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Abstract: Background: Gestational exposure to environmental chemicals (ECs) is associated
with adverse, sex-specific offspring health effects of global concern. As the maternal
steroid, cytokine and oxidative stress milieus can have critical effects on pregnancy
outcomes and the programming of diseases in offspring, it is important to study the
impact of real-life EC exposure, i.e., chronic low levels of mixtures of ECs on these
milieus. Sheep exposed to biosolids, derived from human waste, is an impactful model
representing the ECs humans are exposed to in real-life. Offspring of sheep grazed on
biosolids-treated pasture are characterized by reproductive and metabolic disruptions.
Objective: To determine if biosolids exposure disrupts the maternal steroid, cytokine
and oxidative stress milieus, in a fetal sex-specific manner.
Methods: Ewes were maintained before mating and through gestation on pastures
fertilized with biosolids (BTP), or inorganic fertilizer (Control). From maternal plasma
collected mid-gestation, 19 steroids, 14 cytokines, 6 oxidative stress markers were
quantified. Unpaired t-test and ANOVA were used to test for differences between
control and BTP groups (n=15/group) and between groups based on fetal sex,
respectively. Correlation between the different markers was assessed by Spearman
correlation.
Results: Concentrations of the mineralocorticoids - deoxycorticosterone,
corticosterone, the glucocorticoids - deoxycortisol, cortisol, cortisone, the sex steroids -
androstenedione, dehydroepiandrosterone, 16-OH-progesterone and reactive oxygen
metabolites were higher in the BTP ewes compared to Controls, while the
proinflammatory cytokines IL-1β and IL-17A and anti-inflammatory IL-36RA were
decreased in the BTP group. BTP ewes with a female fetus had lower levels of IP-10.
Discussion: These findings suggest that pre-conceptional and gestational exposure to
ECs in biosolids increases steroids, reactive oxygen metabolites and disrupts
cytokines in maternal circulation, likely contributors to the aberrant phenotypic
outcomes seen in offspring of BTP sheep - a translationally relevant precocial model.
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Highlights: 

 

 Gestational exposure to biosolids disrupts maternal circulatory milieus in sheep.  

 Biosolids exposed sheep is an impactful model of real-life EC exposures in humans. 

 Biosolids disrupts mid-gestational steroid, cytokine and oxidative-stress status. 

 Biosolids perturbs dialogue amid maternal steroids, cytokines and oxidative stress. 

 Biosolids-induced maternal disruptions may contribute to adverse offspring outcomes. 
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Abstract: 1 

Background: Gestational exposure to environmental chemicals (ECs) is associated with adverse, sex-2 

specific offspring health effects of global concern. As the maternal steroid, cytokine and oxidative stress 3 

milieus can have critical effects on pregnancy outcomes and the programming of diseases in offspring, it 4 

is important to study the impact of real-life EC exposure, i.e., chronic low levels of mixtures of ECs on 5 

these milieus. Sheep exposed to biosolids, derived from human waste, is an impactful model 6 

representing the ECs humans are exposed to in real-life. Offspring of sheep grazed on biosolids-treated 7 

pasture are characterized by reproductive and metabolic disruptions. 8 

Objective: To determine if biosolids exposure disrupts the maternal steroid, cytokine and oxidative 9 

stress milieus, in a fetal sex-specific manner. 10 

Methods: Ewes were maintained before mating and through gestation on pastures fertilized with 11 

biosolids (BTP), or inorganic fertilizer (Control). From maternal plasma collected mid-gestation, 19 12 

steroids, 14 cytokines, 6 oxidative stress markers were quantified. Unpaired t-test and ANOVA were 13 

used to test for differences between control and BTP groups (n=15/group) and between groups based on 14 

fetal sex, respectively. Correlation between the different markers was assessed by Spearman correlation. 15 

Results: Concentrations of the mineralocorticoids - deoxycorticosterone, corticosterone, the 16 

glucocorticoids - deoxycortisol, cortisol, cortisone, the sex steroids - androstenedione, 17 

dehydroepiandrosterone, 16-OH-progesterone and reactive oxygen metabolites were higher in the BTP 18 

ewes compared to Controls, while the proinflammatory cytokines IL-1 and IL-17A and anti-19 

inflammatory IL-36RA were decreased in the BTP group. BTP ewes with a female fetus had lower 20 

levels of IP-10. 21 

Discussion: These findings suggest that pre-conceptional and gestational exposure to ECs in biosolids 22 

increases steroids, reactive oxygen metabolites and disrupts cytokines in maternal circulation, likely 23 
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contributors to the aberrant phenotypic outcomes seen in offspring of BTP sheep - a translationally 24 

relevant precocial model.  25 

Keywords: 26 

Prenatal exposure, biosolids, maternal physiology, steroids, cytokines, oxidative stress 27 

 28 

1. Introduction:  29 

Non-communicable diseases are collectively responsible for 74% of deaths worldwide 1 and pose 30 

a huge economic burden 2, especially in low and middle-income countries 3. Humans are chronically 31 

exposed to a wide variety of environmental chemicals (ECs) in our everyday life and gestational 32 

exposure to ECs like bisphenol A, triclosan, phthalates, paraben and persistent chemicals can adversely 33 

affect  pregnancy outcomes 4 and offspring health 5-7. Gestational exposure to ECs plays an important 34 

role in the developmental origin of diseases 8 including type 2 diabetes 9, cardiovascular disease 10,11, 35 

and reproductive disorders 12,13 due to effects on the endocrine 14, reproductive 13,15, immune 16, 36 

metabolic 17-19, and nervous 20,21 systems.  37 

While ECs can have direct effects on offspring development a number of studies report effects of 38 

EC exposure on the maternal physiology 22,23 and their potential effects on markers of offspring health 39 

