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Abstract10

Cube categories are used to encode higher-dimensional categorical structures. They have recently11

gained significant attention in the community of homotopy type theory and univalent foundations,12

where types carry the structure of higher groupoids. Bezem, Coquand, and Huber [8] have presented13

a constructive model of univalence using a specific cube category, which we call the BCH cube14

category.15

The higher categories encoded with the BCH cube category have the property that all morphisms16

are invertible, mirroring the fact that equality is symmetric. This might not always be desirable:17

the field of directed type theory considers a notion of equality that is not necessarily invertible.18

This motivates us to suggest a category of twisted cubes which avoids built-in invertibility. Our19

strategy is to first develop several alternative (but equivalent) presentations of the BCH cube category20

using morphisms between suitably defined graphs. Starting from there, a minor modification allows21

us to define our category of twisted cubes. We prove several first results about this category, and22

our work suggests that twisted cubes combine properties of cubes with properties of globes and23

simplices (tetrahedra).24
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1 Introduction and Motivation30

A cube category is a category whose objects are (or represent) finite-dimensional cubes, and31

whose morphisms are mappings of some sort between these cubes. There are many different32

cube categories [1, 5, 8, 9, 20], and they are used to encode higher categorical structures.33

Homotopy type theory [28] is a variation of Martin-Löf’s intensional type theory. The34

characteristic and novel view adapted in homotopy type theory is that types carry the35

structure of higher categories, or, to be precise, higher groupoids (i.e. all morphisms are36

invertible). This view supports Voevodsky’s univalence principle which should be seen37

as a central concept of homotopy type theory. The first model of such a type theory,38

given by Voevodsky [29] (see also the presentation by Kapulkin and Lumsdaine [16]), uses39

simplicial sets. However, it is still an open question how simplicial sets can be used to build40

a constructive model of type theory with univalent universes [13]. Using cubical sets, this has41

been achieved by Bezem, Coquand, and Huber [8]. Starting from there, cubes have gathered42

a lot of attention in the type theory community, leading to various cubical type theories43
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Figure 1 Kan-filling condition of a 2-cube (left), a proof of invertibility introduced by the
Kan-filling condition (middle), and how to remove such the invertibility (right).

which have univalence not as an axiom but as a built-in derivable principle [3, 6, 12, 23].44

Many different cube categories have been considered in this context.45

The important cube category used by Bezem, Coquand, and Huber [8] (from now on46

referred to as the BCH cube category) uses finite sets of variable names as objects, and a47

morphism from a set I to a set J is a function f : I → J ∪ {0, 1} which is “injective on the48

left part”, i.e. f (i1) = f (i2) = j with j : J implies i1 = i2. One goal of this paper is to develop49

several alternative presentations of this category, mainly using graph morphisms. We have50

two main motivations to do this. The first is that, as we hope, our alternative and intuitive51

(but equivalent) definitions enable new views on the category and facilitate the discovery of52

further observations. The second motivation is that a minor change in the definition will53

allow us to construct a new cube category, the twisted cubes from the title. We will come54

back to this in a moment.55

The standard way to create models (of both higher categories and type theories) using56

simplicial or cubical index categories is to take presheaves and equip them with certain57

Kan-filling conditions. These filling conditions entail composition of morphisms as well58

as associativity and all higher coherence laws that one needs. A typical such Kan-filling59

condition for the 2-cube1, as shown on the left of Figure 1, says that, given the “partial60

square” of three solid edges on the right, one can always find the dashed edge (together with61

an actual filler for the square).62

One important observation here is that, in the case of the BCH cube category and other63

cube categories, invertibility of morphisms is built-in. Consider the partial square, as shown64

on the middle of Figure 1, where two of the three solid edges are identities and the third is65

an actual non-trivial morphism (or equality) p from x to y . Using the Kan filling operation66

described above, we get a morphism from y to x , which serves as the inverse of p.67

The invertibility of morphisms is useful for most forms of type theory, where equaliy is68

symmetric. This however is not always the case, cf. the proposals for directed type theories69

by Licata and Harper [18], Nuyts [22], Riehl and Shulman [25], North [21], and others. Their70

aim is to generalise type theory by replacing (higher) groupoids by general (higher) categories.71

In a nutshell, this means that “equality” (or whatever takes the place of equality) is not72

necessarily invertible.73

We think that a very valuable long-term goal would be to make the connection of directed74

type theories with cubical type theories and create some sort of directed cubical type theory.75

This is at the moment certainly out of reach, and we do not know how such a type theory76

could be built. Nevertheless, it motivates us to explore variations of the BCH cube category77

which do not have the described built-in equality.78

1 While Bezem, Coquand, and Huber [8] define their index category to have finite sets of variables as
objects, it is possible to simply use natural numbers as objects. The n-cube, or n-dimensional cube, is
then the object of the presheaf category that is represented by the object n of the index category.
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Figure 2 An illustration of the thickening-and-twisting process of the twisted n-cube for 1 6 n 6 3.
The process expands the twisted (n−1)-cube (left column) along the new dimension (middle column)
and reverse all other dimensions at the starting point of the new dimension (right column).

