
Dynamic Asset Allocation with Liabilities∗

Daniel Giamouridis†, Athanasios Sakkas‡, Nikolaos Tessaromatis§

European Financial Management, forthcoming

Abstract

We develop an analytical solution to the dynamic multi–period portfolio choice

problem of an investor with risky liabilities and time varying investment opportuni-

ties. We use the model to compare the asset allocation of investors who take liabilities

into account, assuming time varying returns and a multi–period setting with the asset

allocation of myopic ALM investors. In the absence of regulatory constraints on asset

allocation weights, there are significant gains to investors who have access to a dynamic

asset allocation model with liabilities. The gains are smaller under the typical funding
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1 Introduction

It is known since the work of Samuelson (1969) and Merton (1969; 1971; 1973) that long–

term investors might judge risks very differently from short–term investors and hence hold

different portfolios. Although Merton (1971; 1973) developed an analytical framework for

understanding the portfolio demands of long–term investors, empirical implementation of

his work lagged far behind due to the difficulty of solving Merton’s intertemporal model

(Campbell and Viceira, 2002). The importance of liabilities in strategic asset allocation

has also been long recognized by both practitioners and academics with analytical discrete–

time solutions available only under static, one–period horizons. In this paper we develop

an analytical solution to the dynamic multi–period portfolio choice problem of an investor

under time–varying investment opportunities. We then use the model to compare the asset

allocation of investors who ignore the time–varying properties of future asset risks and returns

(myopic investors).

A brief taxonomy of multi–period portfolio choice solutions in an asset–only framework

is provided in Jurek and Viceira (2011, JV hereafter). JV identify three types of approaches

to optimal portfolio selection. First, optimal portfolios can be obtained as exact analyti-

cal solutions for special cases of the multi–period portfolio choice problem in a continuous

time setting (Kim and Omberg, 1996; Sorensen, 1999; Wachter, 2002; Brennan and Xia,

2002; Chacko and Viceira, 2005; Liu, 2007). Second, optimal portfolios can be determined

with numerical methods (Brennan et al., 1997; Brandt, 1999; Barberis, 2000; Lynch, 2001;

Dammon et al., 2001; Detemple et al., 2003; Brandt et al., 2005; Koijen et al., 2010). Third,

optimal portfolios can be computed in closed-form through approximate analytical methods

(Campbell and Viceira, 1999; 2001; 2002, Campbell et al., 2003). JV also discuss the short-

comings of these approaches and propose an analytical recursive approach which results in

a closed–form solution for the dynamic multi-period portfolio choice problem.

Multi–period portfolio choice is particularly relevant for investors who invest with the

objective to finance a long–term stream of liabilities. Best known examples of such investors

are pension funds, foundations, and endowment funds. It is also relevant to individual

investors who manage their own retirement funds or build portfolios to finance their children’s

education. In this paper we study the portfolio choice problem of this type of investors, a

problem that is generally referred to as Asset Liability Management (ALM hereafter).

Leibowitz (1987) and Sharpe and Tint (1990) are the first papers that incorporate liabili-

ties in a single period context. Since then the literature on portfolio choice in a multi–period

context in the presence of liabilities parallels developments in the asset-only portfolio choice
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literature. In a continuous setting Boulier et al. (1995) formulate a dynamic programming

model of pension fund behavior. Sundaresan and Zapatero (1997) formulate and solve a

continuous time model for the strategic asset allocation of a defined benefit pension fund

taking into account the marginal productivity of the employee under a constant investment

opportunity set. Rudolf and Ziemba (2004) assume time-varying investment opportunities

and develop a four-fund theorem for intertemporal surplus optimization.

A second strand of the literature, closer to asset-liability modeling practice,1 uses stochas-

tic programming techniques (Cariño et al., 1998; Cariño and Ziemba, 1998; Geyer and

Ziemba, 2008) to find optimal asset weights. A third approach is based on simulation (Bins-

bergen and Brandt, 2014). These approaches are however subject to the criticisms expressed

in JV in the context of asset–only portfolio choice. Stochastic programming techniques for

example face the cost of tractability; the traditional numerical methods cannot handle more

than a few state variables, magnifying the effects of estimation risk even further; and the

ALM models carried out under a continuous time context have been mostly studied under

a constant investment opportunity set.