24,25. These studies mainly addressed the impact of individual chemicals or mixtures of a few limited 40 

chemical classes, but this does not reflect real-life EC exposure which entails chronic exposure to low 41 

levels of mixtures of several classes of ECs. Exposure to a mixture of chemicals can have additive, 42 

synergistic or antagonistic effects 26,27, with different biological consequences than single chemical 43 

exposure 28. It’s not possible to formulate a chemical mixture that truly represents human EC exposure 44 

as each individual’s exposure pattern and dosage will differ. However, there is a need to study the 45 

effects of exposure paradigms that more closely reflect the human exposome. Biosolids, produced from 46 
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domestic waste-water treatment processing (sewage sludge) are used widely in agriculture as an 47 

alternative to inorganic fertilizers 29. Due to their anthropogenic nature, biosolids represent the array and 48 

concentrations of chemicals that humans are exposed to in real-life, including those with endocrine 49 

disrupting potential such as perfluoroalkyl substances (PFAS) and bisphenol A 30-32. Previous studies 50 

using sheep exposed to BTP during gestation have demonstrated accumulation of endocrine disrupting 51 

chemicals in both adult and fetal tissues 33. Thus, sheep grazed on biosolids treated pastures (BTP) 52 

provide a novel experimental and a proof-of-concept model to investigate the adverse effect of exposure 53 

to real-life EC mixtures, on the maternal hormonal and metabolic milieu that influence the 54 

developmental environment of the fetus.  55 

Exposure to various ECs can impact the maternal metabolic 34,35, steroidal 36, inflammatory 56 

cytokine 37 and oxidative stress 38,39 milieus, all key players in the maintenance of maternal homeostasis 57 

and fetal development. Steroids are programming agents 40-42, which play an important role in directing 58 

fetal growth 43,44. It has been demonstrated that various ECs can  perturb the steroid milieu 45 or function 59 

as steroid mimics 46,47. A delicate balance amongst messengers of the maternal immune system, the pro- 60 

and anti-inflammatory cytokines 48, is required for the maintenance of a healthy pregnancy 49,50. In 61 

humans, exposure to persistent ECs 51 and chemical mixtures 52 is associated with perturbations in the 62 

maternal cytokine milieu. Several ECs like PBDEs, PFAS, BPA have been shown to produce a maternal 63 

inflammatory response 51,53, which can compromise pregnancy outcomes 54 as well as the long-term 64 

health of offspring 55-58. Oxidative stress is another important maternal contributor to healthy 65 

pregnancies 50,59 and offspring outcomes 60, as increased oxidative stress perturbs nutrient transport and 66 

oxygen supply to the developing fetus, leading not only to adverse pregnancy but also offspring 67 

pathologies 61. It is also a key cellular response to EC exposure 62, as human studies have revealed an 68 
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association between EC exposure and increased maternal oxidative stress 38,63 with animal studies 69 

providing causal links 64.  70 

Fetal sex influences the maternal-placental-fetal interaction, is associated with maternal hormone 71 

systems 65 and maternal outcomes 66,67 and is also a critical factor in influencing maternal response to 72 

EC exposures 23,36. The impact of fetal sex on the maternal environment can be exerted at the level of 73 

steroids 68,69, inflammatory mediators 70-72 and oxidative stress markers 38,73, which are all developmental 74 

risk factors associated with EC exposures. 75 

Considerable interrelationships exist between steroidogenic, inflammatory, and oxidative stress 76 

pathways with each having the potential to influence the other. Pregnancy is associated with an anti-77 

inflammatory phenotype with the increase in levels of estrogen, progesterone and glucocorticoids 78 

mediating the immunological changes in pregnancy 74. Several studies also provide evidence relative to 79 

the impact of the steroid hormones on the inflammatory markers 75-78. A close relationship also exists 80 

between inflammatory and oxidative stress cascades during pregnancy and an association between 81 

inflammatory and oxidative stress markers has been evidenced in relation to various EC exposure in 82 

cohort studies. 38,53. Although several studies have established that maternal exposure to ECs are 83 

associated with increased maternal steroids, inflammatory cytokines and oxidative stress markers 36,38,52, 84 

their role in modulating the inter-relationship between these milieus warrants investigation due to the 85 

importance of the steroidal, inflammatory, and oxidative stress milieus in determining pregnancy and 86 

fetal outcomes. 87 

Overall, while considerable evidence exists regarding the impact of individual ECs, or a class of 88 

ECs, in perturbing the maternal steroidal, inflammatory and oxidative stress milieu, a gap remains as to 89 

how this translates to the real-life exposure to mixtures of ECs. This is important as these key maternal 90 

mediators of fetal growth and differentiation underpin the developmental origins of disease. The current 91 
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study addresses this void by testing the hypothesis that exposure to biosolids, a real-life EC mixture 92 

resource relevant to human exposure, perturbs the maternal steroid, oxidative and inflammatory milieus, 93 

and their inter-relationship at multiple levels; and that these are altered depending on the sex of the fetus. 94 

In so doing, this study builds on the findings reported previously34 that EC exposure in this model leads 95 

to profound alterations in maternal metabolism, including perturbations to lipid, amino acid and one 96 

carbon metabolism consistent with the aforementioned adverse phenotypic outcomes in offspring.      97 

 98 

2. Methods: 99 

2.1. Ethics statement: The animals were maintained at the University of Glasgow Cochno Farm and 100 

Research Centre under normal husbandry conditions and the procedures were conducted in accordance 101 

with the UK Home Office Animals (Scientific Procedures) Act 1986 regulations under license (PPL 102 

PF10145DF). 103 

 104 

2.2. Animals: EasyCare ewes (Ovis aries) were maintained as described in detail earlier 34 on pastures 105 

fertilized with conventional rates of biosolids (BTP) (4 tonnes/ha, twice per annum) or inorganic 106 

fertilizer (Control), with both pastures supplied with 225 kg N/ha per annum. Duration of exposure 107 

began 4 weeks prior to mating and lasted through the duration of pregnancy. Ewes were randomly 108 

allocated to either the Control or BTP. Semen from four rams maintained on Control pastures was used 109 

for laparoscopic artificial insemination (AB Europe, Edinburgh UK) of both Control and BTP ewes. 110 

