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Abstract
Classical artificial neural networks, built from elementary units, possess enormous expressive
power. Here we investigate a quantum neural network (QNN) architecture, which follows a similar
paradigm. It is structurally equivalent to so-called (1+1)D quantum cellular automata, which are
two-dimensional quantum lattice systems on which dynamics takes place in discrete time.
Information transfer between consecutive time slices—or adjacent network layers—is governed by
local quantum gates, which can be regarded as the quantum counterpart of the classical elementary
units. Along the time-direction an effective dissipative evolution emerges on the level of the
reduced state, and the nature of this dynamics is dictated by the structure of the elementary gates.
We show how to construct the local unitary gates to yield a desired many-body dynamics, which in
certain parameter regimes is governed by a Lindblad master equation. We study this for small
system sizes through numerical simulations and demonstrate how collective effects within the
quantum cellular automaton can be controlled parametrically. Our study constitutes a step towards
the utilization of large-scale emergent phenomena in large QNNs for machine learning purposes.

1. Introduction

Developing powerful and at the same time tailored computational models is of great relevance in both
quantum simulation and quantum machine learning [1–9]. One particular computational paradigm is
provided by quantum cellular automata (QCA) [10, 11]. As a quantum generalization of classical cellular
automata [12, 13] they are usually characterized by a discrete-time, local evolution of an ensemble of
identical finite-dimensional quantum systems via a translationally invariant unitary operator, although many
different versions exist [14–22]. Experimental progress in controlling atomic lattice systems with the ability
of single-atom addressing [23–29] has stimulated research into so-called (1+1)D QCA [30–35] (see
figure 1). Being organized into layers of finite-dimensional quantum systems, with a dynamics implemented
by the sequential application of unitaries supported on two adjacent layers, they realize one spatial
dimension and one effective time dimension. Originally introduced as quantum versions of the classical
Domany–Kinzel cellular automaton [30, 36], these models in the past have given rise to studies regarding the
impact of quantum effects on universal behavior in out-of-equilibrium critical dynamics [30–35].

Dynamics can be often associated with the processing of data. This is the case, for instance, for Hopfield
neural networks [37–40], in which given classical spin configurations can be retrieved by performing a
dynamics which minimizes a suitable energy function starting from an initially presented configuration.
Another example in which patterns can be retrieved starting from data contained in an initial state is given by
modern feed-forward neural networks [41–43]. Here layers of computational units [44] propagate low-level
representations of the data according to their characteristic properties in order to output higher-level
representations.
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Figure 1. (1+1)D Quantum Cellular Automaton and Quantum Neural Network architecture. (a) Two-level systems which can be
found in the occupied (circle with black filling) or vacant (circle with white filling) state or superpositions of them are organized
into a two-dimensional lattice. The vertical axis can be interpreted as indicating a spatial dimension and consists of N sites of
which we show only a subset of six here. With respect to the horizontal axis we label the first layer by 0. This layer contains the
initial configuration ρ0 and all other sites are in the vacant state. By means of the gate Gk, sequentially applied along the spatial
direction, the initial state is then propagated to tby successively updating two adjacent layers. The horizontal axis can thus be
effectively seen as a time-axis. In the main text we show how suitably chosen gates Gk can give rise to a generic Lindbladian
evolution of the initial state ρt = etL[ρ0]. Note that the Gk may act nontrivially on the current layer such that, for instance, the
state of layer 0 after their application is in general different from ρ0. However, for sake of illustration, we neglect such subtleties.
(b) The gate Gk can be written as a product of simpler gates as depicted. Our analysis goes beyond the case where Gk acts on only
four control sites in layer t and applies to general local Hamiltonians and dissipative processes. (c) Our (1+1)D QCA can
equivalently be regarded as a (dissipative) QNN. The initial configuration corresponds to an input state ρin, the final
configuration to an output state ρout and the time-axis represents the direction of computation. Fixing the form of the local gate
Gk can be interpreted as restricting the allowed computational units (visualized by the blue lines connecting a node with a
number of nodes in the previous layer).

More recently, much effort has been invested in introducing quantum effects into pattern recognition
tasks [45–49]. Exploiting coherence and entanglement it is believed that such approaches may recognize
‘atypical’ patterns and could pave the way towards a quantum advantage in machine learning [6]. Of
particular relevance for the investigation in this paper are so-called dissipative quantum neural networks
(QNNs) [50, 51]. Having highly modular structures, these are instances of quantum deep learning
architectures and—analogously to classical deep neural networks with layers of neurons [41, 42, 52]—are
composed of multiple layers of qudits. A perceptron within this architecture is realized as a unitary operator
which acts on the qudits of two adjacent layers.

