hilbert set-
tings. For example, it provides an immediate discretization theory for second-order
elliptic operators B : Wol’p(ﬂ) — Wol’q(Q)* with p > 1, such as the Laplacian or
diffusion-convection-reaction operator; see [30, 28] for studies of their well-posedness,
and [29] for a recent application of the inexact MINRES method. One can also uti-
lize inexact residual minimization to directly approximate rough right-hand sides,
essentially thinking of the operator B being the identity in V* = Wh4(Q)*; see [35].

Secondly, one can consider first-order PDEs in a weak setting with B : LP(2) —
WE(Q)*, where WA () is a suitable graph space for B (based on L?). This setting has
a solution space U = LP(Q)) that has very low regularity and accommodates discon-
tinuous solutions (as typically expected for first-order PDEs). The recent work [36]
explores this application in the context of the advection-reaction equation (or linear
transport) with the additional benefit that the notorious Gibbs phenomena can be
eliminated when p — 17 (cf. [29, 33]). We anticipate that the above-mentioned ben-
efits may extend to other classes of linear PDEs, integro-partial differential equations
and nonlocal PDEs, as well as to other Banach spaces.®

1.4. Outline of paper. The remainder of the paper is organized as follows.
e Section 2 is devoted to brief preliminaries on the duality mapping.
e Section 3 considers geometric constants in Banach spaces and sharpened a pri-
ori bounds involving these constants.
e Section 4 contains the complete analysis of the inexact MINRES method.
e Finally, the Appendix A contains some of the proofs in this work that were
deemed too long to be included in the main body of the text.

8Cf. [11, 9, 8] for nonlinear PDEs examples in Hilbert-space settings using a DPG approach.
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2. Preliminaries: Duality mappings. In this section we briefly review some
relevant theory in the classical subject of duality mappings, which are required to ob-
tain equivalent characterizations of (inexact) residual minimizers and best approxima-
tions. An extensive treatment on duality mappings can be found in Cioranescu [14].”

Let Y be a normed vector space.

DEFINITION 2.1 (Duality mapping).
(i) The multivalued mapping Jy : Y — 2¥ defined by

Fely) = {y" €Y (" uhye v = I3 = ")

-
Y ’
is the duality mapping on Y.
(i) When Jy is a single-valued map, we use the notation Jy : Y — Y* and call
it the duality map on Y, in other words, in that case

21)  Fuly) = {Ju(y)} such that (Jv(y),y)v-v = lyly = [Fv@)I5- -

Some classical properties of Jy (and Jy) are summarized in the following.

Jy(y) C Y* is non-empty for all y € Y, and Jy(-) is a homogeneous map.
Jy(+) is a single-valued map if and only if Y* is strictly convex.

Jv 0 Y — 2¥7 is surjective'” if and only if Y is reflexive.

Jy is strictly monotone (hence injective) if and only if Y is strictly convex.
Strict monotonicity is meant as follows: For all ¢,z € Y, y # z,

(2.2) <y* — 2%y — Z>Y*7Y >0 for any y* € Jy(y) and z* € Jy(2).

Accordingly, when Y and Y* are strictly convex and reflexive Banach spaces, referred
to as the reflerive smooth setting, two important straightforward consequences are:
e Jy:Y — Y* and Jy- : Y* — Y** are bijective.
o Jy« = Iyo ng, where Zy : Y — Y** is the canonical injection. Briefly,
Jy- = Jy ! by means of canonical identification.
We also recall the following key characteristics of duality mappings:
e For any y* € Jy(y) (or y* = Jy(y) if single-valued), its norm supremum is
achieved by y itself, i.e.,

v 2y y WS Yy
(23) sp Wothey WLy (= lly).
evvior  lzlly ylly

e The duality mapping coincides with the subdifferential of fy : Y — R defined
by fy(-) :== 3| - [|3, in other words, Jv(y) = dfy(y), for all y € Y. Moreover,
if Y* is strictly convex, fy is Gateaux differentiable with gradient V fy(-),
hence, Jy(y) = V fy(y) .

Ezample 2.2 (The L? case). We recall here an explicit formula for the duality
map in LP(Q), where Q C R4 d > 1. For p € (1, +00), the space LP(f2) is reflexive
and strictly convex; see e.g. [14, Chapter II] and [7, Section 4.3]. For v € LP(Q) the
duality map is defined by the action:

(2.4) <JL‘°(Q)(U)aw>Lq(Q),Lp(Q) = ||UH2L;?Q) /Q [P~ sign(v) w,  Yw e LP(Q),

90ther relevant treatments in the context of nonlinear functional analysis are by Brezis [7, Chap-
ter 1], Deimling [17, Section 12], Chidume [12, Chapter 3] and Zeidler [45, Chapter 32.3d], while an
early treatment on duality mappings is by Lions [34, Chapter 2, Section 2.2].
10Surjective in the following sense: Every y* € Y* belongs to a set Jy(y), for some y € Y.
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6 I. MUGA AND K. G. VAN DER ZEE

which can be shown by computing the Géteaux derivative of v — ([, [v[P)2/P, or by
verifying the identities in Definition 2.1.!

Finally, we prove a useful Lemma and Corollary concerned with the duality map
on subspaces. The Lemma shows that the duality map on subspaces can simply be
constructed from the standard duality map and the natural injection (inclusion map).
The Corollary subsequently establishes a unitarity property for the natural injection.

LEMMA 2.3 (Duality map on a subspace). Let Y be a Banach space, Y* strictly
convez, and Jy : Y — Y* denote the duality map on Y. Let Ml C Y denote a linear
subspace of Y, and Jy : Ml — M* denote the corresponding duality map on M. Then,

JM = I&Jyolm,

where Iy : M — Y is the natural injection.

Proof. Given any z € M, consider the functional Jy(z) € M*. Using the Hahn—
Banach extension (see, e.g., [7, Corollary 1.2]), we extend this functional to an element

—_—~—

Ju(z) € Y* such that ||y (2)|y. = [|Jm(2) |- -*2 Observe that

1Ja(2)lly- = [wzlly  and  (Ja(2), huz)ye v = (Juu(2), 2D = 1T z3-
So, as a matter of fact, Jy(z) = Jy(Imz). Therefore, by the extension property
of Jm(z) we obtain Iy Jy(Imz) = IfiJm(z) = Jm(z). |

COROLLARY 2.4 (Natural injection). Under the conditions of Lemma 2.3, the
natural injection Iy : M — Y is a generalized unitary operator in the following
sense: It is a bounded operator whose range coincides with its domain, and structure-
preserving in the sense that

(Jy(Buz), Iuza)y. y = (Ju(z1), 22)yp . V21,22 € ML

3. Geometric constants for Banach spaces, and sharpened a priori
bounds. In this section, we consider two geometric constants in Banach spaces: the
Banach—Mazur constant and the (new) asymmetric-orthogonality constant. We show
that these constants arise in the sharpening of a priori bounds for best approximations
and (inexact) residual minimizers.

3.1. Banach—Mazur constant and nonlinear projector estimate. We re-
call the Banach-Mazur constant introduced by Stern [41, Definition 2].