To avoid invertibility, we “twist” the left-most edge of the 2-dimensional cube, as shown79

on the right of Figure 1, to ensure that the construction from before becomes impossible.80

This might seems artificial and specific to the 2-dimensional case but by using our graph81

morphisms that we develop for the BCH cube category, it becomes very easy to define the82

twisting version for cubes of all dimensions.83

To construct a twisted n-cube from a twisted (n − 1)-cube, we first expand the original84

cube along a new dimension (we call this thickening): this is same as constructing a standard85

n-cube form a standard (n − 1)-cube, which is just a construction of its cylinder object. We86

then reverse all dimensions at the starting point of the new dimension (we call this twisting).87

Figure 2 illustrates this thickening-and-twisting process up to dimension 3, where the existing88

dimensions are shifted by one in order to allow the new dimension to be the first dimension.89

One important property of standard cubes which twisted cubes retain is that every face90

of a [twisted] n-cube is a [twisted] (n− 1)-cube. An interesting example is the case n = 3: In91

order to construct a twisted 3-cube, we thicken the twisted 2-cube as illustrate in Figure 292

where the left and the right face are already twisted 2-cubes, while the rest are thickened93

1-cubes. The right face is unaffected during the twisting, but the left face is reversed entirely.94

Nevertheless, it is still a 2-cube (just flipped backwards).95

Twisted cubes do not only remove the discussed source of invertibility, but they also96

change the way we view composition of morphisms. The filling of a “standard” square can97

be interpreted as saying that the composition of two edges equals the composition of the98

other two edges, and if we want to see the lid as the composite of the three other edges, then99

one has to be inverted. In contrast, in the twisted square, the lid can be seen directly as the100

single composite of the three other edges. The right half of Figure 3 shows the projection of101

the twisted 3-cube, and the smallest square (011, 001, 101, 111) is the lid. As for the square,102

this lid should be seen as the composite of the other (here five) faces. Intuitively, one starts103

with the biggest square, composes it with the top and the bottom squares, then with the left104

TYPES 2019
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Figure 3 The 3-dimensional twisted cube using parallel and perspective projections. On the left,
the lid (i.e. the last face which can be recovered by filling) is shaded. On the right, this face is the
small middle square. The lid can be seen as the composite of the other faces.
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Figure 4 The 4-dimensional twisted cube using parallel and perspective projections. The lid is
shadowed on the left. It is the biggest cube on the right.

and the right square, and thus arrives at the smallest square. Figure 4 shows the analogous105

situation for the 4-dimensional twisted cube, where one starts with the inner 3-cube, then106

extends to the front and the back, to the top and the bottom, and finally to the left and the107

right.108

The “twisting” pattern also appears in the twisted arrow category [17], also known as the109

category of factorisations [7]. However, it is unclear how to generalise this idea to more than110

squares; it has been developed to solve a different problem.111

In the main body of the paper, we first introduce the framework of graph morphisms112

for standard (non-twisted) cubes. We consider the properties of meet/join and dimension113

preservation of graph morphisms, and conclude that both of these are suitable refinements114

to ensure that the category of graph morphisms matches the BCH cube category. The proof115

of this is the main result of Section 2. We use this development to introduce and examine116

twisted cubes in Section 3. We will see that they have many characteristic properties that117

standard cubes are lacking. Some of them, such as a Hamiltonian path through the cube and118

the fact that vertices are totally ordered, are familiar from simplicial structures but not from119

cubical ones. Another interesting feature, neither familiar from cubical nor from simplicial120

but from globular structures, is that surjective maps are unique (i.e. there is only one way121

to degenerate a twisted cube). These and other observations allow us to define a further122

representation of the category of twisted cubes which does not make use of graphs.123
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Setting We use a standard version of Martin-Löf’s dependent type theory as our meta-124

language. We assume function extensionality, but we do not require other axioms or features125

since we mostly work with finite sets, which are extremely well-behaved by default. In126

particular, it does not matter for us whether UIP/Axiom K is assumed or not, and the127

development would be identical in extensional dependent type theory.128

Summary of Contributions Our main contributions are as follows:129

We give several alternative but equivalent presentations of the BCH cube category.130

We introduce twisted cubes, a variation of the BCH cube category which allows for filling131

conditions without built-in invertibility.132

We show several results about twisted cubes. These include connections to simplices133

(a unique Humiliation path and the property of being a Reedy category) and to globes134

(unique surjective maps and degeneracies).135

2 A Standard Cube Category136

137

In this section, we discuss various representations of the cube category �BCH. This138

category was used by Bezem, Coquand, and Huber to present a constructive model of139

univalence [8]. In Section 3, we will see how minimal modifications lead to a category of140

twisted cubes.141

Keeping in mind that we use type theory as the language in which the results are presented142

(i.e. as our meta-theory), we use the following notations: N are the natural numbers, including143

0. For n : N, the set n is the finite set with elements {0, 1, ... , n − 1}. In particular, 2 is144

the set of booleans. As usual, nm is simply the function set m → n. We denote elements145

of 2n by binary sequences as in 0 · 1 · 1 · 0. This means such a function f is denoted by146

f (0) · f (1) · f (2) ... f (n − 1). If there is no risk of confusion, we omit the · and simply use147

juxtaposition as in 0110.148

In several situations, we want to consider a type of functions into a coproduct which is149

injective “on the left part of the codomain”. To make this precise, we introduce a notation:150

I Definition 1 (↪ left−−→). Assume A, B, and C are given types. For a function f : A→ (B+C),151

we say that f is injective on the left part if152

left-inj(f ) :≡ Π(x , y : A, z : B).(f (x) = inl(z))→ (f (y) = inl(z))→ x = y . (1)153

We write the type of functions which are injective on the left part as154

(A ↪
left−−→ B + C) :≡ Σ(f : A→ (B + C)).left-inj(f ). (2)155

In the next lemma, a function f : A→ B + 1 is called a partial function, with 1 being the156

“undefined” part.2 The following simple but useful (and well-known) result will be necessary.157

It could be formulated in higher generality, but a version which is sufficient for us is this:158

I Lemma 2. Given m, n : N, injective partial functions from m to n are in bijection with159

injective partial functions from n to m. In other words, we have an equivalence160 (
m ↪

left−−→ n + 1
)
'
(
n ↪ left−−→ m + 1

)
. (3)161

2 Technically, these are of course only the partial functions from A to B with decidable support. Since we
only work with finite types, it is not surprising that we only need to consider the decidable case.