Being both quantum lattice models with successive unitary layer-to-layer dynamics already suggests that
(1+1)D QCA and dissipative QNNs are similar concepts and recently their equivalence was established [35].
Moreover, it was also shown that, by appropriately choosing the unitary gates, the open quantum dynamics
of nonequilibrium critical models [53] may be approximated [35]. Regardless of the unitary nature of QCA,
a dissipative evolution may indeed emerge at the level of the reduced states of single layers. Indeed, since they
naturally implement a many-body version of so-called collision models [54–58], (1+1)D QCA and QNNs
are closely related to Markovian open quantum dynamics.

In this work we provide a systematic study of how (1+1)D QCA dynamical rules can give rise to
emerging Lindbladian dynamics. More precisely, we show, in the limit of large number of layers, how to
decompose the layer-to-layer unitaries into suitable local gates in such a way that a desired Lindblad
dynamics can be approximated [59–61]. We find such a decomposition for arbitrary local Hamiltonians and
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jump operators, allowing for a full parametric control over local coherent and dissipative contributions. As
outlined above, our results are relevant to the controlled investigation of quantum many-body systems, but
may also offer a route towards quantum-enhanced versions of machine learning tasks. We illustrate our
results by implementing two different versions of open quantum Ising models [62, 63] and an open quantum
reaction-diffusion model [64] on the (1+1)D QCA platform. At large scales, these models are known to
feature emergent collective behavior, a necessary requirement for, e.g. ergodicity-breaking phenomena which
enable to establish a pattern retrieval dynamics analogous to the one of Hopfield neural networks.

2. (1+1)D quantum cellular automaton and local update rules

We define our QCA on a two-dimensional lattice with N vertical and L horizontal sites [30–35] (see figure 1).
With each lattice site we associate a two-level quantum system with Hilbert space generated by the basis
states |◦⟩ and |•⟩, referred to as vacant and occupied state, respectively. The Hilbert space of the total system is
constructed as the tensor product of the two-level Hilbert spaces. At time t= 0, the first column is chosen to
be in some initial configuration with the other sites being in the vacant state. We denote the corresponding
initial state of the total system as |Ψ0⟩. A dynamics can then be introduced on the full lattice by successively
applying global unitary update-operators which only act nontrivially on two adjacent columns, starting from
the first column and proceeding towards the right, as shown in figure 1(a). Since each of these consecutive
update steps causes a nontrivial action on one new column to the right, the horizontal axis of the lattice
becomes an effective time axis. Thus, labeling the columns as 0,1, . . . , t, t+ 1, . . . ,L− 1,L, we may denote the
global update-operators as Gt,t+1 and assume that they are the same for all t (we will later study the effect of
relaxing this assumption). The state of this (1+1)D QCA (one spatial dimension and one effective time
dimension) at time t+ 1 is then

|Ψt+1⟩= Gt,t+1 · · ·G0,1|Ψ0⟩.

Equivalently, the dynamics of this model may be expressed through a recurrence relation on the level of the
reduced states at two consecutive times. The latter are obtained by tracing out, in the instantaneous density
matrix, the part of the system not pertaining to the corresponding time-column. Indeed, denoting by
Tr̸=t+1(·) and Tr<t+1(·) the trace over all sites apart from those in column t+ 1 and the trace over the sites in
columns 0,1, . . . , t, respectively, we see that

ρt+1 = Tr̸=t+1(|Ψt+1⟩⟨Ψt+1|)

= Tr<t+1(Gt,t+1

(
|Ψt⟩⟨Ψt| ⊗ |0⟩t+1⟨0|

)
G†
t,t+1)

= Trt(Gt,t+1

(
Tr<t(|Ψt⟩⟨Ψt|)⊗ |0⟩t+1⟨0|

)
G†
t,t+1)

= Trt(Gt,t+1

(
ρt ⊗ |0⟩t+1⟨0|

)
G†
t,t+1). (1)

To keep notation simple we have written again Gt,t+1 for the unitaries emerging from the original global
update operator by suppressing the identities on certain columns. Similarly, we have denoted by |Ψt⟩ the
state of the QCA after t applications of the global update although it is only supported up to column t. In
order to arrive at this recurrence relation, we exploited that the global updates are the same, always acting on
two contiguous time-columns only, and that we initialize all sites apart from those in the first column in a
same (vacant) state. Note that while the update for the total system is unitary, the one on the level of the
reduced states in equation (1) is, in general, not. In the following Sections we want to investigate how the
global update determines the form of the map which transforms a reduced state according to equation (1).
We will show that through a decomposition

Gt,t+1 =

(
m−1∏
k=1

Lk

)(
N∏

k=m

Gk

)(
m−1∏
k=1

Rk

)
, (2)

in terms of local unitary operators Lk,Gk,Rk, the dynamics of the (1+1)D QCA can approximate any local
Markovian open quantum time evolution. While the operators Lk act on one control site in column t and one
target site in column t+ 1, the operators Gk and Rk act onm control sites and one target site (cf figure 1).
Their explicit form is given in section 4.