DEFINITION 3.1 (Banach-Mazur constant). Let Y be a normed vector space
with dimY > 2, and let 5(R?) be the 2-D Euclidean space endowed with the 2-norm.
The Banach—Mazur constant of Y is defined by

Cona(Y) = sup { (Ao (W, £2(R2)))* : W C Y, dim W = 2} ,

where dgy (-, +) is the (multiplicative) Banach—Mazur distance:

A (W, £5(R?)) := inf {||TH||T_1|| : T is a linear isomorphism W — EQ(RQ)}.

1Tn the case p = 1, the formula in the right-hand side of (2.4) also works and defines an element

in the set Jp1(q)(v). Note however that L' is not a special Banach space as discussed above.
12In fact, the Hahn-Banach extension is unique on account of strict convexity of Y*.
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Since the definition only makes sense when dim'Y > 2, henceforth, whenever Cry(+) is
written, we assume this to be the case. (Note that dimY = 1 is often an uninteresting
trivial situation.)

Remark 3.2 (Elementary properties of Cgy). It is known that 1 < Cpy(Y) < 2,
Cem(Y) =1 if and only if Y is a Hilbert space, and Cgy(Y) = 2 if Y is non-reflexive;
see [41, Section 3]. For Y = £,(R?), Cpy(Y) = 2151 of. [43, Section IL.E.8] and [31,
Section 8], which is also true for L? and Sobolev spaces WP (k € N); see [41].

The Banach-Mazur constant is used in the Lemma below to state a fundamental
estimate for an abstract nonlinear projector. This nonlinear projector estimate, is an
extension of Kato’s identity ||[I — P|| = ||P|| for Hilbert-space projectors [32], and a
generalization of the estimate in [41, Theorem 3] (for linear Banach-space projectors).

LeEMMA 3.3 (Nonlinear projector estimate). Let Y be a normed space, I : Y — Y
the identity and @ : Y — Y a nonlinear operator such that:

(i) Q is a nontrivial projector: 0 £ Q =QoQ # I.

(i) Q is homogeneous: Q(A\y) = AQ(y), Yy €Y and VA € R.

(iii) Q is bounded in the sense that ||Q] := sup oWl < +00.

yeY\{0} lylly
(iv) Q is a quasi-linear projector in the sense that

QW) =Q(QW +nI- Q). foranyneR andanyy e Y.

Then the nonlinear operator I — Q is also bounded and satisfies
11— QI < CsllQll,  with Cs = min {1+ QI ", Coni(Y) }.

Proof. The proof of this result follows closely Stern [41, Proof of Theorem 3].
Although Stern considers linear projectors, his result generalizes to projectors with
the properties in (i)—(iv). See Section A.1 for the complete proof. 0

Remark 3.4 (Quasi-linear projectors). Requirement (iv) in Lemma 3.3 is a key
nonlinear property. We point out that it is satisfied by linear projectors, by best-
approximation projectors, by I minus best-approximation projectors (as in the proof
of Proposition 3.5), and by (inexact) nonlinear PG projectors (see Corollary 4.13).

3.2. First a priori bounds for best approximations and residual mini-
mizers. By applying Lemma 3.3, we now obtain a priori bounds for best approxima-
tions and exact residual minimizers.

PROPOSITION 3.5 (Best approximation: A priori bound I). Let Y be a Banach
space and Ml C Y a closed subspace. Suppose yo € M is a best approximation in M of
a giveny €Y, i.e.,

ly = yolly < lly = 2ollv, Vzo € M,
then yo satisfies the a priori bound:

(3.1) 190lly < Con(Y)llylly -

Proof. We assume M # {0} and M # Y (otherwise the result is trivial). Consider
a (nonlinear) map P+ : Y — Y such that Pt (y) = y — yo, where yo € M is a best

This manuscript is for review purposes only.



8 I. MUGA AND K. G. VAN DER ZEE

approximation to y € Y. The map P+ can be chosen in a homogeneous way, i.e.,
satisfying AP+ (y) = P+ ()\y) for any A\ € R. Observe that

(3-2) 1P~y = lly = volly < ly = Ollv = llyllv -

Hence, ||P1| < 1. Additionally, it can be verified that P (Pt (y)) =y —yo — 0 =
P+(y). Thus, Q = P+ satisfies (i)—(iii) of Lemma 3.3. To verify requirement (iv),
notice that for any n € R,

PE(PHw) +n (1= PHY)) = P (y=vo+nw0) =y~ 10,
since Ny is a best approximation in M to y — yog + nyo. Therefore, by Lemma 3.3,
lwolly = [[(T = P=)yll, < min {1+ P71, Cona (V) Pyl

and (3.1) follows since ||[P1|| <1 and Cpy(Y) < 2. 0

COROLLARY 3.6 (Residual minimization: A priori bound I). Let u, € U, be a
solution of the exact MINRES problem (1.3), then w,, satisfies the a priori bound:

Cen(V*)
(3.3a) ”un”U < Lﬂﬂ v
B
Proof. First note that u,, is a best approximation to w in the (energy) norm
Il - llg :== | B(-)|ly~ (which is an equivalent norm to || - ||; because of (1.2)), indeed

(3:4) [lu— wnlly = | Bu— Buy|

ve = |If = Buy|

ve S f = Bunlly. = [lu = wnllg,

for any w,, € U,,. Thus, applying Proposition 3.5 shows that
OBI\«I (V*) C’BM (V*)
VB

/]

1
”“n”tu < ’77B||un||]E < ||UH]E = \A o

Remark 3.7 (Sharpness of (3.1)). The bound in (3.1) improves the classical bound
lyolly < 2llylly (see e.g., [40, Sec. 10.2]), in the sense that (3.1) shows an explicit de-
pendence on the geometry of the underlying Banach space. In particular, (3.1) con-
tains the standard result ||yo|ly < ||y|ly for a Hilbert space, as well as the classical
bound ||yolly < 2[ly|ly for non-reflexive spaces such as ¢;(R?) and £ (R?) (for which
the bound is indeed sharp; see Example 3.8). However, (3.1) need not be sharp for
intermediate spaces; see Example 3.11.

Ezample 3.8 (¢*(R?)). In R? with the norm ||(z1,z2)||; = |z1]| + |22, ie. Y =
¢*(R?), the best approximation of the point (1,0) over the line {(¢,¢) : t € R} is the
whole segment {(¢,t) : ¢t € [0,1]}. Moreover, the point (1,1) is a best approximation
and [|(1,1)]|; =2 = 2[|(0,1)]|;. Since the Banach-Mazur constant equals 2, Eq. (3.1) is
sharp for this example.

3.3. Asymmetric-orthogonality constant and strengthened triangle in-
equality. We now introduce a new geometric constant, which will appear in alterna-
tive a priori bounds for best approximations and (inexact) residual minimizers.

This manuscript is for review purposes only.
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DEFINITION 3.9 (Asymmetric-orthogonality constant). LetY be a normed vector
space with dimY > 2. The asymmetric-orthogonality constant is defined by:*3

(35) CAO (Y) = Sup M ,
(z0,2) €Oy HZ”Y”ZOHY
25 €Tv(20)

where the above supremum is taken over the set Oy consisting of all pairs (2o, z) which
are orthogonal in the following sense:

(3.6) Oy = {(zo, z) €Y xY: 32" € Jy(z) satisfying (z*, z0)y~y = 0}.