Plasma from gestational day 90 (term: 147-days) pregnant ewes (Control, n = 15; BTP, n =15) were 111 

shipped on dry ice to the University of Michigan where it was stored at -80 °C until analysis. Ewes 112 

pregnant with mixed sex fetuses were excluded from the fetal sex-specific analyses. The animals and 113 
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plasma samples used in the current study are the same as that used in the previously published 114 

untargeted metabolomics study 34.  115 

 116 

2.3. Steroid measurements: Circulating steroids were quantified in plasma samples with the aid of 117 

Agilent 6495 triple quadrupole mass spectrometer and Agilent 1260 and 1290 dual front-end 118 

HPLC/UPLC via liquid chromatography-tandem mass spectrometry processes 36,79,80. Briefly, plasma 119 

(0.1 mL) was combined with internal standards, diluted with water, and loaded onto a supported liquid 120 

extraction cartridge (Isolute, Biotage, Charlotte, NC). Steroids were eluted twice with 0.7 mL methyl-121 

tert-butyl ether, dried under vacuum (Savant, Thermo Fisher), and reconstituted in 0.1 mL 40:60 122 

methanol: water. The steroids measured included 24 Δ4 steroids: cortisol, cortisone, corticosterone, 11-123 

deoxycortisol, 11-deoxycorticosterone, 18-OH-cortisol, 11-OH-androstenedione, androstenedione, 11-124 

OH-progesterone, 16-OH-progesterone, 17-OH-progesterone, progesterone, 18-OH-corticosterone, 18-125 

oxocortisol, 21-deoxycortisol, aldosterone, testosterone, estradiol, estrone, estriol, 11-OH-testosterone, 126 

11-ketoandrostenedione, 11-ketoprogesterone, 11-ketotestosterone and 7 Δ5- or 5α-reduced steroids: 17-127 

OH-pregnenolone, 17-OH-allopregnanolone, dehydroepiandrosterone (DHEA), androsterone, 128 

pregnenolone, allopregnanolone and androstenediol. The lower limit of quantitation (LLOQ) for each 129 

analyte was estimated from the signal-to-noise ratio of pooled samples using Mass Hunter ‘peak to 130 

peak’ method. Review of extracted ion chromatograms confirmed that all samples with values reported 131 

above the LLOQ gave reliably quantifiable peaks at the correct retention time. The inter and intra-assay 132 

coefficients of variation were <12% for each analyte. The steroid variables were log-transformed, tested 133 

for normality using Kolmogorov-Smirnov test, and values below LLOQ were set at their respective 134 

LLOQ levels as indicated in Table 1.  135 

 136 
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2.4. Measurement of oxidative stress markers: Plasma reactive oxygen metabolites (ROM) and total 137 

antioxidant status (TAS) were measured using manufacturer’s instructions on commercial test kits (Rel 138 

Assay Diagnostics, Turkey) that are based on the colorimetric method developed by Erel 81,82. 139 

Malondialdehyde (MDA) concentrations were determined with thiobarbituric acid using commercial 140 

TBARS assay kit (Cayman Chemicals, Ann Arbor, MI) based on Esterbauer and Cheeseman procedure 141 

83. The oxidized amino acids – chlorotyrosine, nitrotyrosine and dityrosine were quantified by liquid 142 

chromatography (LC)-electrospray ionization tandem mass spectrometry (MS/MS) with multiple 143 

reaction monitoring MS/MS positive ion acquisition mode using an Agilent 6410 triple quadrupole MS 144 

system equipped with an Agilent 1200 LC system (Agilent Technologies, Santa Clara, CA) as described 145 

earlier 84. The concentrations of chlorotyrosine, nitrotyrosine and dityrosine were normalized for total 146 

tyrosine and expressed as the ratio of the oxidized product over the total tyrosine (M/mol of Y). The 147 

intra-assay coefficient of variation for chlorotyrosine, nitrotyrosine and dityrosine were 4.7%, 14.6% 148 

and 5.8% respectively, and the detection limit was 0.0001 µM/mol tyrosine for all of the oxidized amino 149 

acids.   150 

 151 

2.5. Measurement of cytokines: The concentrations of 14 cytokines –interleukin -1 alpha (IL-1), 152 

interleukin -1 beta (IL-1), interleukin -4 (IL-4), interleukin -6 (IL-6), interleukin -10 (IL-10), 153 

interleukin -17A (IL-17A), interleukin -36 receptor antagonist (IL-36RA), macrophage inflammatory 154 

protein-1 alpha (MIP-1), macrophage inflammatory protein-1 beta (MIP-1), interferon -gamma (IFN-155 

), interferon-gamma inducible protein- 10 (IP-10), tumor necrosis factor- alpha (TNF-) and vascular 156 

endothelial growth factor -A (VEGF-A), were quantified in maternal plasma simultaneously using 157 

MILLIPLEX® MAP Ovine Cytokine/Chemokine Panel-1 96-well plate assay (SCYT1-91K, Merck 158 

Millipore, Boston, MA), according to the manufacturer’s instructions. The cytokine concentrations were 159 
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expressed as pg/mL. The intra-assay coefficients of variation were <20% for each cytokine. The 160 

cytokine concentrations below limit of detection (LOD) were replaced with LOD/√2. 161 

 162 

2.6. Correlation Analysis: The Spearman correlations between the concentrations of steroid hormones, 163 

oxidative stress markers and cytokines were analyzed separately for the Control, BTP, Control-Male, 164 

BTP-Male, Control-Female and BTP- Female groups and visualized using the corrplot R package. 165 

 166 

2.7. Statistical analyses: Steroid, oxidative stress marker and cytokine concentrations were log-167 

transformed; outliers were removed based on ROUT method and data was tested for normality using 168 