3. Equivalence of (1+1)DQCA and dissipative QNNs

The platform offered by (1+1)D QCA is generally employed for the controlled simulation of quantum
many-body dynamics [30, 65]. On the other hand, QNNs represent quantum approaches to pattern

3



New J. Phys. 25 (2023) 093020 M Boneberg et al

recognition tasks for data samples [5, 6]. Here we show that our (1+1)D QCA, as defined in the previous
Section, is in fact a special instance of a so-called dissipative QNN [50] (see also [35] and figure 1), allowing
our results to give analytical and numerical insights into both fields.

Given a two-dimensional lattice (see figure 1), each of its sites can be interpreted as a node of a dissipative
QNN [50]. Each node is then associated with a two-level quantum system. Within this architecture, the
elementary computational units are defined as unitary operators. In analogy with classical feed-forward
neural networks, they act nontrivially on a certain number of input qubits and one output qubit of
contiguous layers, respectively. The full QNN then consists of a layer-wise application of the unitaries on the
system state. The latter is provided by choosing the first layer in an arbitrary state and the remaining ones in
a reference (vacant) state. Tracing out all but the last layer, the calculation in equations (1) applies and the
reduced state of the first layer can be interpreted as an input state which is processed through hidden layers
towards a reduced output state of the last layer. Thus, the structural equivalence of these (in general
recurrent) QNNs and (1+1)D QCA becomes apparent (cf figures 1(a) and (c)). Indeed, the time dimension
of our QCA can be identified with the direction of a computation in dissipative QNNs and the initial and
final states correspond to inputs and outputs. Both models propagate the state successively by applying a
sequence of unitary gates on adjacent layers. The choice of the QCA update rule in equation (2) can also be
seen as restricting the class of allowed (local) computational units in the QNN picture.

4. Lindbladian evolution of the initial state

The purpose of this section is to find the explicit forms of the local gates Lk(δt),Gk(δt),Rk(δt) such that the
global gate in equation (2) gives rise to the most general Lindbladian evolution of the reduced layer state with
local Hamiltonians and dissipation processes (cf figure 1). More precisely, we want to show that for small δt
the gate in equation (2) propagates the reduced state at time t according to

ρ(t+ 1)≈ ρ(t)+ δtL[ρ(t)]≈ eδtL[ρ(t)] (3)

with the Lindblad generator [59–61]

L[ρ] =−i

4m−1∑
β=1

N∑
k=1

H[β]
k ,ρ

+
4m−1∑
β=1

N∑
k=1

γ
[β]
k

(
A[β]
k ρ
(
A[β]
k

)†
− 1

2

{(
A[β]
k

)†
A[β]
k ,ρ

})
,

=
4m−1∑
β=1

N∑
k=1

L[β]
k [ρ] (4)

them-local Hamiltonians

H[β]
k = H̃[β]

k−m+1,k−m+2,...,k =
∑

α1,α2,...,αm

d[β],α1,α2,...,αm

k σα1
k−m+1 ⊗σα2

k−m+2 ⊗ ·· ·⊗σαm
k , (5)

and them-local jump operators

A[β]
k = Ã[β]

k−m+1,k−m+2,...,k =
∑

α1,α2,...,αm

c[β],α1,α2,...,αm

k σα1
k−m+1 ⊗σα2

k−m+2 ⊗ ·· ·⊗σαm
k . (6)

Note that, in contrast to the last section, in equation (3) we refer to the time as an argument rather than as an
index. This is because we want to distinguish in the following between the instantaneous reduced state at a
certain time and the layer on which this is supported. The former will be indicated as an argument while for
the latter we use an index notation. In equations (5), (6) the symbol σα=1,2,3 denotes the Pauli matrices and
σ0 the identity. The indices α1, . . . ,αm are summed over 0,1,2,3. We consider first the general case of
periodic boundary conditions with

σα1
k−m+1 ⊗σα2

k−m+2 ⊗ ·· ·⊗σαi
0 ⊗σ

αi+1

1 ⊗ ·· ·⊗σαm
k

= σα1
N+k−m+1 ⊗σα2

N+k−m+2 ⊗ ·· ·⊗σαi
N ⊗σ

αi+1

1 ⊗ ·· ·⊗σαm
k ,

implying that sites at the ends may interact locally. Choosing nonnegative rates γ[β]k , the coefficients

c[β],α1,α2,...,αm

k such that the operators A[β]
k are pairwise orthonormal and the coefficients d[β],α1,α2,...,αm

k such

that the H[β]
k are Hermitian, equation (4) implements the most general Lindbladian dynamics with jump
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operators and local Hamiltonians supported on at mostm sites. Motivated by equations (5) and (6) we
define the operators acting on layer t