Remark 3.10 (Elementary properties of Cyo). The constant Cyo(Y) is a geo-
metric constant since it measures the degree to which the orthogonality relation (3.6)
fails to be symmetric. It is easy to see that 0 < C,o(Y) < 1. If Y is a Hilbert space,
then Cy,o(Y) = 0, since then Jy(-) coincides with the self-adjoint Riesz map, and
(Jy(+), )y~ y coincides with the (symmetric) inner product in Y. On the other hand,
the maximal value C,o(Y) = 1 holds for example for Y = /¢;(R?). Indeed taking
20 = (1,-1) and z = (o, 1), with @ > 0, then (2,-2) € Jy(20) and (1 +a,1+ ) €
Jv(z), so that upon taking o — +o00 one obtains (=, z)v+v/(||z0|lyll2]ly) = 1.

Ezample 3.11 (Cao(fy,)). Consider the Banach space £, = £,(R?) with 1 < p <
+o00o (i.e., R? endowed with the p-norm). In this case the duality map is given by:

2
<J£P (xlu 372); (y17 y2)>(ep)*7ep = H(x17 ',I:Q)Hip_p Z |xi|p_1 Slgn(x’b) Yi
i=1

for all (21, z2), (y1,y2) € R?, which allows the computation of Cy,(¢,) as a constrained
maximization problem. Figure 1 shows the dependence of Cho(€p) versus p — 1. It
also illustrates the Banach-Mazur constant Cgy(¢,) and the best-approximation pro-
jection constant Chest(£p) = maxyeg, (r2) [[unll/||u]l, with u, the best approximation
to u on the worst 1-dimensional subspace of £,(R?). The figure shows that

(3.7 Chest(£p) < Crml(lp) <1+ Cao(fp)

except for p = 1, 2 and +o0, for which they coincide.'*

We conclude our discussion of C, with a Lemma describing three important
properties that are going to be used later in Section 4.4.

LEMMA 3.12 (C,0 in reflexive smooth setting). Assume Y and Y* are strictly
convez and reflexive Banach spaces. The following properties hold true:
(i) Cuol¥) = sup (lbo). 2o
(20,2)EYXY: (Jy(2),z0)we v=0  |1Zllyll20lly
(i) Cao(Y*) = Cro(Y).
(11t) Cro(M) = Cro(Y), for any closed subspace Ml C Y endowed with norm || - ||

Proof. See Section A.2.

13As in the case of Cgn(Y), Cao(Y) only makes sense when dimY > 2. Therefore as before,
whenever Cao(+) is written, we assume this to be the case.
141t is unknown if (3.7) holds more generally than in this example.
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" 14+Cao(fp)
Cem(Cp)
Cbest(ép)

F1G. 1. Three different geometric constants and its dependence on p — 1.

Ezample 3.13 (Cao(LP)). Let Q C R? be an open set and consider the Banach
space Y := LP(Q), 1 < p < +oo. Let Q7 and Q9 be two open bounded disjoint
subsets. Define the functions f; € LP(Q) (i = 1,2) by f; = |Qi|7%]lgi and let
M := span{ f1, f} C Y. It is easy to see that M is isometrically isomorphic to £,(R?)
and thus, using Lemma 3.12(iii), we have Cuo(¢p) = Cao(M) = Cio(LP).

We now use the constant C,o, to state a strengthened triangle inequality.'® This
inequality can be thought of as an extension of the inequality ||yo|| < |ly|| in Hilbert
spaces whenever (y — yo,yo) = 0. In the worst Banach spaces (having C,, = 1), the
below inequality reduces to the standard triangle inequality ||yoll < |ly|l + |y — yoll-

LEMMA 3.14 (Strengthened triangle inequality). Let Y be a Banach space. Sup-
pose Yo,y € Y such that

32" € Jy(y — o) satisfying (2*,yo)y+y =0
(or simply (Jy(y — yo),yo>Y* y = 0 in the case Y* is strictly convex), then

(3.8) lvolly < llylly + Cao(W)ly — yolly -

Proof. If yog = 0 or yg = y, the result is obvious. Note that y = 0 implies yo = 0,
hence is also a trivial situation. Thus, assume 0 # yo # y # 0. Consider any
yg € Fy(yo) (or y§ = Jy(yo) when Y* is strictly convex), then

W vo)y=y _ Wo,-yv=y  (Uo,¥ — Yo)y=y ||

= - y— ol
5ol lyoll lyollylly — volly ¥

Iyollv =

Because (z*, yo)y+,y = 0 by assumption, the absolute value of the second fraction on
the right-hand side is bounded by C,o(Y), from which the proof follows.

Ezample 3.15 (¢*(R?) continued). Recall from Example 3.8, the points yo =
(1,1) and y = (1,0) in £*(R?), and observe that ||yol|; = |lyll,+|ly — yol|;- Define z* =
(1,—1) and note that z* € Ju(y — yo) € *°(R?) and (z*,y0) = 0. Hence, since
Cao(f1) =1, Eq. (3.8) is sharp in this case.

3.4. Second a priori bounds for best approximations and residual mini-
mizers. The second set of a priori bounds for best approximations and exact residual
minimizers involves the asymmetric-orthogonality constant, and is based on the fol-
lowing key characterization for best approximations.

1550 named for its similarity to the strengthened Cauchy-Schwartz inequality; see, e.g. [22].
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LEMMA 3.16 (Best approximation characterization). Let Y be a Banach space,
andy € Y. Suppose M C Y is a closed subspace, then the following are equivalent:
(i) yo is a best approxzimation in M to y, i.e., yo = arg mi{l\}ﬂ ly — zo|lv-
20€

(i1) 32* € Fv(y — yo) that annihilates M, i.e., (z*, z0)y+,y = 0, Vzo € M.

Proof. In case of y € Y \ M see, e.g., Singer [39] or Braess [6]. The case of y € M
is trivial, because in that case yg = y and one can choose z* = 0. 0

PROPOSITION 3.17 (Best approximation: A priori bound II). Suppose the con-

ditions of Proposition 3.5. Then yo satisfies the a priori bound:
(3.9) lyolly < (14 Cao())[lyllv -

Proof. If yo = 0 or yo = y, then the result is obvious. Hence, consider ||yo|y > 0
and ||y — yolly > 0. Next, by Lemma 3.16, there exists z* € Jy(y — yo) which annihi-
lates M, hence in particular (z*,yo)y«y = 0. Conclude by applying the strengthened
triangle inequality (Lemma 3.14), and recalling that ||y — yo|ly < ||ly|ly (see (3.2)). O

COROLLARY 3.18 (Residual minimization: A priori bound II). Let u,, € U, be a
solution of the exact MINRES problem (1.3), then w,, satisfies the a priori bound:

(14 Cao(V))
B

(3.10a) [unlly < £l

Proof. Similar to the proof of Corollary 3.6 (but now uses Proposition 3.17) and
Lemma 3.12(ii). |

4. Analysis of the inexact method. In this section, we present the analysis
for the inexact MINRES method (1.5).

4.1. Equivalent formulations. We summarize the equivalent formulations in
the following result, which utilizes the duality map (recall from Section 2).