TYPES 2019
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Proof. The equivalence can be constructed directly. Given an f : m ↪
left−−→ n + 1, we have to162

construct a function g : n ↪ left−−→ m + 1. For i : n, we can decide whether there is a k such163

that f (k) = inl(i). If so, then this k is unique due to injectivity, and we set g(i) :≡ inl(k);164

otherwise, we set g(i) :≡ inr(0). Checking that this is an equivalence is routine. J165

The presentation of the cube category in question that we start with is the one given by166

Bezem, Coquand, and Huber [8] (which is the same as in Huber’s PhD thesis [15]). Since it167

is sufficient for our purposes, we use a skeletal variation: our objects are not finite sets but168

rather natural numbers.169

I Definition 3 (category �BCH [8, 15]). The category �BCH has natural numbers as objects170

and, for m, n : N, a morphism in �BCH(m, n) is a function f : m→ n + 2 which is injective171

on the n-part. In type-theoretic notation:172

obj(�BCH) :≡ N �BCH(m, n) :≡ m ↪
left−−→ n + 2 (4)173

174

Composition g ◦ f is defined to be the set-theoretic composition (g + id2) ◦ f .175

What we will need is the opposite of this category, �op
BCH. While the above definition is176

short and abstract, a description close to the intuitive idea of cubes is helpful for our later177

developments. Let us consider graphs G = (V ,E ) of nodes (vertices) and edges, where V is a178

set with decidable equality and E is a subset of V × V . A standard way to implement this179

is to let E be a family of “mere propositions”3, indexed twice over V . However, we write180

(s, t) : E for E (s, t) and assume that E is given in the “total space” formulation. Furthermore,181

in our cases E will always be a decidable subset.182

E being a subset means that our graphs do not have multiple parallel edges, i.e. for any183

pair of vertices, there is at most one edge between them, and it is decidable whether there is184

an edge between two given vertices.185

Given a graph, we construct a new graph as follows. Note that the “total space” of the186

edges of the new graph is E + E + V , but in order to make clear which vertices these new187

edges connect, we use “set theory style” notation:188

I Definition 4. Given G = (V ,E ), the graph-prism of G, denoted as189

prism (G) :≡ (prism (V ), prism (E )) is another graph where190

prism (V ) :≡ 2× V (5)191

prism (E ) :≡ { ( (0, s), (0, t) ) | (s, t) : E} (6)192

∪ { ( (1, s), (1, t) ) | (s, t) : E} (7)193

∪ { ( (0, v), (1, v) ) | v : V }. (8)194
195

This allows us to define the standard cube as a graph:4196

I Definition 5. Given n : N, the standard cube Cn is defined as follows:197

C0 :≡ (1, {(0, 0)}) Cn+1 :≡ prism (Cn) (9)198
199

Another way of defining Cn, without recursion, is the following. Here, we give the “total200

space” of edges edges(Cn) together with functions src, trg : edges(Cn)→ nodes(Cn):201

3 Recall that a mere proposition, or a subsingleton, is a type with at most one element.
4 Most of graphs in this paper are reflexive graphs to support degeneracies as graph morphisms.
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I Definition 6. In the following, our convention is that −1 is empty (i.e. the same as 0):202

nodes(Cn) :≡ 2n (10)203

edges(Cn) :≡ 2n +
(
n × 2n−1) (11)204

src(inl(v)) :≡ trg(inl(v)) :≡ v (12)205

src(inr(i , x0x1 ... xn−2)) :≡ x0x1 ... xi−10xi ... xn−2 (13)206

trg(inr(i , x0x1 ... xn−2)) :≡ x0x1 ... xi−11xi ... xn−2 (14)207
208

The number of total edges in (11) comes from the following calculation. We have n209

dimension, thus 2n nodes, which come with self-loops giving rise to the summand 2n. For210

ever node, we further have an edge in each dimension. Avoiding double counting, this gives211

the summand n × 2n−1. Figure 5 shows drawings for C0 to C3.212

I Lemma 7. Definition 5 and Definition 6 define isomorphic graph structures. J213

This observation allows us to use whichever is more convenient in any given situation.214

A graph morphism from G = (V ,E ) to G ′ = (V ′,E ′) is, as usual, a function between the215

node types which preserves the edges:216

grp-hom
(
(V ,E ), (V ′,E ′)

)
:≡ Σ(f : V → V ′).Π(v0, v1 : V ).E (v0, v1)→ E ′(f (v0), f (v1)) (15)217

We can now consider the following category:218

I Definition 8 (category �grp). The category �grp has natural numbers as objects.219

A morphism between m and n is a graph morphism from Cm to Cn, as in:220

obj(�grp) :≡ N �grp(m, n) :≡ grp-hom (Cm,Cn) (16)221
222

Composition is composition of graph morphisms.223

The category �grp has more morphisms than �op
BCH. One example would be the morphism224

in grp-hom (C2,C1) which maps the three nodes 00, 01, 10 all to 0 and 11 to 1. Another225

example is the morphism which maps 00 to 0, and 01, 10, 11 all to 1. Both of these morphisms226

do not have analogues in �op
BCH. In other words, �grp has connections. Since, in the current227

paper, we are looking for alternative definitions of the category �op
BCH, we refine the definition228

of the morphisms in �grp to resolve the mismatch. Let us formulate the following auxiliary229

definitions.230
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Figure 5 An illustration of Cn for n 6 3. The labels on the vertices and edges are in accordance
with (10) and (11). The identity loops are omitted. This allows us to unambiguously hide the
constructor inr as well.
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I Definition 9 (free preorder on a graph). For a given graph G = (V ,E), we write231