Kolmogorov-Smirnov test, for each analysis. The analyses were conducted both for the full cohort, and 169 

on stratification of animals based on fetal-sex to assess the fetal sex-specific effects of biosolids 170 

exposure. Statistical significance was assessed by unpaired t-test for difference between Control and 171 

BTP groups. Two-way ANOVA testing fetal sex effects included only ewes carrying same sex twins 172 

(Control - male fetus = 9, female fetus = 5; BTP- male fetus = 5, female fetus = 7). Multiple 173 

comparisons were corrected using Tukey’s post hoc test. P values < 0.05 were considered significant. In 174 

addition, magnitude of difference between Control and BTP groups was estimated using Cohen’s effect 175 

size analysis with Cohen’s d value between 0.5 and 0.8 representing ‘medium’, and Cohen’s d value 176 

>0.8 representing ‘large’ magnitude differences. A large Cohen’s d indicates the mean difference is 177 

large compared to the variability and the impact is significant in real-world scenarios, a medium effect 178 

size indicates a reasonable overall impact and a small effect size represents negligible differences 179 

between the groups 85. Graphs were generated using GraphPad Prism version 9.5.0 (GraphPad Software, 180 

CA, USA).  181 

 182 
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3. Results: 183 

3.1. Effect of biosolids exposure on steroids in maternal plasma: The mean concentrations of twelve Δ4 184 

steroids and seven Δ5- or Δ5α-reduced steroids detected in the plasma of Control and BTP ewes are 185 

listed in Table 1. Compared to Control ewes, BTP ewes had significantly higher circulating 186 

concentrations of the mineralocorticoids (deoxycorticosterone and corticosterone) and the 187 

glucocorticoids (deoxycortisol, cortisol and the cortisol metabolite, cortisone) (Figure 1). BTP ewes also 188 

had higher circulating concentrations of the sex steroids androstenedione, dehydroepiandrosterone and 189 

16-OH-progesterone (Figure 1). The concentrations of 18-OH-cortisol and 17-OH-progesterone were 190 

higher in the BTP compared to Control ewes, the effect sizes (Cohen’s D) being of large and moderate 191 

magnitude respectively while not reaching significance (Figure 1). There was no difference in the 192 

measures of 11-OH-androstenedione, progesterone, testosterone, 17-OH-pregnenolone, 17-OH-193 

allopregnanolone, androsterone, pregnenolone, allopregnanolone and androstenediol between BTP and 194 

Control ewes. The steroids 11-OH-testosterone, 11-ketoandrostenedione, 11-ketoprogesterone, 11-195 

ketotestosterone, 11-OH-progesterone, 18-OH-corticosterone, 18-oxocortisol, 21-deoxycortisol, 196 

aldosterone, estriol, estradiol, estrone were not detected in any of the samples analyzed. A schematic 197 

representation of the steroidogenesis pathway, highlighting the steroid hormones affected by BTP 198 

exposure is illustrated in Supplementary Figure S1.  The steroid differences evidenced in BTP ewes 199 

were not fetal sex-specific, with ewes carrying either sex showing similar concentrations 200 

(Supplementary Table S1).  201 

 202 

3.2. Effect of biosolids exposure on maternal oxidative stress markers: Exposure to biosolids increased 203 

the mean plasma reactive oxygen metabolite concentration in BTP ewes compared to the Controls. In 204 

contrast, total antioxidant status, malondialdehyde, chlorotyrosine, nitrotyrosine and dityrosine 205 
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concentrations in plasma did not differ significantly in BTP ewes compared to Controls (Table 2). There 206 

was no fetal sex-specific difference in the maternal plasma concentrations of any of the oxidative stress 207 

markers (Supplementary Table S2). 208 

 209 

3.3. Effect of biosolids exposure on maternal cytokines: The mean concentrations of the 14 cytokines in 210 

the Control and BTP groups are listed in Table 3. BTP ewes had lower concentrations of the 211 

proinflammatory cytokines IL-1 and IL-17A and the anti-inflammatory IL-36RA compared to the 212 

Controls (Figure 2). The concentrations of IL-8 and MIP-1 were lower in BTP ewes, with the effects 213 

sizes being of large and moderate magnitude difference, respectively; however, these did not reach 214 

significance. Biosolids exposure had no impact on the concentrations of the inflammatory markers IL-215 

1, IL-4, IL-6, IL-10, MIP-1, IFN-, IP-10, TNF- and VEGF-A. Ewes with female fetus had lower 216 

concentrations of IP-10 than those carrying a male fetus in the BTP group (Supplementary Table S3). 217 

There was no fetal sex-specific difference in the concentrations of any of the other cytokines 218 

(Supplementary Table S3). VEGF-A showed significant interaction between biosolids exposure and 219 

fetal sex, although its concentrations were not significantly different between the Control and BTP 220 

groups or between ewes carrying a male or female fetus.  221 

 222 

3.4. Effect of biosolids exposure on the correlation between maternal steroids, oxidative stress markers 223 

and cytokines: The effect of biosolids exposure on the relationships between steroids, oxidative stress 224 

markers and cytokines is represented in Figure 3. Several significant correlations were identified in the 225 

Control ewes which were either lost or changed direction in the BTP ewes. Among the oxidative stress 226 

markers, TAS and chlorotyrosine was negatively correlated with the corticosteroids in Control ewes but 227 

these correlations were lost in the BTP ewes. TAS also showed a negative correlation with the cytokine 228 
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IL-6, while ROM was positively correlated with IL-4, IL-6 in Control ewes, but these correlations were 229 

disrupted by BTP exposure. Chlorotyrosine showed strong positive correlation with several cytokines 230 

exclusively in the BTP ewes. In the BTP group, ROM correlated with the pro-inflammatory cytokines 231 

IL-8 and MIP-1. Among the Control animals, IL-36RA, VEGFA and IL-4 showed negative 232 

correlations with the steroid hormones. In contrast, IFN-, IL-1, IL-4, IL-6, IL-10, IL-8, IL-36RA, 233 