THEOREM 4.1 (Equivalent characterizations). Let U andV be two Banach spaces
and let B : U — V* be a linear, continuous and bounded-below operator. Assume that
V and V* are reflexive and strictly conver. Consider finite-dimensional subspaces
U, C U and V,,, C 'V, together with the natural injections I, : V,, = V and I}, :
V* = (Vin)*, and duality maps Jy : V. — V* and Jy,, : Vy, — (V,,)*. Given f € V*,
the following statements are equivalent:'°

(i) uy, € U, minimizes the discrete residual, i.e.,

(41) Hl:n(f - Bun)”(ym)* = wI,?GiBH ||I:n,(f - Bwn)”(vm)* 5

and vy, = JQ:I ol* (f—Buy,) is the associated minimal-residual representative.
(i) (rm,un) € Vy, X Uy, solves the discrete mized problem:

(423‘) <JV(rm)7 'Um>V* ,V + <Bun7 Um>V*,V - <f, Um>V*,V V'Um E Vm 5
(4.2b) (B*rm, wn>U* U =0 Yw, € Uy, .

(iii) u, € U, solves the inexact non-linear Petrov-Galerkin discretization:

(4.3) <yn, Ly o I (f — Bun)>v ,=0, Vv, €BU,.
and Ty, = J@i oI’ (f — Buy).

16The presumed existence of solutions in these statements will be established in Theorem 4.5.
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12 I. MUGA AND K. G. VAN DER ZEE

(iv) (T, un) € Vi x Uy, solves the discrete saddle-point problem:

4.4 L my Un) = i L my Wn ),
(4.4) (rm,un) = min  max L{(vm, wn)

where the Lagrangian L£:V x U — R is defined by:

1 *
L, w) = S [[Vl§ = (f,0)ye y + (B 0, )y

Proof. Step (i) = (ii). To verify (4.2a), notice the following direct equivalences:

rm = Jy ' o I (f — Buy)
& S, (rm) = 1, (f — Bun)
(by Lemma 2.3) < L' Jy(Inrm) = I (f — Buy)
A <JV(rm)a'Um>V*,V + <Bunavm>v*,v = <f7 ’Um>V*,V ) va S Vm

Next, to verify (4.2b), first recall the identification Jyy, )- = Jy }L due to the

reflexive smooth setting. Now, if u, € U, is a minimizer of (4.1) and r,,, = Ji, ' o
I* (f — Buy), then by Lemma 3.16, with M = I*, BU,, C (V,,)* =Y, r,, satisfies:

0= <I;lena7am>(Vm)*,Vm = <Bwn7[mrm>V*,V = <B*Tm7wn>U*7Ua vwn S Un .

Step (i) = (iii). If (un,rm) € U, x V,, is a solution of (4.2), then, by the
direct equivalences in Step (i) = (ii), ry, = J\;nll oI (f — Buy,), and (4.2b) is nothing
but (4.3).

Step (iii) = (i). Observe that for any w,, € U,, we have :

(I (f = Bun), vm)(y,y+ v,

I5(f = Bun)|| o .. =
1.7 = Bun)ly,,). = sup. Tomllv
<JV7n(Tm)aTm>(V ),V (I (f = Bun)77“m>(v )=,V
b 23 = m > mo m s Vom
(by (2:3)) Tl Tl
<I;"n(f — Bwn),rm> Vo )* Vo .
(by (4.3)) = oy < I = B,y

Thus, wu,, is a minimizer of (4.1).

Step (ii) < (iv). This is a classical result; see, e.g., Ekeland & Témam [23,
Chapter VI, Proposition 1.6] (use that v — %Hv”@ is (strictly) convex, and that it is
Gateaux differentiable, owing to strict convexity of V*). ]

Remark 4.2 (V,, = V). All the equivalences of Theorem 4.1 still hold true when
Vi =V, which are relevant to the exact (or ideal) MINRES problem (1.3).

Remark 4.3 (Optimal test-space norm). As proposed in [46] (cf. [16]), if V is
reflexive and B is bijective (hence B* : V — U* is bijective), one can endow the space V

with the equivalent optimal norm | - |y = = [|B*(-)[|y-. In that case, the exact
MINRES problem (1.3) precisely coincides with finding the best approximation in U,
to u measured in || - ||y, ie., lu—unlly = |f = Bunlly,,,)- = infu,cv, [t —walv-

Besides, the duality map for this topology satisfies Jv,_, (-) = Bqul o B*(+).
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4.2. Well-posedness of the inexact method. We now focus on the mono-
tone mixed method (1.8) (see also (4.2)), as this is the most convenient equivalent
formulation for the ensuing well-posedness and error analysis.

Assumption 4.4 (Fortin condition). Let {(U,,V,,)} be a family of discrete sub-
space pairs, where U,, C U and V,,, C V. For each pair (U,, V,,) in this family, there
exists an operator II,, ,, : V — V,, and constants Cy > 0 and Dy; > 0 (independent
of n and m) such that the following conditions are satisfied:

(4.5a) I, mo|lv < Cullv|lv , Yv eV,
(4.5b) (I =1, m)vllv < Dullvllv, VveV,
(4.5¢) (Bwn,v — Iy 1 v)y. v = 0, Vw,eU,,YvevV,

where I : V — V is the identity map in V. For simplicity, we write II instead of II,, ,,,.""

For the existence of II, note that the last identity (4.5¢) requires that dimV,, >
dim Im(B|y, ) = dimU,, (for a bounded-below operator B). Schaback [38, Theorem 3]
essentially guarantees the existence of II for sufficiently large V,,, compared to U,,
but it is unknown how much larger exactly V,, needs to be compared to U, in the
non-Hilbert Banach case. Note that (4.5a) implies (4.5b) with Dy = 1 + Cpy, but to
allow for sharper estimates, we prefer to retain the independent constant Dry.

THEOREM 4.5 (Discrete well-posedness). Consider the same hypotheses of The-
orem J.1. Let Mg > 0 and yg > 0 be as in (1.2). Let the finite-dimensional subspaces
U, CcU and V,, CV satisfy Assumption 4./.

(i) For any f € V*, there exists a unique solution (rm,u,) € Vp, x U, to discrete

problem (1.8).1819
(i) Moreover, if u € U is such that Bu = f, then we have the a priori bounds:

(4.6a) Irmllv < I fllv- < Mpllully  and
CH C’H
(4.6b) [unllu < P (1 + Cao (V) fllv < P (1+ Cao(V))Mp||ully,

where Cyo (V) is the asymmetric-orthogonality constant of V (see Def. 3.9).

Proof. To prove existence, consider the equivalent discrete constrained minimiza-
tion problem (4.4). The existence of a minimizer 7, € V,, N (BU,)* is guaran-

teed since the functional v,, %vaHg, — (f, vm)v= v is convex and continuous, and
V,, N (BU, )" is a closed subspace.
Next, we claim that there exists a u,, € U,, such that

<Bunavm>v*,v = <f - JV(Tm)a Um>V*,V7 va S Vm

To see this, consider the restricted operator B, : U, — V* such that B,w, = Bw,,
Yw, € U,, and recall the injection I, : V,, — V. Then, the above translates into

I Byun = I (f = Jv(rm))  in (V)"

17The Fortin condition is equivalent to the discrete inf-sup condition on {(Un, V.,)}; see [25]. Tt
classically appears in the study of mixed FEM [5, Section 5.4].

18Note that we do not require Im(B) = V*. Indeed, for part (i), f need not be in the range Im(B).