G∗ = (V ,E∗) for the free preorder generated by it. G∗ has V as objects and, for v , u : V , we232

have v 6 u if there is a chain of edges starting in v and ending in u.233

When talking about nodes in G, we borrow the notions of meet (product) and join234

(coproduct) from preorders. If they exist in G∗, we write them as v u u and v t u.235

It is easy to see that, in the case of Cn, all meets and joins exist and can be calculated236

directly: From the programming perspective, they correspond to the bitwise operators ′&′237

and ′|′. Thus, when talking about Cn, we can view u and t as actual functions calculating238

the binary meet and join:239

u,t : V × V → V (17)240

Given a graph morphism g : grp-hom (Cm,Cn), it is easy to define what it means that it241

preserves binary meets resp. joins:242

pres-meet(g) :≡ Π(u, v : 2m).g(u u v) = g(u) u g(v) (18)243

pres-join(g) :≡ Π(u, v : 2m).g(u t v) = g(u) t g(v) (19)244
245

Note that preserving meets and joins is a property (a “mere proposition”) of morphisms. For246

general morphisms between graphs which might not have all meets or joins, the definition247

is more subtle but still straightforward; one can always define the property of being a meet248

(join) and then say that any vertex which has this property is mapped to one which also has249

it. We omit the precise type-theoretic formulation.250

The two mentioned examples of morphisms which are “too much” in �grp do not preserve251

binary meets resp. joins.252

I Definition 10 (category �cont). The category �cont has N as objects and, as morphisms,253

graph morphisms between standard cubes which preserve meets and joins (cont for continuous):254

obj(�cont) :≡ N (20)255

�cont(m, n) :≡ Σ(g : grp-hom (Cm,Cn)).pres-meet(g)× pres-join(g) (21)256
257

This gives us a category which is indeed equivalent (in fact isomorphic) to �op
BCH:258

I Theorem 11. The categories �op
BCH and �cont are isomorphic. The isomorphism on the259

object part is the identity, i.e. the equivalence is given by a family e as in:260

e : Π(m, n : N).�op
BCH(m, n) ' �cont(m, n). (22)261

Before giving a proof, we formulate the following:262

I Lemma 12. Consider the full subgraph of Cn which has exactly (n + 1) vertices, namely263

the “origin” 00 ... 0 and the “base vectors” which have exactly one 1. We call this subgraph264

Bn, where the B stands for “base”, and it comes with the inclusion i : Bn ↪→ Cn. For any m,265

“forgetting” the property of preserving the joins and composing with i as in266

λg .i ◦ (proj1(g)) : (Σ(g : grp-hom (Cm,Cn) .pres-join(g)) → grp-hom (Bm,Cn) (23)267

is an equivalence. Moreover, g preserves meets if and only if i ◦ (proj1(g)) does.268
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Proof. The only binary joins that Bm has are trivial, so every morph-
ism grp-hom (Bm,Cn) is join-preserving. Thus, the first claim of the
lemma is that every such morphism can be extended in a unique way
as shown in the diagram to the right. Every node of Cm which is not
in Bm, i.e. every node which is not the origin or a base vector, can be
written as a join of base vectors. Since we need to preserve joins, it
is therefore determined where the node has to be sent to. The map
defined in this way preserves all binary joins, and it preserves binary
meets if and only if the input does. J

Bm Cn

Cm

269

Proof of Theorem 11. We first give the overview of the argument as a chain of equivalences,270

then we justify each step [S1 – S5].271

�cont(m, n)272

≡ Σ(g : grp-hom (Cm,Cn)).pres-meet(g)× pres-join(g)273

[S1] ' Σ(g : grp-hom (Bm,Cn)).pres-meet(g)274

[S2] ' Σ(z : 2n, d : m ↪
left−−→ n + 1).Π(i : m, j : n).(d(i) = inl(j))→ (z(j) = 0)275

[S3] ' Σ(z : 2n, e : n ↪ left−−→ m + 1).Π(i : m, j : n).(e(j) = inl(i))→ (z(j) = 0)276

[S4] ' Σ(z : 2n, e : n→ (m + 1)).left-inj(e)× Π(i : m, j : n).(e(j) = inl(i))→ (z(j) = 0)277

[S5] ' Σ
(
α : Π(j : n).Σ(e : m + 1, z : 2).Π(i : m).(e = inl(i))→ z = 0

)
.left-inj(proj1 ◦ α)278

[S6] ' Σ
(
α : Π(j : n).m + 2

)
.left-inj(α)279

≡ �op
BCH(m, n)280

281

Step 1 holds by Lemma 12. Let us look at Step 2. Giving a graph homomorphism between282

Bm and Cn corresponds to choosing where the origin is mapped to, and choosing where each283

(non-trivial) edge of Bm is mapped to. For the origin, we use the component z : 2n. There284

are m non-trivial edges in Bm, and z is an endpoint (or starting point) of n non-trivial edges285

and one trivial edge in Cn. This gives us up to m→ n + 1 possible functions, but since we286

only consider meet-preserving morphisms, every function needs to be injective on the left287

part, leading to d : m ↪
left−−→ n + 1. Moreover, if d(i) = inl(j) for some i , j, then the image of288

the origin must be the starting point of the edge in dimension j, i.e. z(j) = 0. Step 3 is an289

application of Lemma 2 (it essentially swaps the roles of m and n). Step 4 only unfolds the290

definition of ↪ left−−→.291

In Step 5, the usual distributivity between Σ and Π (under the propositions-as-types view292

referred to as the “axiom of choice”) is used: z , e, and the unnamed last component can all293

be seen as (dependent) functions with domain n. The dependent function α combines them294

into a single dependent function with domain n and a codomain that consists of multiple295

components which, again, are called e, z , with the last one being unnamed. Only the296

component expressing the “injectivity on the left part”-property cannot be seen as a function297

in n. In Step 6, we massage the codomain of α: We have e : m + 1 and also z : 2, but the298

condition says that z is determined unless e = inr(0); thus, the type is equivalent to m + 2.299