H[β]
k,t =

∑
α1,α2,...,αm

d[β],α1,α2,...,αm

k σα1
k−m+1,t ⊗σα2

k−m+2,t ⊗ ·· ·⊗σαm
k,t

A[β]
k,t =

∑
α1,α2,...,αm

c[β],α1,α2,...,αm

k σα1
k−m+1,t ⊗σα2

k−m+2,t ⊗ ·· ·⊗σαm
k,t

and furthermore the Hermitian operator acting on layers t, t+ 1

V[β]
k,(t,t+1) = Ṽ[β]

k−m+1,k−m+2,...,k,(t,t+1) =

√
γ
[β]
k

(
A[β]
k,t ⊗σ+

k,t+1 +
(
A[β]
k,t

)†
⊗σ−

k,t+1

)
with the raising and lowering operators σ± = (σ1 ± iσ2)/2. We also introduce the swap gate

SWAPk =

∑3
α=0σ

α
k,t ⊗σα

k,t+1

2
.

Given these operators, we argue below that the choice (see equation (2))

Lk =SWAPk ,

Gk =SWAPke
−i

√
δtV[β]

k,(t,t+1)e−iδtH[β]
k,t , (7)

Rk =e−i
√
δtV[β]

k,(t,t+1)e−iδtH[β]
k,t ,

evolves the reduced state according to equation (3). The gates Gk,Rk all have the same structure and
furthermore become translation invariant if

γ
[β]
1 = γ

[β]
2 = · · ·= γ

[β]
N ,

d[β],α1,α2,...,αm

1 = d[β],α1,α2,...,αm

2 = · · ·= d[β],α1,α2,...,αm

N ,

c[β],α1,α2,...,αm

1 = c[β],α1,α2,...,αm

2 = · · ·= c[β],α1,α2,...,αm

N .

First, we reorder the gate Gt,t+1 such that all swap operators are collected to the left. This can be done since
each swap gate in the Gk is multiplied from the left only by operators with different support and therefore

commutes with them. Then, expanding the operators e−i
√
δtV[β]

k,(t,t+1) to second order in
√
δt, the operators

e−iδtH[β]
k,t to first order in δt and, in their products, keeping only terms up to second order in

√
δt, the global

gate reads

Gt,t+1 =
N∏

k=1

SWAPk

[
1− i

√
δt

N∑
k=1

V[β]
k,(t,t+1) −

δt

2

N∑
k=1

(
V[β]
k,(t,t+1)

)2 − iδt
N∑

k=1

H[β]
k,t

− δt
∑

k,k′∈{m,...,N}
k<k′

V[β]
k,(t,t+1)V

[β]
k′,(t,t+1) − δt

∑
k,k′∈{1,...,m−1}

k<k′

V[β]
k,(t,t+1)V

[β]
k′,(t,t+1)

− δt
N∑

k=m

m−1∑
k′=1

V[β]
k,(t,t+1)V

[β]
k′,(t,t+1) +O(δt3/2)

]
.

Inserting in equation (1) an identity operator, in the form 1=
∏

k SWAP2k, between the Gt,t+1 and the state,
the propagation prescription can then be written as

ρt+1(t+ 1) = Trt

(
G(2)
t+1,t|0⟩t⟨0| ⊗ ρt+1(t)

(
G(2)
t+1,t

)†
)
+O(δt3/2),

with G(2)
t+1,t the second order contribution to Gt,t+1 where layers t and t+ 1 are swapped. Denoting by

V[β]
k,(t+1,t) and H[β]

k,t+1 the operators V
[β]
k,(t,t+1) and H[β]

k,t with swapped layers, respectively, and again keeping

only contributions up to second order in
√
δt, we compute

5
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ρt+1(t+ 1) =ρt+1(t)− iδt

[
N∑

k=1

H[β]
k,t+1,ρt+1(t)

]

− i
√
δtTrt

([
N∑

k=1

V[β]
k,(t+1,t), |0⟩t⟨0| ⊗ ρt+1(t)

])

− δt

2
Trt

({
N∑

k=1

(
V[β]
k,(t+1,t)

)2
, |0⟩t⟨0| ⊗ ρt+1(t)

})

+ δtTrt

(
N∑

k=1

V[β]
k,(t+1,t)|0⟩t⟨0| ⊗ ρt+1(t)

N∑
k=1

V[β]
k,(t+1,t)

)

− δtTrt

 ∑
k,k′∈{m,...,N}

k<k′

V[β]
k,(t+1,t)V

[β]
k′,(t+1,t)|0⟩t⟨0| ⊗ ρt+1(t)



− δtTrt

 ∑
k,k′∈{1,...,m−1}

k<k′

V[β]
k,(t+1,t)V

[β]
k′,(t+1,t)|0⟩t⟨0| ⊗ ρt+1(t)


− δtTrt

(
N∑

k=m

m−1∑
k′=1

V[β]
k,(t+1,t)V

[β]
k′,(t+1,t)|0⟩t⟨0| ⊗ ρt+1(t)

)

− δtTrt

|0⟩t⟨0| ⊗ ρt+1(t)
∑

k,k′∈{m,...,N}
k<k′

V[β]
k′,(t+1,t)V

[β]
k,(t+1,t)



− δtTrt

|0⟩t⟨0| ⊗ ρt+1(t)
∑

k,k′∈{1,...,m−1}
k<k′

V[β]
k′,(t+1,t)V

[β]
k,(t+1,t)


− δtTrt

(
|0⟩t⟨0| ⊗ ρt+1(t)

N∑
k=m

m−1∑
k′=1

V[β]
k′,(t+1,t)V

[β]
k,(t+1,t)

)
+O(δt3/2).