19 Assumption 4.4 is not needed for the existence of (74, un), nor the uniqueness of 7, .
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14 I. MUGA AND K. G. VAN DER ZEE

Thus, to prove existence of uy,, I (f — Jv(rm)) needs to be in the (closed) range of
I B, : U, — (V,,)*. Since 7y, is the minimizer of (4.4), we have

0= <J\\/(Tm) - f, Imvm>v*,v = <Ir*n(JV(7"M) - f)a Um>(vm)*7vm ,

Yum € Vi N(BU,) L = ker(B 1), ie., I (f—Jy(rm)) € (ker(Bj:1,))*" = Im(I,B,).
To prove uniqueness, assume to the contrary that (u,,ry,) and (i, 7y ) are two
distinct solutions. Then, by subtraction, it is immediate to see that:

<JV(rm) - JV(fm)zrm - ”Zm>V*7V =0,

which implies that 7,, = 7, by strict monotonicity of Jy (see (2.2)). Going back
to (1.8a) we now obtain (B(un — @), Vm)y- y = 0, for all v, € V,,. Therefore, by
the Fortin-operator property (4.5¢),

(Bup = ), v)ye y = (B(uy — Up), )y y =0, Vv eV.

Thus, B(u, — @,) = 0 which implies u,, — i,, = 0 since B is bounded below.
To prove the bound (4.6a), replace v,, = ry, in (1.8a), and use (1.8b) together
with the Cauchy—Schwartz inequality. For (4.6b), see Proposition 4.12 in Section 4.4.0

Although V,, should be sufficiently large for stability, there is no need for it to be
close to the entire V. The following proposition essentially shows that the goal of V,,
is to resolve the residual r € V of the ideal MINRES formulation (1.3) (cf. [18]).

PROPOSITION 4.6 (Optimal V,,,). Consider the same hypotheses of Theorem 4.5.
Let u,, € Uy, be the solution of the ideal MINRES problem (1.3), and let r = JQl(f —
Buy,). If r € Vy,,, then (r,uy) is also the unique solution to the inezact case (1.8).

Proof. Notice that Jy(r) = f—Buy, so in particular (1.8a) is satisfied by (r,u,) €
Vi X Uy,. Recalling (3.4), and using Lemma 3.16 with Ml = BU,, C V* =Y, we get:

(Bwp, ryv+ v = (Bwy, Jy=(Bu — Buy))y=y =0, Yw, € U,,

where we used that Jy- = J;,* (recall from Section 2). This verifies (1.8b). |

4.3. Error analysis. We next present an error analysis for the inexact MINRES
discretization (1.5). Since the method is fundamentally related to (discrete) residuals,
the most straightforward error estimate is of a posteriori type. This estimate happens
to coincide with the Hilbert case; see [10] and [15, Proposition 3.2]. Immediately
after, an a priori error estimate follows naturally from the a posteriori estimate. The
constant in the resulting a priori error estimate can however be improved by resorting
to an alternative analysis technique, which we present in Section 4.4.

THEOREM 4.7 (A posteriori error estimate). Consider the same hypotheses of
Theorem 4.5. Let f = Bu € V* and let (v, u,) € V,,, x U, be the unique solution
to (1.8). Then u,, satisfies the following a posteriori error estimate:

1 ]
(4.7) [u = wnlly < — 0sc(f) + —[|rmlly +
YB VB

where the data-oscillation term osc(f) and ||rm|lv satisfy:

—1I
(4.8a) osc(f) :=sup v —1lv) < MpDp inf |lu—wy|v < MpDnl|u— unlu,
veV ||U||V wn €Up
(4.8b) lrmlly < Mg inf |lu—wallo < Mpllu = tnllu-
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Proof. Using that B is bounded from below, and that Bu = f, we get:

1 1 (f — Bup,v — v + ITv)y,.
(by (1.2)) [lu = unlly € —||Bu = Buy|lv» = — sup R
B YB veVv [[v]lv
1 v —Tlv)y. 1 f — Buy, Iv)y,.
(by (4.5¢)) < —sup ﬂ + —sup < Jue
YB veV HUHV YB vev HU”V

1 Cn <JV(Tm)7HU>V* A%
by (4.5a), (1.8a < —osc(f)+ — sup :
(by (4:52), (1.82)) VB () VB vev [Tvlv

1 C 1 C
(by (2.1)) < —osc(f) + |y (i) [ve = ——o0sc(f) + —|rmllv -
YB YB YB YB

Next, using f = Bu, (4.5¢), (1.2) and (4.5b), observe that for all w,, € U,,

(Bu — Bwy,v — IIv)y,.
osc(f) = sup :

7 < MpDrl|u — wy||u,
vev vllv

while noting that |7, |v = (Jv(rm), "m)v+v/||rmlly by (2.1), and using (1.8), we have

— By, Ty Bu — Bwy,, rp )y
HrmHV — <f >V AY% _ < >V AY% S MB”U*wnHIU~ 0

I7mlly 7mlly

COROLLARY 4.8 (A priori error estimate I). Under the same conditions of The-
orem 4.7, uy, satisfies the following a priori error estimate:

D Cn)M
(4.9) lu—uplly <C inf |ju—wplly,  withC = D+ Cn)Mp
wy €Uy ’yB

Remark 4.9 (Oscillation). In the context of finite-element approximations, the
data-oscillation term osc(f) can generally be expected to be of higher order than
indicated by the upper bound in (4.8a); see discussion in [10].

Remark 4.10 (Ideal MINRES). If V,, =V, then osc(f) =0, Dp =0and Cy =1
(set II = I), so that (4.9) holds with C = %, which recovers the estimate in [27] for
the ideal MINRES discretization.

4.4. Direct a priori error analysis. A direct a priori error analysis is possible
for the inexact MINRES discretization, without going through the a posteriori error
estimate. The benefit of the direct analysis is that the resulting estimate is sharper
than given in (4.9), as it explicitly includes geometric constants for U and V.

The direct analysis is based on the sequence of inequalities (formalized below):

(4.10)  lu=unlly <[ = Pallllu —wnlly < ClPallllu—wally,  Vwn € Un,

where [ is the identity, P, is the projector defined below in Definition 4.11, and the
norm || - || corresponds to the standard operator norm.

DEFINITION 4.11 (Nonlinear PG projector). Under the conditions of Theo-
rem 4.5, the (inexact) nonlinear Petrov—Galerkin projector is defined by the map

P,:U—T, suchthat P,(u):=up,,

with u, the second argument of the solution (ry,,u,) of (1.8) with input data f = Bu.
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560 The next result establishes important properties of P,, including a fundamental
561 bound that depends on the geometric constant C, (V) € [0, 1] (recall Definition 3.9).
562 PROPOSITION 4.12 (Nonlinear PG projector properties).
563 (i) P, is a nontrivial projector: 0 # P, = P,o P, # I.
564 (i1) P, is homogeneous: P,(Au) = AP, (u), for allu € U and all A € R.
565 (iii) P, is bounded, in particular,?’