We omit the calculation which shows that the constructed equivalence preserves composi-300

tion of morphisms in the categories. J301

In Section 3, we will switch from standard cubes to twisted cubes. The directions of some302

edges will be reversed. It is therefore an advantage to formulate a condition similar to the303

one about meets and joins without referring to the direction of edges. This is indeed possible:304
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I Definition 13 (dimension preserving morphisms; category �dim). Given the standard cube305

Cn, where we use the non-recursive definition as in Definition 6, the dimension of an edge is306

defined as follows:307

dim : edges(Cn)→ n + 1 dim(inl(v)) :≡ inr(0) (24)308

dim(inr(i , x0 ... xn−2) :≡ inl(i) (25)309
310

We say that a morphism f : grp-hom (Cm,Cn) is dimension-preserving if f maps edges of the311

same dimension to edges of the same dimension,312

dim-pres(f ) :≡ Π(e1, e2 : edges(Cn)).(dim(e1) = dim(e2))→ (dim(f (e1)) = dim(f (e2))). (26)313

The category �dim makes use of these concepts:314

obj(�dim) :≡ N �dim(m, n) :≡ Σ(g : grp-hom (Cm,Cn)).dim-pres(g) (27)315
316

As pres-meet(g) and pres-join(g), preserving the dimension as in (26) is a proposition in317

the sense of homotopy type theory (has at most one proof).318

I Remark 14. For a graph morphism f as in the definition above, the following condition319

says that f is “injective on dimensions” (on the non-trivial part):320

dim-inj(f ) :≡ Π(e1, e2 : edges(Cm), j : n).
(
dim(f (e1)) = inl(j)× dim(f (e2)) = inl(j)

)
321

→ (dim(e1) = dim(e2)).322
323

However, note that this follows directly from dim-pres(f ): Assume e1, e2 are edges such that324

dim(f (e1)) and dim(f (e2)) are equal and non-trivial. If e1 and e2 are not “parallel” (i.e. not325

in the same dimension), then we can find e′1 in the same dimension as e1 such that e′1 and e2326

are adjacent (i.e. the endpoint of one is the starting point of the other). It is clear that f (e′1)327

and f (e2) cannot go into the same non-trivial direction, since we can only go one step into a328

given direction before going back.329

The connection to meet- and join-preserving is given by the following result:330

I Lemma 15. A morphism f : grp-hom (Cm,Cn) is join-and-meet-preserving exactly if it is331

dimension-preserving.332

Proof. This follows easily by going via morphisms grp-hom (Bm,Cn) as in Lemma 12. The333

graph Bm has exactly one edge for every non-trivial dimension, and the proof is analogous to334

the one of Lemma 12. J335

I Corollary 16 (Section summary). The categories �op
BCH, �cont, and �dim are isomorphic. J336

3 A Category of Twisted Cubes337

338

As discussed in the introduction, we build on our framework of graph morphisms to define339

a category of twisted cubes. A variation of Definition 4 gives us these twisted cubes. The340

critical change can be seen in (29), which should be compared with (6):341

I Definition 17. Given a graph G = (V ,E ), the twisted graph-prism of G,342

denoted as tw-prism (G) :≡ (tw-prism (V ), tw-prism (E )) is the graph defined by343

tw-prism (V ) :≡ 2× V (28)344

tw-prism (E ) :≡ { ( (0, t), (0, s) ) | (s, t) : E} (29)345

∪ { ( (1, s), (1, t) ) | (s, t) : E} (30)346

∪ { ( (0, v), (1, v) ) | v : V }. (31)347
348
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We then define:349

I Definition 18. Given n : N, the twisted cube Tn is defined as follows:350

T0 :≡ (1, {(0, 0)}) Tn+1 :≡ tw-prism (Tn) (32)351
352

Alternatively, we can tweak Definition 5 to get a non-recursive definition. As before, the353

convention is that −1 is empty.354

I Definition 19. The non-recursive definition of Tn is as follows:355

nodes(Tn) :≡ 2n (33)356

edges(Tn) :≡ 2n +
(
n × 2n−1) (34)357

src(inl(v)) :≡ trg(inl(v)) :≡ v (35)358

src(inr(i , x0x1 ... xn−2)) :≡ x0x1 ... xi−1 · b · xi ... xn−2 (36)359

trg(inr(i , x0x1 ... xn−2)) :≡ x0x1 ... xi−1 · (1− b) · xi ... xn−2 (37)360
361

where b = 1 if the total number of zeros in x0x1 ... xi−1 is odd, and b = 0 otherwise.362

This means that an edge is reversed (compared to the standard cubes discussed before)363

exactly if the number of zeros in dimensions that come before the edge is odd (note that the364

condition talks about xi−1, not xn−2). The twisted cubes of dimension up to 3 are illustrated365

in Figure 6; see also Figures 3 and 4 in the introduction.366

I Lemma 20. Definition 18 and Definition 19 define isomorphic graph structures. J367