While we immediately recognize the coherent contribution to the Lindblad master equation, it remains to be
shown that the last terms have the form of a dissipator. Since Tr(σ±

k |0⟩⟨0|) = 0 ∀k we have

−i
√
δtTrt

([
N∑

k=1

V[β]
k,(t+1,t), |0⟩t⟨0| ⊗ ρt+1(t)

])
= 0.

Similarly, since Tr(σ±
k σ

±
k ′ |0⟩⟨0|) = Tr(σ+

k σ
−
k ′ |0⟩⟨0|) = 0 and Tr(σ−

k σ
+
k ′ |0⟩⟨0|) = δk,k

′ ∀k,k ′, the other terms
evaluate to

− δt

2
Trt

({
N∑

k=1

(
V[β]
k,(t+1,t)

)2
, |0⟩t⟨0| ⊗ ρt+1(t)

})
=−δt

2

N∑
k=1

γ
[β]
k

{(
A[β]
k,t+1

)†
A[β]
k,t+1,ρt+1(t)

}
,

δtTrt

(
N∑

k=1

V[β]
k,(t+1,t)|0⟩t⟨0| ⊗ ρt+1(t)

N∑
k=1

V[β]
k,(t+1,t)

)
= δt

N∑
k=1

γ
[β]
k A[β]

k,t+1ρt+1(t)
(
A[β]
k,t+1

)†
,

− δtTrt

 ∑
k,k′∈{m,...,N}

k<k′

V[β]
k,(t+1,t)V

[β]
k′,(t+1,t)|0⟩t⟨0| ⊗ ρt+1(t)

= 0 ,

− δtTrt

 ∑
k,k′∈{1,...,m−1}

k<k′

V[β]
k,(t+1,t)V

[β]
k′,(t+1,t)|0⟩t⟨0| ⊗ ρt+1(t)

= 0 ,

6
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− δtTrt

(
N∑

k=m

m−1∑
k′=1

V[β]
k,(t+1,t)V

[β]
k′,(t+1,t)|0⟩t⟨0| ⊗ ρt+1(t)

)
= 0 ,

− δtTrt

|0⟩t⟨0| ⊗ ρt+1(t)
∑

k,k′∈{m,...,N}
k<k′

V[β]
k′,(t+1,t)V

[β]
k,(t+1,t)

= 0 ,

− δtTrt

|0⟩t⟨0| ⊗ ρt+1(t)
∑

k,k′∈{1,...,m−1}
k<k′

V[β]
k′,(t+1,t)V

[β]
k,(t+1,t)

= 0 ,

− δtTrt

(
|0⟩t⟨0| ⊗ ρt+1(t)

N∑
k=m

m−1∑
k′=1

V[β]
k′,(t+1,t)V

[β]
k,(t+1,t)

)
= 0 .

As a consequence, we see that

ρt+1(t+ 1) =ρt+1(t)− iδt

[
N∑

k=1

H[β]
k,t+1,ρt+1(t)

]

+ δt
N∑

k=1

γ
[β]
k

(
A[β]
k,t+1ρt+1(t)

(
A[β]
k,t+1

)†
− 1

2

{(
A[β]
k,t+1

)†
A[β]
k,t+1,ρt+1(t)

})
+O(δt3/2)

=ρt+1(t)+ δtL[β][ρt+1(t)]+O(δt3/2)

with L[β][ρ] =
∑N

k=1L
[β]
k [ρ]. Thus, up to second order in

√
δt the instantaneous reduced state at time t+ 1,

defined on layer t+ 1, is given through the instantaneous reduced state at time t, defined on layer t+ 1, by
means of an open quantum dynamics generated by L[β]. Hence, Gt,t+1 can be seen as first swapping ρt(t) to
layer t+ 1 and then evolving it. Keeping in mind that the reduced state actually propagates successively from
left to right, with each time-step implementing a change according to a Lindbladian, the updated state can be
expressed as in equation (3). It follows that the small parameter δt can be interpreted as a time-increment
between layers t, t+ 1 (which are in units of δt) and the state ρ(t) obeys the Markovian quantum master
equation

ρ(t+ 1)− ρ(t)

δt
≈ L[β][ρ(t)].