P, C
566 (4.11) |2 || :SHpM < —H(1+CAO(V))MB.
567 wet  |ully B
568 (iv) P, is distributive as follows: P, (u—Py(w)) = P, (u)—P,(w), for allu,w € U.
569 (v) P, is a quasi-linear projector as defined in Lemma 3.3(iv).
570 Proof. See Section A.3. O
571  Property (iv) is key to establishing the first inequality in (4.10), indeed, for w,, € U,,
573 (4.12) lu = Pa(u)lly = llu = wn — Po(u—wn)lly < [ = Pallllu — wally -
574 On the other hand, the second inequality in (4.10) can be established through prop-
575 erties (i)—(iii) and (v), as they correspond to the four requirements for the abstract
576 nonlinear projector () of Lemma 3.3. Hence, that Lemma immediately provides a
577 bound for ||I — P,|| depending on the Banach-Mazur geometric constant Cpgy (U):
578 COROLLARY 4.13 (Nonlinear PG projector estimate). I — P, satisfies:
579 (4.13) I — Pl < Cs||Pall, with Cg := min {1 + ||Pn||_1 , C’BM(U)} .
581 In conclusion, by combining (4.12), (4.13) and (4.11), we obtain our main result:
582 THEOREM 4.14 (A priori error estimate II). Consider the same hypotheses of

583  Theorem 4.5. Let f = Bu and let (rp, u,) € V,, x Uy, be the unique solution to (1.8).
584  Then wu, satisfies the following a priori error estimate:

b= vl £, =l
. . CH CH
587 with C' = min P (14 Cro(V)) Mp Cou(U), 1+ po (1+Cuo(V))Mp ¢ .
B B
588 Remark 4.15 (DPG). If U,V are Hilbert spaces, then Cpy(U) =1 and Cy(V) =
589 0, hence Theorem 4.14 holds with C = CyMp/vp, which recovers the DPG result [26].
590 COROLLARY 4.16 (Petrov—Galerkin).  Consider the same hypotheses of Theo-

591 rem 4.14. If dimV,, = dimU,, or r,, = 0, then a Petrov—Galerkin statement holds:
592 (BUp, Um)ve v = (f, Um)v+ v, YUm € Vy, and u,, satisfies the a priori error estimate:

C C
593 |lu—uplly £ C inf  |Ju —wy|y, with C' =min {HMBCBM(U) , 1+ HMB} .
594 wn €Un B B

595 Proof. If dimV,,, = dimU,,, then (1.8b) implies r,,, = 0 (under the Fortin condi-
596 tion), which in turn reduces (1.8a) to a Petrov—Galerkin statement. Eq. (A.5) in the
597  proof of Proposition 4.12 implies the simpler bound || P, |y < %‘MB, instead of (4.11).
598 Thus, combining this bound with (4.12) and (4.13) yields the error estimate. 0

201t is also possible to prove ||Py| < %CBM((Vm)*)MB, by using Proposition 3.5 (with Y =
(Vim)*) instead of Proposition 3.17 in the proof in Section A.3.
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M
inexact MinRes Quasi-optimality constant: C = Cpm(1 + C’AO)CH7 ]

U,V Hilbert Vm =V (orr € Vi)

dimU,, =dimV,,

C= C’Bmg
I

dim U, = dim V, U,V Hilbert

U, V Hilbert

FiG. 2. Hierarchy of discretization methods, their connections, and their quasi-optimality con-
stant C in the a priori error estimate ||u — un|ly < Cinfy,, cu, |lu — wnlly. To lighten the notation,
y=v, M = Mp, Cem = Cem(U), Cao = Cao(V). Furthermore, 5 is the discrete inf-sup constant
in PG methods, and Ry is the Riesz map in V. Note that Theorem /.1/ has the complete result
for C = min{-,-}, while the figure only shows the non-trivial minimum. Legend: PG = Petrov—
Galerkin, PG-H = PG in Hilbert spaces, o-PG = optimal PG, DPG = discontinuous PG, MRes =
ezact (or ideal) MINRES.

Remark 4.17 (Connections). The above error analysis unifies existing quasi-
optimality theories, because the inexact MINRES formulation directly encompasses
the following more specialized methods: The exact (or ideal) MINRES method (see Re-
mark 4.10 and Proposition 4.6), the inexact MINRES method in Hilbert spaces such
as the DPG method (see Remark 4.15), and the Petrov—Galerkin method (see Corol-
lary 4.16). Figure 2 shows how the various methods can be obtained from the general
inexact MINRES formulation. It additionally shows further specialized methods: the
PG method in Hilbert spaces and the optimal PG method (with ideal test space).

Appendix A. Appendix: Proofs.
A.1. Proof of Lemma 3.3. The inequality ||[/-Q| < 1+]|Q[ = (1+|Q|~HQIl

is trivial, so we focus on proving

ly = QW)lly < Con (M) 1@l Nlyllv,  VyeY.

If y — Q(y) = 0, the result holds true immediately. If Q(y) = 0 then, because
requirement (i) implies ||Q] > 1 and Cpy(Y) > 1 (recall Remark 3.2), we have

ly — Qv = llylly < Con(Y) Q] llyllx-

We can thus consider y — Q(y) # 0 and Q(y) # 0.

First observe that y — Q(y) and Q(y) are linearly independent. Indeed, suppose
to the contrary that there exists ¢ € R\ {0} such that y — Q(y) = tQ(y), then
y = (1+t)Q(y), hence applying @ and using homogeneity (requirement (ii)), we get
t = 0 (a contradiction).

The proof follows using a 2-D geometrical argument. Define W := span{Q(y),
y—Q(y)}, and note dim W = 2. Let T : W — £5(R?) be any linear isomorphism. Set

(A1) 0Fa:=[Ty-QW)l, and  075:=[TQWY)l,,
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and subsequently, let § € W be defined by

B

(A.2) 7= SQW) + (- Q).

B

The proof will next be divided into four steps: (S1) shows that [y — Q(y)|y <
UITINT=H) 15Q)N,; (82) shows that [§Q)I, < [IQIFly; (S3) shows that

19lly < (ITIT~1) llylly; and (S4) concludes that ||y QWlly < Con(M) 1QI Nlylly -
(S1) This follows from elementary arguments since 3 # 0:

ly = Q()lly < ITHIIT(y — Q) = 1T~ |
(by (A.1)) =IrgIrewl, < IT| Few),

(S2) Use requirement (iv) with n = g—; and subsequently (ii) and (iii), to obtain:

500, = [5e(ew + Su-@w)], =lewl. < Il
(83) The key point here is to observe that || T'g|l, = || Ty||,, indeed,
(by (A2) and (A.1)) 7315 = |7 + S1 - QW)

= o? +27Q() - Tly ~ Q) + 5 = | Tl — Q) + TQW)||. = Il

Therefore, |lly < |77 T3], = 1T~ Tylly < I~ HHITI Iyl -

. 12 .
(S4) Combining (51)-(53) we get |y—Q(y)llv < (ITIIT-1)° Q] llly . Finally,
taking the infimum over all linear isomorphisms 7' : W — £5(R?) we obtain

ly = QW)lly < (dosi (W, &2(R2)))” QI lylly < Cona (W) IQI ]y -

A.2. Proof of Lemma 3.12. Recall that Jy and Jy- are single-valued bijections
and Jy- = Jy'. Property (i) is a direct consequence of the definition of C,o(Y)
(see (3.5)) and the fact that Jy is single-valued.