TNF- and VEGFA showed positive correlations with the steroid hormones in BTP ewes. The strong 234 

positive correlations of the sex steroids with the glucocorticoids and mineralocorticoids were also lost in 235 

the BTP ewes. 236 

A difference in the pattern of correlation of cytokine with the steroids was evident based on the 237 

fetal sex and is represented in Figure 4. Animals with male fetus in the Control group showed a strong 238 

negative correlation between the steroid hormones and anti-inflammatory cytokine, IL-36RA; but this 239 

correlation was altered in the BTP exposed group. BTP exposure was associated with increased 240 

correlation between steroid hormones and several cytokines in animals with female fetus, that was 241 

absent among Control animals. The correlation between oxidative stress markers and steroid hormones 242 

was observed exclusively in BTP ewes carrying both male or female fetuses and was not sex specific.  243 

 244 

4. Discussion: 245 

This study indicates that combined preconceptional and gestational exposure to real-life low dose 246 

mixtures of ECs arising from grazing BTP causes changes in the maternal physiology, that might 247 

directly impact the intra-uterine environment, a key mediator of pregnancy outcomes, normal fetal 248 

development, and offspring health. This mid-gestational disruption in the maternal milieu is manifested 249 

at the level of steroidal, inflammatory and oxidative stress systems and their interrelationships. Fetal 250 

sex-specific impact on these maternal mediators was restricted to cytokine IP-10 but not the other 251 
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cytokines, steroids or oxidative stress markers. Previous studies have provided evidence that grazing on 252 

BTP leads to perturbations in the maternal metabolome 34 and disruptions in offspring metabolic and 253 

reproductive health manifested as differences in bone mineral density, and differences in the 254 

development of the thyroid, reproductive neuroendocrine axis, testis and ovary 86-94. The implication of 255 

our present findings relative to the impact of biosolids exposure on the maternal milieu to the phenotypic 256 

alterations reported previously in offspring of BTP-sheep is discussed below.  257 

 258 

4.1. Preconceptional and gestational biosolids exposure disrupts maternal steroid milieu:  Biosolids 259 

exposure was associated with an increase in androgens (DHEA and androstenedione) and corticosteroids 260 

(deoxycorticosterone, corticosterone, 11-deoxycortisol, cortisol and cortisone) in the maternal plasma. 261 

Both androgens 95 and corticosteroids 96 are known developmental programming agents linked to 262 

offspring metabolic and reproductive outcomes 97-99. Maternal androgen excess, seen in the present 263 

study, may be a contributor to disruptions in the maternal metabolic environment that we recently 264 

reported in the same group of BTP animals 34. Support for this premise comes from another sheep model 265 

of gestational androgen excess, which also found disruptions in the maternal free fatty acids and acyl 266 

carnitine profile 100. Considerable evidence exists to support the involvement of excess gestational 267 

androgens in reprogramming of the offspring reproductive neuroendocrine system 101-103, an aspect also 268 

disrupted in the BTP model 87-89. Similarly, the gestational increase in androgen evidenced in the current 269 

study may have also contributed to perturbations in the testicular phenotype observed previously in BTP 270 

exposed animals in separate cohorts/breeds 90,91,104 and in the testes of the offspring of ewes from the 271 

same cohort as in the present study 91. This effect is also supported by our studies of prenatal androgen 272 

excess in sheep which demonstrated alterations to hypothalamic-pituitary-testicular axis dynamics 105-273 

107.  Given that our earlier studies in sheep found gestational androgen excess perturbs expression of 274 
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genes and proteins involved in fetal ovarian development 108-110  and follicular development 111, the 275 

increase in maternal androgen excess evidenced in the present study may have contributed to the ovarian 276 

disruptions seen in the offspring of BTP sheep 86,94,112. The findings that maternal androgen excess 277 

impacts offspring ovarian function extends to other animal models of androgen excess as well 113,114. In 278 

the present study, the androgens most influenced by EC exposure were DHEA and androstenedione; 279 

prenatal DHEA treatment has been shown to result in abnormal ovarian differentiation 115 in female rats. 280 

While high maternal concentrations of androstenedione is associated with masculinization in female 281 

guinea pigs 116, its effect on offspring phenotype is unknown. Although there is limited information on 282 

the specific programming effects of androstenedione and DHEA, both are precursors of testosterone and 283 

major source of androgen in peripheral tissues in women 117-119 and their increased levels in circulation 284 

is a manifestation of androgen excess120. The parallels drawn comparing findings from this study with 285 

other studies of androgen excess need to be considered taking into account differences in potencies.   286 

Glucocorticoids, the corticosteroids produced by the adrenal cortex in response to stress, promote 287 

gluconeogenesis in liver and are critical for metabolic homeostasis and act as mediators of 288 

developmental programming 121,122. The maternal increase in glucocorticoids evidenced in the present 289 

study may have also contributed to the altered testicular development and spermatogenic abnormalities 290 

seen in the offspring of BTP-sheep 90-92. This possibility is supported by studies in sheep 123 and rats 291 

which indicate that gestational exposure to dexamethasone, a synthetic glucocorticoid that crosses the 292 

placenta to the fetus,  perturbs  testes development and spermatogenesis in offspring 124,125. Similarly, 293 

the observed elevation of maternal glucocorticoids may have promoted the fetal ovarian perturbations 294 

previously reported in the offspring of BTP sheep 86,112 as gestational exposure to synthetic 295 

glucocorticoids (prednisone in mice and dexamethasone in rats) results in disrupted fetal ovarian 296 

morphology and function 126,127. 297 
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While data in the current study indicates effects of EC exposure on the steroidal milieu of the 298 

exposed mother, the importance of such gestational increases in androgens and glucocorticoids in 299 

altering development of the neuroendocrine-gonadal axis in offspring of BTP ewes remains to be 300 

determined. Evidence from human and animal studies also indicate that interactions between 301 

glucocorticoids and androgens may occur 128-130. Pathological conditions of androgen excess are 302 

associated with an increase in circulating cortisol levels 131 while cortisol excess is associated with an 303 

increase in circulating androgen 132. Lack of fetal-sex specific differences in maternal concentrations of 304 

any of the steroids reported in the present study is consistent with previous studies 133,134. However, they 305 

contrast with a study which reported that women carrying a female fetus have increased maternal 306 

cortisol concentrations 68. Overall, the steroid hormone changes in maternal circulation, in response to 307 