The current description allows us to consider N jump operators and local Hamiltonians. However, in the
most generalm-local Lindbladian (cf equation (4)) we have N · (4m − 1) of them occurring simultaneously
(although there will be redundancies). In order to account for all of these L[β], we have to introduce more
vacant states and release the constraint that the gate Gt,t+1 has to be the same for all t. As already suggested by

our labeling, we denote by G(β)
t,t+1 the 4

m − 1 layer-to-layer unitaries yielding the different contributions to the
Lindblad generator. The dynamics is then modified by requiring that these gates are repeatedly applied in
ascending order from left to right. As a result, the recurrence relation for the evolution of the reduced state is
now given by (f = 4m − 1)

ρt+f(t+ f)

= Trt+f−1

(
G( f)
t+f−1,t+f

(
· · ·Trt

(
G(1)
t,t+1ρt(t)⊗ |0⟩t+1⟨0|G(1)

t,t+1

†
)
· · · ⊗ |0⟩t+f⟨0|

)
G( f)
t+f−1,t+f

†
)

≈ ρt+f(t)+

f∑
β=1

L[β][ρt+f(t)]δt (8)

with L[ρ] =
∑4m−1

β=1 L[β][ρ] the most general Lindbladian form-local dissipation processes and Hamiltonian
which is a sum ofm-local Hamiltonians. In the last line of equation (8) we used again that we may neglect all
contributions of higher order in

√
δt than two. Although the reduced state of a layer is still determined by the

reduced state of the previous layer according to equation (1), we are now interested in it only after 4m − 1

7
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iterations as incorporating (4m − 1)N jump operators and Hamiltonians requires 4m − 1 consecutive

time-steps. Therefore, through γ[β]k ,d[β],α1,...,αm

k and c[β],α1,...,αm

k we have complete parametric control over
all local Lindbladian evolutions.

We explained how the gates G[β]
t,t+1 (see equations (2) and (7)) give rise to a Lindbladian dynamics in

terms of periodic boundary conditions. For open boundary conditions the Hamiltonians H[β]
k and jump

operators A[β]
k in the superoperator L in equation (4) cannot be supported across the boundary and all

d[β],α1,...,αm

k , c[β],α1,...,αm

k can be set to zero in the gates G[β]
t,t+1 if k<m and it reduces to

Gt,t+1 =

(m−1∏
k=1

SWAPk

)( N∏
k=m

SWAPke
−i

√
δtV[β]

k,(t,t+1)e−iδtH[β]
k,t

)
.

Following a similar derivation, we can show how this then results in the most generalm-local Lindbladian
evolution with open boundary conditions.

5. Numerical simulation results

Having established that the gate in equation (2) can propagate the initial state of the (1+1)D QCA according
to a Lindbladian as given in equation (4), we now want to demonstrate that, indeed, in the limit δt→ 0 the
dynamical behavior of Markovian open quantum ensembles of N two-level systems can be accurately
simulated (classically) by a (1+1)D QCA. To this end, we consider three concrete models whose
time-evolutions are governed by Lindblad master equations (with periodic boundary conditions). They all
have two-site local Hamiltonians and at most two-site jump operators, such that for each of these we can

specify the parameters d[β],α1,α2,...,αm

k ,γ
[β]
k , c[β],α1,α2,...,αm

k and choose a certain total evolution time tf and
number of layers L. The latter corresponds to fixing δt= tf/L. Then we numerically simulate the respective
(1+1)D QCA dynamics of the order parameter by resorting to equation (1) with the gate

Gt,t+1 = SWAP1

(
N∏

k=2

SWAPke
−i

√
δtVt,t+1

k e−iδtHk,t

)
e−i

√
δtVt,t+1

1 e−iδtH1,t

where

Hk,t = H̃k−1,k,t, V t,t+1
k = Ṽ t,t+1

k−1,k ,

and compare the results with those obtained by numerically integrating the master equation. Note that from
the QNN perspective (see section 3) this can be interpreted as processing an input state via fixed elementary
units. The output state can then be understood as approximately the input state evolved through a quantum
dynamical semigroup.

The first model we study is an open quantum version of the transverse-field Ising model [62, 66, 67] (see
figures 2(a) and (b)) with Hamiltonian given by

HIsing =
Ω

2

N∑
k=1

σx
k +

V

4

N∑
k=1

σz
kσ

z
k+1, (9)

rates γ[β]k = δβ,1κ and jump operators A[β]
k = δβ,1σ−

k . Thus, in the (1+1)D QCA which simulates the open
dynamics the parameters in the gate Gt,t+1 are given as (see also [35])

dα1,α2

k =
Ω

2
δα1,0δα2,1 +

V

4
δα1,3δα2,3,

γk = κ,

cα1,α2

k =
1

2
δα1,0δα2,1 − i

2
δα1,0δα2,2.