To prove property (ii), we make use of property (i) replacing Y by Y*. We get

Ty (2°), 28 Ve e IS (2%))y
Coo(Y) =  sup (o (27) 20w 0 Ty ()
* * *
(2*,25) €Oy« ||Zo||y* (2%,25)EOyx 1251 2*|

Y* Y*

Defining z = J; '(2*) and 29 = Jy ' (23) we obtain

(A.3) Cro(Y") = sup M
(zzp)e0u  2ollyllzlly

with Oy = {(=* D ) e = 0}
= {(Jv(2), Ju(20)) € Y* x Y*: (Jy(2), 20)v=,v = 0}
:{Jy ,Jy zO)EY*xY*:(zo,z)eOy}.

)

Hence the supremum in (A.3) can be taken over all (zq, z) € Oy which proves (ii).
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For the last property (iii) we make use of Corollary 2.4 to show that

CaoM) = sup  ———m——— = sup

<JM(ZO)’Z>M*,M <JY(IMZO)JMZ>Y*7Y

(zo,2)eon 2l ll[[20lly (20,2) €O lzllxllllzolly

The fact Cho(M) < Cao(Y) follows by noting that the supremum in C,o(Y) is over a
larger set (i.e., IOy C Oy). Indeed, if (z9,2) € Oy, then (Imzo, Imz) € Y X Y and

(Jy(uz), uzo)y. y = (J(2), 20 )y 1y = 0,

by Corollary 2.4. Hence (Iymzo,Imz) € Oy. The last inequality combined with (ii)
implies (iii) because Cso(Y) = Cuo(Y*) < Cro(M*) = Cho(M) < Cio(Y).

A.3. Proof of Proposition 4.12. We proceed item by item.

(i)

Take u € U, u,, = P,(u), and substitute f = Bu, in (1.8a). Then the unique
solution of (1.8) is (0,uy). Therefore P, (P, (u)) = P,(un) = u,. The fact
that P, # 0 and P, # I is easy to verify whenever U,, # {0} and U,, # U.

The result follows by multiplying both equations of the mixed system (1.8) by
A € R and using the homogeneity of the duality map (recall from Section 2).

Set f = Bu and let (rp,, up) € V,,, x U,, denote the solution to (1.8). Then
1 Bumv V*, vV CH Bun,Hv V*,V

(Ad) IPu ()l = unlly < — sup Lmthey o G g, (Brm Mojvy
B vev vy B vev  |[Holly

Let y,, = ImJQi (I}, Buy) and note that y,, € V,, C V is the supremizer of
the last expression in (A.4). Hence, using (1.8a) we get

@ <Bun7 ym>V*,V

(| Pr(u) v <
Mo ™ Tyl
B m ) V* m)y Ym /V*
(A5) _Cn << U Ym)vev  (Jv(Tm), Ym)v ’V||7"m|V)
VB ym v 7 m v | Ym [lv

The first term in brackets is < Mpg||u|ly. To bound the second term, note
(Jv(Ym)s Tm)ve v = (Btn, Tm)v=v =0,

where we used (1.8b). Thus, (7, ym) € Oy (see Lemma 3.12) which implies
that the second term is bounded by Cxo(V)||ry||v. Using (4.6a), we get

C
(A.6) 1P () |ly < 7—2(1 +Cro())Mpllully.  YueU

We note that an alternative proof can be given based on Proposition 3.17
(with Y = (V,,)*) and Lemma 3.12.

Let (7, un) be the solution of the mixed system (1.8) and for some w € U,
let w,, = P,(w) € U,,. By subtracting (Bwy,, Vs, )v+ v on both sides of (1.8),
we get that (rp,, u, — w,) is the unique solution of (1.8) with right-hand side
(B(uw — W), Vm)v=v. Therefore

P(u— wy) = Uy — Wy, .
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(v) Statement (v) follows from statements (ii) and (iv). Indeed, for any n € R,

(by (i) Pu(Paw) + 1 (= Pa(w) ) = P+ Pa((1 = n)u))
(by (iv)) = Pa(nu) + Po((1 = n)u)
(by (ii)) = Py (u).

Acknowledgments. IM and KvdZ are grateful to Leszek Demkowicz for his
early encouragement to investigate a Banach-space theory of DPG, and to Jay Gopala-
krishnan for insightful conversations. KvdZ is also thankful to Michael Holst and
Sarah Pollock for initial discussions on the topic, and to Weifeng Qiu, Paul Houston
and Sarah Roggendorf for additional discussions. IM and KvdZ thank the anony-
mous reviewers for their helpful comments and suggestions (one of which led to the
perceptive Corollary 2.4).

REFERENCES

[1] I. BABUSKA, Error-bounds for finite element method, Numer. Math., 16 (1971), pp. 322-333.
[2] F. BERTRAND, L. DEMKOWICZ, J. GOPALAKRISHNAN, AND N. HEUER, Recent advances in least-
squares and discontinuous Petrov—Galerkin finite element methods, Comput. Methods
Appl. Math., 19 (2019), pp. 395-397.
[3] M. BiLLAuD-FRiESs, A. Nouy, AND O. ZAHM, A tensor approzimation method based on ideal
manimal residual formulations for the solution of high-dimensional problems, M2AN Math.
Model. Numer. Anal., 48 (2014), pp. 1777-1806.
[4] P. B. BocHEV AND M. D. GUNZBURGER, Least-Squares Finite Element Methods, vol. 166 of
Applied Mathematical Sciences, Springer Science & Business Media, 2009.
D. BoFrFi, F. BREzzI, AND M. FORTIN, Mized Finite Element Methods and Applications, vol. 44
of Springer Series in Computational Mathematics, Springer, Berlin, 2013.
[6] D. BrAESS, Nonlinear Approximation Theory, vol. 7 of Springer Series in Computational Math-
ematics, Springer, Berlin, 1986.
H. BREzIS, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universi-
text, Springer, New York, 2011.
[8] P. CANTIN AND N. HEUER, A DPG framework for strongly monotone operators, SIAM J.
Numer. Anal., 56 (2018), pp. 2731-2750.
[9] C. CARSTENSEN, P. BRINGMANN, F. HELLWIG, AND P. WRIGGERS, Nonlinear discontinuous
Petrov—-Galerkin methods, Numer. Math., 139 (2018), pp. 529-561.
C. CARSTENSEN, L. DEMKOWICZ, AND J. GOPALAKRISHNAN, A posteriori error control for DPG
methods, STAM J. Numer. Anal., 52 (2014), pp. 1335-1353.

(11] J. CHAN, L. DEMKOWICZ, AND R. MOSER, A DPG method for steady viscous compressible flow,
Comput. & Fluids, 98 (2014), pp. 69-90.

[12] C. CHIDUME, Geometric Properties of Banach Spaces and Nonlinear Iterations, vol. 1965 of
Lecture Notes in Mathematics, Springer, London, 2009.

[13] P. G. CIARLET, Linear and Nonlinear Functional Analysis with Applications, SIAM, Philadel-
phia, 2013.

[14] I. CIOoRANESCU, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, vol. 62
of Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, The Nether-
lands, 1990.

[15] A. CoHEN, W. DAHMEN, AND G. WELPER, Adaptivity and variational stabilization for
convection-diffusion equations, M2AN Math. Model. Numer. Anal., 46 (2012), pp. 1247—
1273.

[16] W. DAHMEN, C. HuaNG, C. SCHWAB, AND G. WELPER, Adaptive Petrov—Galerkin methods for
first order transport equations, STAM J. Numer. Anal., 50 (2012), pp. 2420-2445.