BTP exposure, seen in the current study may have resulted in elevated androgens and glucocorticoids in 308 

the intra-uterine environment. These alterations in the maternal steroid milieu may, therefore, serve as 309 

programming agents for the phenotypic abnormalities reported previously in offspring of BTP-exposed 310 

sheep.  311 

 312 

4.2. Preconceptional and gestational biosolids exposure disrupts the maternal oxidative stress and 313 

inflammatory status: Biosolids exposure was associated with increased maternal oxidative stress as 314 

evidenced from the increase in concentrations of reactive oxygen species but not the antioxidant status 315 

in maternal circulation. Increased maternal oxidative stress may have contributed to the previously 316 

reported maternal metabolomic perturbations in BTP-sheep 34, as well as the phenotypic alterations in 317 

offspring of BTP sheep such as altered bone density 135, disruptions in the reproductive neuroendocrine 318 

axis 87-89, dysregulated gene and protein expression in liver 93, spermatogenic abnormalities 90, altered 319 

testis development 91,92,104, ovarian development 86,112 and pubertal timing (unpublished data).  This is 320 
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supported by the observations that prenatal exposure to BPA increases maternal oxidative stress in sheep 321 

64 and results in altered fetal ovarian development 136. Likewise, prenatal exposure to PFAS that 322 

increases maternal oxidative stress 63 is also associated with perturbations in the maternal metabolome 323 

137. Phenotypic outcomes such as those reported in BTP offspring are also evidenced in pregnancies 324 

characterized by increased oxidative stress, like gestational diabetes 138-141 and preeclampsia 142. 325 

Specifically, infants of mothers with gestational diabetes exhibit altered bone density 143 and pubertal 326 

timing 144, and altered offspring testes development 145. Similarly, gestational diabetes 146 and 327 

preeclampsia 147 result in perturbations in the maternal metabolome which are similar to the 328 

metabolomic alterations seen in BTP-sheep. Additionally, maternal increase in oxidative stress in 329 

response to prenatal exposure to high-fat-diets is associated with ovarian disruptions in offspring 148. In 330 

general, pathological pregnancies characterized by an increase in maternal oxidative stress are 331 

accompanied by a pro-inflammatory environment 54,149,150. However, in BTP animals, the overall 332 

inflammatory status (i.e., whether it reflects pro-inflammatory or anti-inflammatory state) cannot be 333 

ascertained from the current data. A decrease in maternal concentrations of pro-inflammatory cytokines 334 

IL-1, it’s effector IL-17A, as well as a decrease in the anti-inflammatory cytokine IL-36RA were 335 

evident in BTP animals.   336 

 337 

4.3. Preconceptional and gestational biosolids exposure perturbs the association between steroids, 338 

oxidative stress and inflammatory systems: Evidence points to a tight interrelationship between steroids 339 

and inflammation 151,152, oxidative stress and inflammation 38,149, and steroids and oxidative stress 153,154 340 

in various physiological systems including pregnancy. Studies in humans and animals provide support of 341 

an interrelationship between sex steroids and glucocorticoids, an understudied mechanism in the context 342 

of developmental pathologies 128. BTP exposure perturbed the positive correlation that existed between 343 
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the sex-steroids and glucocorticoids in the Control ewes, implicating a disruption in the interrelationship 344 

between them. Prior studies have shown that effect of exposure to ECs on immune cells is likely 345 

mediated via steroid-hormone dependent pathways 155, which could explain the perturbed correlation 346 

between steroids and cytokines in BTP-ewes. Individual concentrations of lipid peroxidation, nitrative 347 

stress and inflammatory markers did not vary between Control and BTP groups, but the directionality of 348 

their correlation with steroids was impacted by BTP-exposure in a fetal sex-specific manner reflective of 349 

the inter-relationship between the steroid, inflammatory and oxidative stress mediators in the 350 

maintenance of maternal homeostasis. 351 

 352 

4.4. Strengths and limitations: There are several strengths to this study starting with the use of a large 353 

animal and translationally relevant exposure model to validate the effect of exposure to EC mixtures at 354 

environmentally relevant concentrations. This is also the first study to take a comprehensive look at 355 

perturbations in the maternal physiology, at multiple levels - steroid hormones, inflammatory and 356 

oxidative stress markers induced by pre-conceptional and gestational exposure to a real-life mixture of 357 

ECs present in biosolids. Most studies have explored the effects of gestational exposure to ECs on 358 

oxidative stress and inflammation primarily in the placenta and offspring 156-158, with limited studies 359 

exploring this relationship in maternal circulation 38,51,53,159. To our knowledge, studies that have looked 360 

at all these three systems in response to chemical exposures are not available; ours is the first study in 361 

this regard. This is important because:1) all 3 are key contributors to maternal and offspring health, 2) 362 

they are all targets of EC impact and 3) there is potential for dialogue amongst them. Another strength 363 

is, sheep is an outbred, precocial animal model that is more translationally relevant compared to rodents 364 

160,with a developmental trajectory similar to humans 161, thus offering a realistic assessment of risk 365 

from biosolids to human health. 366 
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Key limitations of this study include the lack of information on the exact EC composition of 367 

biosolids and the potential for differences in nutrient content of the grass based on the different fertilizer 368 

used162. These limitations have been addressed in detail earlier 34. While the general composition 31 and 369 

the EC content of biosolids 163 used previously are available, the variability in EC composition amongst 370 

batches of biosolids and between locations would preclude which of the ECs contribute to the adverse 371 

effects seen with the use of biosolids. Lack of differences in the body condition scores of the control and 372 