In the thermodynamic limit this model exhibits a transition/crossover from a phase where the stationary
z-magnetization, i.e. the stationary expectation value of the operator

mz =

∑N
k=1σ

z
k

2N
,

8
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Figure 2. Simulation of (1+1)D QCA dynamics and solution of master equation: transverse-field Ising models with local decay.
(a) Stationary average magnetization in z-direction as function ofΩ for the Ising model with Hamiltonian in equation (9). The
curves for the numerical simulation of the QCA dynamics approach the one corresponding to the numerical solution of the
master equation as δt gets smaller. We consider the values δt≈ 0.3,0.15,0.043,0.008. The total evolution time is tf = 30 and we
start from an all-occupied initial state. (b) For a specific field-strengthΩ= 10 we further compare the time-evolution of the
master equation solution with the simulations of the QCA dynamics for δt≈ 0.4,0.3,0.12,0.008. (c) For the Ising model with
Hamiltonian (10) we plot the stationary magnetization in x-direction (inset) and its stationary variance as a function ofΩ for the
solution of the master equation and the simulation of the QCA dynamics with δt= 0.015 (δt= 0.08). (d) Finally, forΩ= 4,
starting from a flat initial state (see main text) we illustrate the convergence of these quantities for the QCA simulation
(δt≈ 0.6,0.3,0.2,0.008 and δt≈ 0.6,0.3,0.04 in inset), as a function of time, to the one obtained from numerically integrating
the master equation. In all plots we fixed N= 4,V= 10 and all parameters are given in units of the dissipation rate κ and time is
given in units of 1/κ.

is ⟨mz⟩ss =−0.5 (ferromagnetic) to a phase where it is ⟨mz⟩ss = 0 (paramagnetic), upon increasing the field
strength Ω. Within a mean-field analysis, it is also known to possess an emergent symmetry [68]. For finite N
this model possesses a unique stationary state [69] and in figure 2(a) it is shown for N= 4 how the stationary
z-magnetization changes from the ferromagnetic value to the paramagnetic one as a function of the field
strength. In the figure, we show results for interaction strength V= 10, evolution time tf = 30 (which is well

in the stationary regime) and with initial state the one with all-occupied sites ρ0 =
⊗N

k=1 |•⟩⟨•|. Plotting this
quantity for decreasing parameter κδt≈ 0.3,0.15,0.043,0.008 we see that the stationary z-magnetization of
the (1+1)D QCA dynamics converges—as a function of Ω—to the one obtained by solving the master
equation. Moreover, focusing on a specific instance Ω= 10κ, we show in figure 2(b) the time-evolution of
the order parameter. Here we numerically simulated the (1+1)D QCA dynamics for
κδt≈ 0.4,0.3,0.12,0.008 and as can be seen, the time-behavior of the z-magnetization is well-captured by it
for small enough values of κδt.

For finite N, the different phases and the ergodicity breaking of the Ising model manifest in metastability,
i.e. a partial relaxation into a long-lived paramagnetic or ferromagnetic state before a decay to the true
stationary state, which depends on the initial state [62, 70, 71]. It is important to note that metastability
emerges in the proximity of the crossover regime and, moreover, gets more pronounced as N gets larger. In

9
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the QNN picture, such a metastable behavior can be interpreted as partial retrieval of patterns (similar to
Hopfield neural networks). From a practical perspective, indeed, provided that metastability persists for
sufficiently long times, this mechanism can give rise to genuine pattern retrieval over experimentally relevant
time scales.

Secondly, we consider the modified Hamiltonian, emerging from the Hamiltonian in equation (9) by a
change of basis, i.e. a rotation by π/2 about the y-axis,

HZ2 =
Ω

2

N∑
k=1

σz
k −

V

4

N∑
k=1

σx
kσ

x
k+1. (10)

Now the coefficients in the local Hamiltonians are given by

dα1,α2

k =
Ω

2
δα1,0δα2,3 − V

4
δα1,1δα2,1.

The jump operators remain the same such that the Lindbladian possesses a strong symmetry with respect to
the operator

∏N
k=1σ

z
k [72, 73]. In the thermodynamic limit, this Z2-like symmetry can be spontaneously

broken and besides a paramagnetic stationary solution two ferromagnetic ones may exist. Interestingly, the
phase transition can be first or second-order, depending on the interaction strength [63]. For finite systems
the (unique) stationary solution is the paramagnetic one as becomes evident from the inset in figure 2(c)
where we depict the stationary x-magnetization, i.e. the stationary expectation value of the average operator

mx =

∑N
k=1σ

x
k

2N
,

as a function of the field strength for N= 4. However, as can also be seen from figure 2(c), the stationary
expectation value of the operatormx2 has a pronounced peak, signaling a regime of field strengths where
there is a high variance in the stationary paramagnetic state. As illustrated in figure 2(c) for κδt≈ 0.015 (and
κδt≈ 0.08 in the inset), for small κδt the (1+1)D QCA simulation displays the same stationary behavior as
the solution of the master equation upon varying Ω. Choosing the state

ρ0 =
N⊗

k=1

|ψ⟩⟨ψ| with |ψ⟩= |•⟩+ |◦⟩√
2

as initial state and tf = 15, in figure 2(d) we show how the time-evolution of the order parameter and the
variance approach the master equation solution when simulating the QCA dynamics for
κδt≈ 0.6,0.3,0.2,0.008.