Tn has an interesting property that the standard cube Cn does not have: The induced368

preorder T ∗n on the vertices is a total order. This observation was originally suggested369

by Paolo Capriotti and Jakob von Raumer in a discussion with the first author of this370

paper. Note that this observation should not be misunderstood to mean that Tn itself is371

uninteresting. Its edges give it a unique structure, as visualised in Figure 7.372

The idea behind this result is that tw-prism preserves the property of having a preorder373

that is total. To elaborate on this, if G∗ is a total order, then (tw-prism G)∗ consists of374

two copies of G∗, where the first copy is “turned around”. One of the edges added in (31)375

links the largest node in the first copy to the smallest node in the second copy, thus every376

element of the second copy is larger than all the elements of the first copy. In other words,377

(tw-prism G)∗ is the join of the two copies.5378

5 Join in the sense of the join of categories [19], which should not be confused with the join (coproduct)
of objects in a preorder (cf. Definition 9).
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Figure 6 An illustration of Tn where n 6 3.
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Figure 7 Linear drawings of the twisted cubes T0, T1, T2, and T3, demonstrating that the
underlying preorders are total orders. The binary sequences on top are the values of gn from the
proof of Theorem 21. See also Remark 22.

I Theorem 21. For all n : N, the preorder T ∗n is isomorphic to the total order (2n,<).379

Note that Theorem 21 is a property which one usually expects for simplicial structures,380

but not for cubical ones.381

I Remark 22. There are two binary numbers for each node in Figure 7. The bottom one382

represents each node name according to Definition 19 whereas the top one represents the383

total order of T3. It is impossible to unify these two binary numbers for n > 2 since, for each384

edge e, the numbers src(e) and src(e) only differ by (at most) one single bit by Definition 19,385

while incrementing a binary number can flip more than one bit.386

Another related observation is that we can find a path from the smallest vertex to the387

largest vertex of Tn which respects the direction of the edges, and which visits each vertex388

exactly once. Recall that such a path is called a Hamiltonian path. We record this:389

I Theorem 23. For all n : N, there is exactly one Hamiltonian path through Tn+1. This390

path contains exactly one edge in the first dimension (i.e. the one which is added when going391

from Tn to Tn+1). Moreover, this single edge in the new dimension connects the Hamiltonian392

paths through the two copies of Tn of which Tn+1 consists by definition, cf. (28).393

Proof of Theorem 21 and Theorem 23. As before, we denote elements of 2n as sequences394

such as 00101 (binary representation with most significant bit first) or, for clarity, by 0·0·1·0·1.395

We use the endofunction neg on 2n, which simply replaces each 0 in a sequence by a 1 and396

vice versa; i.e. it sends the number i to 2n−1− i (note that neg does not reverse the sequence,397

but the ordering on 2n).398

Let us define endofunctions fn and gn on 2n, by induction on n. Note that, at this point,399

we do not talk about graph morphisms but only about functions between sets. The base400

cases of the induction are uniquely determined. We define f and g by401

fn+1(0 · ~x) :≡ 0 · fn(neg(~x)) gn+1(0 · ~x) :≡ 0 · neg(gn(~x)) (38)402

fn+1(1 · ~x) :≡ 1 · fn(~x) gn+1(1 · ~x) :≡ 1 · gn(~x). (39)403
404

It is easy to calculate that, by induction, f and g are inverse to each other. We want to405

show that they extend to morphisms between preorders,406

f̂n : (2n,<)→ T ∗n ĝn : T ∗n → (2n,<). (40)407
408

To construct f̂n and the Hamiltonian path through the cube, it suffices to show: for x , y : 2n
409

with x + 1 = y , we have an edge fn(x)→ fn(y).410
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We do induction on n. For n = 0, this is vacuously true (such x , y do not exist). For411

n = n′ + 1, there are multiple cases:412

case x = 0 · x ′ and y = 0 · y ′: Then, the assumption gives us x ′ + 1 = y ′ and we have to413

find an edge 0 · fn(neg(x ′))→ 0 · fn(neg(y ′)). Looking at Definition 17, we can get this if414

we have fn(neg(y ′))→ fn(neg(x ′)). This holds by induction, since neg reverses the order415

which gives us neg(y ′) + 1 = neg(x ′).416

case x = 1 · x ′ and y = 1 · y ′: Similar to the previous case, but nothing gets reversed.417

case x = 0 ·x ′ and y = 1 ·y ′: In this case, we have x = 0111 ... and y = 1000 .... We need to418

find an edge 0 · f (neg(111 ...))→ 1 · f (000 ...), which simplifies to 0 · f (000 ...)→ 1 · f (000 ...).419

This edge is directly given in (31).420

case x = 1 · x ′ and y = 0 · y ′: Contradicts with the assumption x + 1 = y .421

This shows that there is a Hamiltonian path, and it is given by f̂n. The definition of f as in422

(38,39) also shows that fn+1 consists of two copies of fn, implying the last claim of Theorem 23.423

In order to prove Theorem 21, we need to construct ĝn. It is enough to show that, for an424

edge from u to v in Tn, we have g(u) 6 g(v). This follows by straightforward induction,425

going through the edges in Definition 17. But Theorem 21 implies that there is at most one426

Hamiltonian path. J427

I Remark 24. Note that every vertex v in Tn is an endpoint of n non-trivial edges. The428

number of zeros in the binary representation in the “order number” of v (i.e. the value gn(v)429

in the proof of Theorem 21) equals the number of outgoing edges. Figure 7 shows this.430

Analogously to Definition 8, we can now define the category of twisted graph morphisms:431