[17] K. DEIMLING, Nonlinear Functional Analysis, Springer, Berlin, 1985.

(18] L. DEMKowIcz, T. FUHRER, N. HEUER, AND X. TIAN, The double adaptivity paradigm (how
to circumuvent the discrete inf-sup conditions of Babuska and Brezzi), Tech. Report 10-07,
Institute for Computational Engineering and Sciences (ICES), The University of Texas at
Austin, Austin, Texas, USA, 2019.

[19] L. DEMKOWICZ AND J. GOPALAKRISHNAN, An overview of the discontinuous Petrov Galerkin
method, in Recent Developments in Discontinuous Galerkin Finite Element Methods

This manuscript is for review purposes only.



o ©

DISCRETIZATION IN BANACH SPACES: MINRES, NPG & MMM 21

for Partial Differential Equations: 2012 John H Barrett Memorial Lectures, X. Feng,
O. Karakashian, and Y. Xing, eds., vol. 157 of The IMA Volumes in Mathematics and
its Applications, Springer, Cham, 2014, pp. 149-180.

L. DEMKOWICZ AND J. GOPALAKRISHNAN, Discontinuous Petrov—Galerkin (DPG) method, in
Encyclopedia of Computational Mechanics, Second Edition, E. Stein, R. de Borst, and
T. J. R. Hughes, eds., Wiley, 2017. Part 2 Fundamentals.

L. DEMKOWICZ AND P. ZANOTTI, Construction of DPG Fortin operators revisited, Comput.
Math. Appl., (2020). https://doi.org/10.1016/j.camwa.2020.07.020.

V. ELJKHOUT AND P. VASSILEVSKI, The role of the strengthened Cauchy-Buniakowskii-Schwarz
inequality in multilevel methods, SIAM Rev., (1991), pp. 405-419.

1. EKELAND AND R. TEMAM, Convexr Analysis and Variational Problems, North-Holland Pub-
lishing Company, Amsterdam, 1976.

A. ErRN AND J.-L. GUERMOND, Theory and Practice of Finite Element Methods, vol. 159 of
Applied Mathematical Sciences, Springer-Verlag, New York, 2004.

A. ERN AND J.-L. GUERMOND, A converse to Fortin’s Lemma in Banach spaces, C. R. Math.
Acad. Sci. Paris, 354 (2016), pp. 1092-1095.

J. GOPALAKRISHNAN AND W. QIU, An analysis of the practical DPG method, Math. Comp., 83
(2014), pp. 537-552.

J. L. GUERMOND, A finite element technique for solving first-order PDEs in LP, SIAM J.
Numer. Anal., 42 (2004), pp. 714-737.

P. HousToN, I. MuGA, S. ROGGENDORF, AND K. G. VAN DER ZEE, The Convection-Diffusion-
Reaction Equation in Non-Hilbert Sobolev Spaces: A Direct Proof of the Inf-Sup Condition
and Stability of Galerkin’s Method, Comput. Methods Appl. Math., 19 (2019), pp. 503-522.

P. HOUSTON, S. ROGGENDORF, AND K. G. VAN DER ZEE, Eliminating Gibbs phenomena: A non-
linear Petrov—Galerkin method for the convection—diffusion—reaction equation, Comput.
Math. Appl., 80 (2020), pp. 851-873.

D. JErisoN AND C. E. KENIG, The inhomogeneous Dirichlet problem in Lipschitz domains,
J. Funct. Anal., 130 (1995), pp. 161-219.

W. B. JOHNSON AND J. LINDENSTRAUSS, Basic concepts in the geometry of Banach spaces, in
Handbook of the Geometry of Banach Spaces, W. B. Johnson and J. Lindenstrauss, eds.,
vol. 1, Elsevier Science B. V., 2001, ch. 1, pp. 1-84.

T. KATO, Estimation of iterated matrices with application to von Neumann condition, Numer.
Math., 2 (1960), pp. 22-29.

J. L1 AND L. DEMKOWICZ, An LP-DPG method for the convection—diffusion problem, Comput.
Math. Appl., (2020). https://doi.org/10.1016/j.camwa.2020.08.013.

J. L1ONS, Quelques Méthodes de Résolution des Probléemes aux Limites Non Linéaires, Etudes
Mathématiques, Dunod, 1969.

F. MILLAR, I. MucA, AND K. G. VAN DER ZEE, Projection in negative norms and the regular-
ization of rough linear functionals, 2020. In preparation.

I. Muca, M. J. W. TYLER, AND K. G. VAN DER ZEE, The Discrete-Dual Minimal-Residual
Method (DDMRes) for Weak Advection-Reaction Problems in Banach Spaces, Comput.
Methods Appl. Math., 19 (2019), pp. 557-579.

J. T. OpEN AND L. F. DEMKOWICZ, Applied Functional Analysis, CRC Press, 2nd ed., 2010.

R. ScHABACK, All well-posed problems have uniformly stable and convergent discretizations,
Numer. Math., 132 (2016), pp. 597-630.

I. SINGER, Best Approzimation in Normed Linear Spaces by Elements of Linear Subspaces,
vol. 171 of Die Grundlehren der mathematischen Wissenshaften, Springer, Berlin, 1970.

I. STAKGOLD AND M. HOLST, Green’s Functions and Boundary Value Problems, vol. 99 of Pure
and Applied Mathematics, John Wiley & Sons, Hoboken, New Jersey, 3" ed., 2011.

A. STERN, Banach space projections and Petrov—Galerkin estimates, Numer. Math., 130 (2015),
pp. 125-133.

D. SzyLDp, The many proofs of an identity on the norm of oblique projections, Numer. Algo-
rithms, 42 (2006), pp. 309-323.

P. Wouraszczyk, Banach Spaces for Analysts, no. 25 in Cambridge studies for advanced
mathematics, Cambridge University Press, Cambridge, 1991.

J. XU AND L. ZIKATANOV, Some observations on Babuska and Brezzi theories, Numer. Math.,
94 (2003), pp. 195-202.

E. ZEIDLER, Nonlinear Functional Analysis and its Applications, II/B: Nonlinear Monotone
Operators, Springer-Verlag, New York, 1990.

J. Zrrernl, I. Muga, L. DEMKOWICZ, J. GOPALAKRISHNAN, D. PArRDO, AND V. M. CALO,
A class of discontinuous Petrov—Galerkin methods. Part IV: The optimal test norm and
time-harmonic wave propagation in 1D, J. Comput. Phys., 230 (2011), pp. 2406-2432.

This manuscript is for review purposes only.



	Introduction
	MinRes methods in Banach spaces
	Main results
	Discussion: Unifying aspects and PDE implications
	Outline of paper

	Preliminaries: Duality mappings
	Geometric constants for Banach spaces, and sharpened a priori bounds
	Banach–Mazur constant and nonlinear projector estimate
	First a priori bounds for best approximations and residual minimizers
	Asymmetric-orthogonality constant and strengthened triangle inequality
	Second a priori bounds for best approximations and residual minimizers

	Analysis of the inexact method
	Equivalent formulations
	Well-posedness of the inexact method
	Error analysis
	Direct a priori error analysis

	Appendix A. Appendix: Proofs
	Proof of Lemma 3.3
	Proof of Lemma 3.12
	Proof of Proposition 4.12

	Acknowledgments
	References