While the Ising model with Hamiltonian as in equation (9) shows metastable behavior, a transient
ergodicity breaking with one long-lived paramagnetic and two ferromagnetic states is not known for the one
in equation (10) for finite N. This is, however, expected [62] and may be useful in order to study how
recognition of many patterns could work in QNNs.

Furthermore, as a model undergoing dissipation with two-site jump operators, we look at a quantum
generalization of a paradigmatic reaction-diffusion process [64]. Namely, we study the coherent hopping
Hamiltonian

HRD =Ω
N∑

k=1

(
σ+
k σ

−
k+1 +σ−

k σ
+
k+1

)
with coupling strength Ω and (dissipative) pair-annihilation at rates γ[β]k = δβ,1κ with jump operators

A[β]
k = δβ,1σ−

k σ
−
k+1. This model features a trivial stationary state but the approach towards it is characterized

by cooperative behavior [74]. Simulating its (1+1)D QCA dynamics with the parameters

dα1,α2

k =
Ω

2
(δα1,1δα2,1 + δα1,2δα2,2)

γk = κ

cα1,α2

k =
1

4
(δα1,1δα2,1 − iδα1,1δα2,2 − iδα1,2δα2,1 − δα1,2δα2,2)

we observe that the time-evolution of the expectation value of

Λ =

∑N
k=1 nk
N

10
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Figure 3. Simulation of (1+1)D QCA dynamics and solution of master equation: quantum reaction-diffusion model. (a) Starting
from an all-occupied initial state, for N= 4,N= 5 we compare the time-behavior of the average particle density for the
numerical solution of the master equation with the one obtained from simulating the QCA dynamics (δt= 0.01). (b) Simulation
of the QCA dynamics for N= 4,5,6,7 and δt= 0.0015. We have fixed Ω= 1. All parameters are given in units of the dissipation
rate κ and time in units of 1/κ.

with nk = |•⟩k⟨•|, which represents the average number of occupied states, approaches the one of the
solution of the master equation. In figure 3(a), setting Ω= κ and starting from an all-occupied initial state,
for N= 4 and N= 5 we compare the latter with the QCA simulation results for κδt= 0.01. Already for large
values of κδt we see a good agreement. In addition, simulating the QCA dynamics for N= 4,5,6,7 with
κδt= 0.0015, the density of occupied states shows the characteristic splitting of the stationary states into
zero and finite density ones for even and odd number of sites, respectively [64] (see figure 3(b)).

For our (small-scale) simulations presented in this section we used Python as a coding language, together
with the quantum toolbox library QuTiP [75]. With its central quantum object class the latter provided the
means to represent our operators and quantum states and we employed the integrated Lindblad master
equation solver.

6. Discussion

In this paper we have shown how a general many-body Lindbladian dynamics emerges in completely unitary
(1+1)D QCA and QNNs in the limit of a large number of layers. We further underpinned our analysis by
numerically simulating the (1+1)D QCA dynamics of two variants of open quantum Ising models with local
decay and an open quantum reaction-diffusion process with coherent particle hopping and dissipative
pair-annihilation. This opens several paths for future research directions. One would expect emergent
collective behavior in (1+1)D QCA or QNNs when the parameters are chosen close to a critical point of a
many-body system. In the large-size and large-dimension limit both Ising models feature a phase transition
and ergodicity breaking with the dynamics splitting into different basins of attraction; for finite size and
dimension this may manifest in metastability. However, from the practical perspective this may be sufficient.
Generally, the manifold of metastable states can feature decoherence-free subspaces and noiseless
subsystems, where the dynamics is completely unitary [76–86]. These have in the past been concatenated
with quantum error correcting codes to achieve fault-tolerant quantum computing [87, 88].

The focus of this work was on showing the connection between (1+1)D QCA, QNNs and open system
dynamics. In order to investigate larger systems, we will have to rely on advanced numerical methods,
e.g. based on tensor networks [33–35], to overcome the limitations imposed by the exponentially growing
dimension of the Hilbert space with system size. In a second step these results could be exploited to
investigate more closely how learning of a dissipative quantum many-body time-evolution could work in
QNNs. Having many different basins of attraction shrinks the volume of parameters for suitable open
quantum dynamics [89, 90]. Thus, a learning routine may reliably find the relation underlying the data. In
[50] a (quantum) learning algorithm for general unitaries was presented and the trainability of these
architectures was demonstrated. It might further be interesting to study the impact of critical points in the
many-body dynamics on the learning behavior. A key point here will be to circumvent so-called Barren
plateau phenomena [91–93].
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