I Definition 25 (category 1grp). The category 1grp has natural numbers as objects, and432

morphisms from m to n are graph morphisms between twisted cubes:433

obj(1grp) :≡ N 1grp(m, n) :≡ grp-hom (Tm,Tn) (41)434
435

It is easy to see that the category 1grp has a version of connections. Since we are436

looking for a “twisted analogue” of �op
BCH, we need to refine it further. In Section 2, we437

have discussed the restriction to (meet and join)-preserving morphisms, and to dimension-438

preserving morphisms. It follows directly from Theorem 21 that every morphism in 1grp439

preserves all binary meets and joins, so this condition becomes trivial; it does not avoid440

connections. However, preserving dimensions is still a non-trivial condition which does avoid441

connections. The definition of equation (26) still works.442

I Definition 26 (category 1dim). The category 1dim has dimension-preserving maps between443

twisted cubes as morphisms:444

obj(1dim) :≡ N 1dim(m, n) :≡ Σ(g : grp-hom (Tm,Tn)).dim-pres(g) (42)445
446

Note that the explanation of Remark 14 holds for the twisted cube category as well.447

A consequence of Theorem 21 is that morphisms in 1dim cannot “swap dimensions”. But448

an even stronger result holds, namely that surjective morphisms are unique:449

I Theorem 27. There is exactly one surjective morphism in 1dim(m, n) for m > n.450

(Clearly, there is none if m < n.)451

Proof. The key to the proof is Theorem 23. Clearly, the Hamiltonian path in Tm goes452

through all vertices. Due to surjectivity, its image has to go through all vertices of Tn. In453

other words, the Tm-Hamiltonian path has to be mapped to the Tn-Hamiltonian path. Since454
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the graph morphisms that we consider preserve the dimension, the only edge in the Tm-path455

which can be mapped to the single edge in the first dimension in the Tn-path is just this456

single edge in the first dimension in the Tm-path; i.e. the middle edge has to be mapped457

to the middle edge. From here, it follows by induction that there can only be at most one458

surjective graph morphism.459

What is left to show is that there actually is a surjective graph morphism if m > n. It460

is enough to construct a surjective graph morphism f : 1dim(n + 1, n), from where we get461

any other by (m − n)-fold composition (0-fold composition is the identity). Such a graph462

morphism is given by463

f (x0 ... xn−1xn) :≡ (x0 ... xn−1). (43)464
465

Since the directions of the edges do not depend on the very last dimension, this works466

(cf. Definition 19). J467

An important consequence of the above result is that there is a unique way to degenerate468

a twisted cube. We do not go into the details here, but see the conclusions at the end of the469

paper. For now, we go into a different direction.470

Let us write intv (“interval”) for the finite set {0, 1, ?}. Of course, intv is isomorphic to 3,471

but referring to the last element as ? helps the intuition, we hope.472

I Definition 28. A face of the twisted n-cube Tn is a function f : n→ intv. The dimension473

of a face, written dim(f ), equals the number of times f takes ? as value (i.e. the size of474

f −1(?)). The type of faces of dimension k is written as faces(n, k).475

The face f : n→ intv represents the full subgraph of Tn of vertices on which f “matches”476

(a vertex x0x1 ... xn−1 is matched if, for every i , we have f (i) = xi or f (i) = ?).477

I Lemma 29. The image of f : 1dim(m, n) is a face.478

Proof. This follows from the property of preserving the dimension as defined in (26). J479

I Lemma 30. The m-faces are the only injective maps 1dim(m, n):480

faces(n,m) ' Σ(f : 1dim(m, n)).is-inj(f ). (44)481

Proof. Every face gives rise to a canonical injective dimension-preserving morphism in the482

sense of Definition 13, as dictated by the inclusion of the full subgraph that the face represents483

into Tn. The fact that these are the only ones follows from Theorem 21 (we cannot “swap484

dimensions”) and Lemma 29. J485

As with Theorem 21 before, Lemma 30 is a result which is usually found in simplicial486

structures, but not in cubical ones. In any case, we now easily get:487

I Lemma 31 (factorisation of dimension preserving morphisms). Given a morphism f :488

1dim(m, n), there is exactly one way to write it as the composition f = inj(f ) ◦ surj(f ) of a489

surjective dimension preserving graph morphism followed by an injective one. This means490

that the map491 (
Σ(k : N). (Σ(h : 1dim(k, n)).is-inj(h))× (Σ(g : 1dim(m, k)).is-surj(g))

)
→ 1dim(m, n) (45)492

(k, (h, i), (g , s)) 7→ h ◦ g (46)493
494

is an equivalence. Moreover, morphisms 1dim(m, n) are in 1-to-1 correspondence with faces495

of Tn of dimension 6 m.496
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Proof. A consequence of Lemma 29 is that the factorisation on the level of sets of vertices497

works. The second claim follows from the first: In (45), the k and the surjective map are498

uniquely determined (i.e. contractible components) by Theorem 27. By Lemma 30, injective499

maps correspond to faces. J500

I Remark 32. It follows from Lemma 31 and the proof of Theorem 27 that all the non-empty501

fibres of a dimension-preserving morphism between twisted cubes have the same size. The502

reverse is the case as well: a morphism between twisted graphs where all non-empty fibres503

have the same size is dimension-preserving.504

Another consequence of the above results is that 1dim can be given the structure of a505

Reedy category (cf. [14]). Recall that a Reedy category is a category R with a degree function506

d : obj(1dim)→ N and two subcategories R+ and R−, such that:6507

both subcategories are wide, i.e. contain all the objects of R;508

every nonidentity morphism in R+ raises the degree;509

every nonidentity morphism in R− lowers the degree;510

and every morphism of R can be written as a morphisms in R− followed by a morphism511

in R+ in a unique way.512

The reason why Reedy categories are interesting is that they enable certain inductive513

constructions. In the setting of type theory, they have been discussed by Shulman [26].514