BTP groups 34 indicates similar overall nutrition status between the treatment groups. As with outcomes 373 

in our earlier study using this model 92, there is inter-animal variability in the different maternal 374 

endpoints measured, probably because the susceptibility of animals to biosolids exposure varies. 375 

Nevertheless, this model exemplifies the real-life scenario as every human is exposed to a different 376 

composition of ECs at varying concentrations and they respond differently to these chemical exposures. 377 

Another limitation of this study is that the identified health impact of biosolids are merely associations 378 

that are suggestive in nature and do not represent causation or conclusive effects. Further studies using 379 

interventions like antioxidants are required to establish a causal relationship between the use of biosolids 380 

and observed perturbations. Although our analyses are consistent with a potential for inter-regulation 381 

amongst steroid, inflammatory and oxidative stress milieus, with changes in one milieu influencing 382 

another, the directionality of these interactions, which drives what, cannot be ascertained. 383 

 384 

5. Conclusion: 385 

Findings from this study indicate for the first time that pre-conceptional and gestational exposure 386 

to a ‘real-life’ EC mixture present in biosolids disrupts the maternal steroid, inflammatory and oxidative 387 

stress milieus, which may have affected the maternal physiology and contributes to programming of the 388 

phenotypic aberrations reported previously in the offspring of BTP sheep. Given the derivation and 389 
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composition of biosolids, these findings alert us to the human health risks of mixed EC exposure. The 390 

findings are likely to be of global significance as some of the changes seen in the maternal milieu are 391 

also shared with several human conditions including gestational diabetes and preeclampsia. While most 392 

available literature focuses on investigating these pathological pregnancies and EC exposure using a 393 

unidirectional approach, our results reiterate the importance of studying the role of steroidal, 394 

inflammatory and oxidative stress milieus in parallel, to delineate the maternal contributions to offspring 395 

phenotype. 396 

 397 
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 866 

Figure Captions: 867 

Figure 1: Effect of BTP exposure on maternal steroid concentrations at mid gestation (Day 90). 868 

Bar graphs represent mean values of steroids deoxycorticosterone, corticosterone, deoxycortisol, 869 

cortisone, cortisol, 16-OH-progesterone, androstenedione, dehydroepiandrosterone, 18-OH-cortisol and 870 

17-OH-progesterone in Control (n=15) and BTP (n=15) ewes. Individual data points are represented 871 
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within the bar graph.  denotes P <0.05 vs Control by unpaired t-test.  ## denotes Cohen’s d >0.8; # 872 

denotes Cohen’s d >0.5.  873 

 874 

Figure 2: Effect of BTP exposure on maternal plasma concentration of reactive oxygen 875 

metabolites and cytokines at mid gestation (Day 90). Bar graphs represent the mean values of reactive 876 

oxygen metabolites and the cytokines, IL-1, IL-36RA, IL-17A, 1L-8, MIP-1 in Control (n=15) and 877 

BTP (n=15) ewes and IP-10 in Control and BTP ewes with male and female fetus. Individual data points 878 

are represented within the bar graph.  denotes P <0.01 vs Control by unpaired t-test.  ## denotes 879 

Cohen’s d >0.8  880 

 881 

Figure 3: Effect of biosolids exposure on the correlation between steroids, oxidative stress markers 882 

and cytokines measured in maternal plasma. Spearman correlation matrix between steroid levels, 883 

oxidative stress markers and cytokines at mid-gestation (Day 90) in Control and BTP groups. Pairwise 884 

correlations are depicted using the color spectrum with blue color indicating positive correlation and red 885 

color indicating negative correlation. Color intensity represents the strength of the correlation. Regions 886 

showing differences between Control and BTP groups are highlighted in the matrix. Only correlations 887 

with significance P < 0.05 and correlation coefficient r >0.5 or r< -0.5 are represented in the matrix. 888 

 889 

Figure 4: Effect of biosolids exposure on the correlation between steroids, oxidative stress markers 890 

and cytokines in maternal plasma, based on fetal sex. Spearman correlation matrix between steroid 891 

levels, oxidative stress markers and cytokines at mid-gestation (Day 90) in (a) Control ewes with male 892 

fetus, (b) BTP ewes with male fetus, (c) Control ewes with female fetus and (d) BTP ewes with female 893 

fetus. The pairwise correlations are depicted using the color spectrum with blue color indicating positive 894 
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correlation and red color indicating negative correlation. Color intensity represents the strength of the 895 

correlation. Regions showing differences between Control and BTP groups are highlighted in the matrix. 896 

Only correlations with significance P < 0.05 and correlation coefficient r >0.5 or r< -0.5 are represented 897 

in the matrix. 898 

 899 

Table Captions: 900 

Table 1: Effect of biosolids exposure on maternal plasma steroid levels at mid-gestation (Day 90).  901 

 902 

Table 2: Effect of biosolids exposure on circulating oxidative stress marker levels at mid-gestation (Day 903 

90). 904 

 905 

Table 3: Effect of biosolids exposure on circulating cytokine levels at mid-gestation (Day 90). 906 

 907 

Supplementary Figure S1: The schematic representation shows steroidogenesis pathways identifying 908 

steroid hormones affected by biosolids exposure. Steroid hormones that were increased by biosolids 909 

exposure are indicated in pink. 910 

 911 

Supplementary Table S1: Descriptive statistics for steroid levels in Control and BTP maternal plasma 912 

comparisons based on fetal sex. 913 

 914 

Supplementary Table S2: Descriptive statistics for oxidative stress markers in Control and BTP plasma 915 

comparisons based on fetal sex. 916 

 917 
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Supplementary Table S3: Descriptive statistics for cytokines in Control and BTP maternal plasma 918 

comparisons based on fetal sex. 919 

 920 

 921 

 922 

 923 



Table 1: Effect of biosolids exposure on maternal plasma steroid levels at mid-gestation (Day 90).  