I Theorem 33. The category 1dim is a Reedy category where the degree of an object is the515

object itself (recall that objects are natural numbers). 1+
dim is the subcategory of injective516

morphisms, and 1−dim is the subcategory of surjective morphisms.517

Proof. The first three properties are clear, and the factorisation is given by Lemma 31. J518

Finally, let us record an alternative representation of the category 1dim which does not519

go via graph morphisms.520

I Definition 34 (ternary notation: category 1tri). The category 1tri has natural numbers as521

objects, and a morphism from m to n is a function n→ intv which takes ? at most m times522

as image:523

obj(1tri) :≡ N 1tri(m, n) :≡ Σ(f : n→ intv).f −1(?) 6 m (47)524
525

The identity morphisms are the functions that are constantly ?. To define the composition of526

f : 1tri(k,m) and g : 1tri(m, n), we need to define a function g ◦ f : n→ intv (which is ? at527

most k times). We define (g ◦ f )(i) by recursion on i, simultaneously with the values i ′ and528

bi , as follows:529

(g ◦ f )(i) :≡


g(i) if g(i) ∈ {0, 1}
(f (i ′)) xor bi if g(i) = ? and f (i ′) ∈ {0, 1}
? if g(i) = ? and f (i ′) = ?

(48)530

531

where532

i ′ is the number of occurrences of ? in the sequence g(0), g(1), ... , g(i − 1);533

bi is 1 if the number of zeros in the sequence (g ◦ f )(0), (g ◦ f )(1), ... , (g ◦ f )(i − 1) is odd,534

and 0 if it is even.535

6 Degrees can more generally be arbitrary ordinals, but N is sufficient in our case.
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Note that a morphism in 1tri(m, n) can be represented as a sequence such as 01?0?10 of536

length n which contains the symbol ? at most m times, which is why we refer to it as ternary537

notation.538

I Remark 35. There is a category of twisted semi-cubes, denoted by 1+
tri, which is exactly539

the same as 1tri except that the number of ? in the sequence must be exactly m, i.e. “6”540

is changed to “=” in the definition of 1tri(m, n). This category is equivalent to the sub-541

category of 1dim, denoted as 1+
dim, which consists of injective dimension-preserving graph542

homomorphisms. Note that this injectivity condition is equivalent to removing the reflexive543

edges from Definition 18.544

If we remove the expression (xor bi) in the definition of morphisms of 1+
tri, then the545

category becomes equivalent to the category of standard cubes but without degeneracies and546

swapping dimensions. In other words, the expression (xor bi) characterises “twisted-ness”.547

I Theorem 36. The categories 1dim, and 1tri are isomorphic, with the object part being the548

identity. In particular, we have:549

1dim(m, n) ' 1tri(m, n) (49)550

Proof. As the following chain of equivalences:551

1dim(m, n)552

[Lemma 31] ' Σ(k : N). (Σ(h : 1dim(k, n)).is-inj(h))× (Σ(g : 1dim(m, k)).is-surj(g))553

[Theorem 27] ' Σ(k : N). (Σ(h : 1dim(k, n)).is-inj(h))× (k 6 m)554

[Lemma 30] ' Σ(k : N). faces(n, k)× (k 6 m)555

[simplification] ' Σ(f : n→ intv).f −1(?) 6 m556

≡ 1tri(m, n)557
558

When transported along this isomorphism, the composition of 1dim gets mapped to the559

composition of 1tri, as required. J560

4 Conclusions and Future Directions561

We have suggested new representations of the BCH cube category and introduced a category of562

twisted cubes. It is natural to further study the similarities and differences between standard563

and twisted cube categories, and some new results will be presented in the upcoming PhD564

thesis of the first author.565

As future work, we plan to examine algebraic descriptions via generators and relations.566

Such presentations exist for many different cube categories in the literature but, as far as567

we are aware, not for the BCH cube category. The closest suggestions available are the568

presentations by Antolini [5] and Newstead [20], which seem to be fairly easy to adapt to569

the BCH cube category. Interestingly, further adapting the generators to the twisted setting570

simplifies them significantly, which mirrors the fact that morphisms between twisted cubes571

cannot swap dimensions. Moreover, our Theorem 27 implies that degeneracies are unique:572

there is only one single way in which a twisted n-cube can be degenerated to get a twisted573

(n + 1)-cube. A consequence is that we do not need to impose relations between different574

degeneracies.575

This, we hope, will make it possible to develop the higher categorical structures that can576

be encoded as presheaves on the category of twisted cubes. An ultimate goal would be to577
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model some form of directed cubical type theory mirroring the model by Bezem, Coquand,578

and Huber [8].579

Another possible application of our twisted cube categories might be building a syntax580

for a parametric type theory or cubical type theory without an interval as suggested by581

Altenkirch and Kaposi [2]. A major difficulty in their development was the presence of582

multiple degeneracies, a problem which does not occur in the current work.583

A further direction which may be worth exploring is to not consider set-valued presheaves,584

but type-valued presheaves instead. To facilitate this, we can consider the category of twisted585

semi-cubes mentioned in Remark 35. From there, type-valued presheaves can be encoded as586

Reedy-fibrant diagrams in a known style [27]. We can then add a condition reminiscent of587

Rezk’s Segal-condition [24] by stating that the projection from twisted semi-cubical types588

to the sequence of types along the Hamiltonian path is an equivalence. This corresponds589

to saying that the partial n-cube with missing inner part and lid (cf. Figure 3) have a590

contractible type of fillers. It seems that this could be a first step towards the construction591

of composition and higher coherences, although further conditions seem to be necessary. The592

relation to the (complete) semi-Segal types by Capriotti and others [4, 10, 11] remains to be593

studied.594
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