Steroid  

LLOQ 

(pg/mL) 

Control 

(Mean ± SD) 

BTP  

(Mean ± SD) 

Fold 

change 

 P 

value 

Cohen's 

d 

Δ4 Steroids       

Deoxycortisol  2 145.7 ± 114.70 472.8 ± 419.40 3.24 0.04 1.06 

Deoxycorticosterone 2 65.0 ± 20.26 96.4 ± 35.66 1.48 0.01 0.94 

11-OH-Androstenedione 15 155.8 ± 53.15 167.2 ± 109.30 1.07 0.88 0.13 

16-OH-Progesterone 20 90.2 ± 59.88 235.8 ± 168.10 2.62 0.003 1.15 

17-OH-Progesterone 4 63.5 ± 31.38 88.1 ± 39.88 1.40 0.14 0.70 

18-OH-Cortisol  2 1023.3 ± 585.64 1580.7 ± 717.67 1.60 0.05 0.91 

Androstenedione 2 15.7 ± 4.71 17.9 ± 3.71 1.13 0.04 0.47 

Corticosterone  3  220.4 ± 138.5 516.5 ± 331.60 2.35 0.006 1.17 

Cortisol 7 17384.7 ± 12177.00 36848.7 ± 21841.6 2.18 0.005 1.13 

Cortisone  3 2562.7 ± 1084.42 4080.0 ± 1439.15 1.58 0.002 1.20 

Progesterone 2 6673.3 ± 2234.44 6595.3 ± 1607.05 0.99 0.92 0.05 

Testosterone 1 36.0 ± 13.90 31.9 ±10.25 0.89 0.45 0.34 

Δ5 Steroids       

17-OH-Pregnenolone  15 803.8 ± 756.37 1058.2 ± 892.24 1.38 0.1 0.36 

17-OH-Allopregnanolone  8 9783.2 ± 10816.10  10389.3 ± 10020.60 1.02 0.35 0.02 

Dehydroepiandrosterone 5 91.9 ± 125.71 1678.2 ± 1748.28 18.48 0.03 1.33 

Androsterone  32 193.8 ± 213.24 267.7 ± 362.08 1.38 0.88 0.25 

Pregnenolone  15  7515.0 ± 3788.53 8412.6 ± 4055.61 1.12 0.48 0.23 

Allopregnanolone  4 563.3 ± 208.63 682.5 ± 193.40 1.21 0.25 0.59 

Androstenediol  55  3772.1 ± 3132.15 5160.6 ± 3362.01 1.37 0.13 0.43 

Significant differences are in bold.  Cohen’s d >0.8 (large magnitude difference) is highlighted in grey and 

Cohen’s d >0.5-0.8 (medium magnitude difference) is shown in italics 
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Table 2: Effect of biosolids exposure on circulating oxidative stress marker levels at mid-gestation (Day 90). 

Oxidative Stress Marker 

Control  

(Mean ± SD)  

BTP 

(Mean ± SD)  P value Cohen's d 

Reactive Oxygen Metabolites (mol/L) 3.97 ± 1.360  5.66 ± 1.706 0.006 1.09 

Total Antioxidant status (mmol/L) 1.04 ± 0.133 1.05 ± 0.103 0.81 0.08 

Malondialdehyde (M) 1.51 ± 1.079 1.80 ± 1.063 0.46 0.27 

Chlorotyrosine (M/mol of Y) 91.41 ± 33.86 83.90 ± 15.423 0.72 0.27 

Nitrotyrosine (M/mol of Y) 210.77 ± 99.672 218.83 ± 88.865 0.92 0.09 

Dityrosine (M/mol of Y) 36.96 ± 7.964 33.31 ± 5.762 0.11 0.57 

Significant differences are in bold.  Cohen’s d >0.8 (large magnitude difference) is highlighted in grey and 

Cohen’s d >0.5-0.8 (medium magnitude difference) is shown in italics. 

 

Table 3: Effect of biosolids exposure on circulating cytokine levels at mid-gestation (Day 90). 

Cytokine 

LLOQ 

(pg/mL) 

Control (Mean ± SD 

pg/mL) 

BTP (Mean ± SD 

pg/mL) 

Fold 

change  P value 

Cohen's 

d 

IL-1α 0.1 8.87 ± 7.487 7.66 ± 7.172 1.16 0.53 0.16 

IL-1β 6.8 18.57 ± 15.105 7.25 ± 5.582 2.60 0.02 1.03 

IL-4 4.9 9.21 ± 7.188 6.22 ± 4.780 1.48 0.14 0.49 

IL-6 1.9 29.43 ± 12.180 27.23 ± 28.00 1.07 0.42 0.09 

IL-8 3.5 9601 ± 10688 2818± 880.40 3.41 0.86 6.90 

IL-10 2.2 123.30 ± 60.530 134.30 ± 99.100 0.92 0.99 0.13 

IL-17A 2.8 2.95 ± 2.043 1.70 ± 1.518 1.76 0.01 0.74 

IL-36RA 1.0 89.27 ± 29.980 57.84 ± 29.560 1.53 0.02 1.03 

IFN-γ 1 1.55 ± 0.956 1.26 ± 0.593 1.23 0.41 0.38 

IP-10 1.6 945.80 ± 324.400 892.30 ± 252.200 1.06 0.78 0.19 

MIP-1α 33.8 580.20 ± 358.600 669.60 ± 541.600 0.87 0.99 0.20 

MIP-1β 3.4 2.99 ± 1.465 2.38 ± 0.083 1.25 0.41 0.57 

TNF-α 12.5 314.90 ± 224.20 265.4 ± 210.80 1.19 0.48 0.23 

VEGF-A 1.26 73.04 ± 33.410 64.88 ± 35.89 1.12 0.27 0.23 

 

Significant differences are in bold.  Cohen’s d >0.8 (large magnitude difference) is highlighted in grey and 

Cohen’s d >0.5-0.8 (medium magnitude difference) is shown in italics. 
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