Another strand of the ALM literature, closer in spirit to our paper, uses approximate

analytical solutions and extends the asset–only models introduced by Campbell and Vi-

ceira (1999; 2001; 2002) and Campbell et al. (2003) by incorporating liabilities. Hoevenaars

et al. (2008, HMSS hereafter) is a significant contribution in this literature. HMSS assume

that an investor with risky liabilities chooses the optimal portfolio weights at the begin-

ning of the investment horizon and rebalances to the initial allocation at a rebalancing time

shorter than the investment horizon. Barberis (2000) describes the latter strategy as myopic

rebalancing; it is myopic because the investor ignores the information available at the re-

balancing time. Myopic investors maintain the initial static solution, through rebalancing,

until the end of the horizon. In contrast, dynamic investors follow a dynamic investment

strategy where the portfolio weights take into account changes in the investor’s investment

opportunity set. Using the myopic asset-liability model (M–ALM thereafter), HMSS find

significant differences in the portfolio allocations of investors who ignore liabilities.

Our principal contribution in this paper is that we develop a model which results in a

closed–form solution for the dynamic multi–period portfolio choice problem in the presence of

liabilities (D–ALM thereafter). Our model nests the asset–only model of JV. It is analytically

tractable and hence allows the study and interpretation of factors affecting optimal portfolio

1ALM based on stochastic programming and used in practice include the Russel–Yasuda Kasai model
described in Cariño et al. (1998) and the Towers Perrin–Tillinghast ALM approach presented in Mulvey
et al. (2000).
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choice in an ALM framework. The model we propose can accommodate any number of

assets and state variables. To develop the proposed model we build on JV and HMSS. Our

representative investor is endowed with power utility over the ratio of assets and liabilities,

as opposed to over assets only, at a fixed horizon; she can invest in many risky and a riskless

asset. The investment opportunity set is time–varying and captures the variation in risk

premia, interest rates, and the state variables. The optimal investment policy that we derive

has a simple structure; it is comprised of myopic and intertemporal hedging terms. The novel

feature of our model is that we show analytically how the intertemporal hedging demand –

which appears in the asset–only multi–period portfolio choice literature – is also driven by

the correlation between the innovations of liabilities and the innovations in the changes of

the state variables.

In our empirical investigation we take into account practical considerations. We incor-

porate short–sales or borrowing constraints, as in Brandt et al. (2009). We also consider a

regulatory environment in which pension funds face minimum and maximum funding ratio

constraints. The model we develop allows us to study the structure of optimal portfolios

as well as the utility implications associated with holding these portfolios. In this respect,

we provide new empirical insights that are useful both for ALM researchers but also for

the practice of ALM. Furthermore, with the incorporation of inflation–indexed bonds in the

list of potential investment assets, we are able to study the allocation to inflation–indexed

bonds in the portfolios of long–term ALM investors. Campbell and Viceira (2002) argue

that inflation–indexed bonds are important for long–term asset–only investors since both

bonds and (rolling) short-term bills are subject to real interest rate variations over time.

Inflation-indexed bonds are even more important for ALM investor with inflation sensitive

liabilities.

Our empirical results can be summarized as follows. We find that optimal portfolios

obtained using the D–ALM are different in many respects with optimal portfolios obtained

for myopic ALM investors. Myopic investors hold portfolios which contain more equity

and inflation-indexed bonds than D–ALM investors. The higher allocation to equities and

indexed bonds is at the expense of a lower position in nominal bonds. This conclusion does

not change when we impose short-sell or funding ratio constraints.

The differences in the composition of D–ALM optimal portfolios and M–ALM optimal

portfolios have significant utility implications. In particular, we find that a M–ALM investor

suffers large utility losses relative to the portfolios suggested by the D–ALM. The losses are

increasing in the length of the investment horizon and decreasing in the degree of relative risk
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aversion. The economic benefits of the D–ALM over the M–ALM strategy reflect the benefits

from pursuing a dynamic investment strategy that exploits information about asset time-

varying returns and risks and hedging abilities. The D–ALM provides the optimal strategic

and tactical asset allocation portfolios for investors with multi–period horizons and liabilities.

A moderate risk aversion M–ALM investor, assuming leverage is not allowed, is prepared

to pay up to 1.14% per month to gain access to the D–ALM. The maximum management

fee increases for more conservative investors. In the presence of minimum and maximum

funding ratio constraints, like those faced by defined benefit pension funds in practice, the

utility losses are smaller but remain significant. Imposing tight funding constraints reduces

but does not eliminate the benefits from hedging dynamically the investment opportunity

set and liabilities.

Comparing the composition of optimal portfolios obtained with the proposed model with

optimal portfolios obtained for AM investors (as in JV), we find that the two approaches

generate different asset allocations. While equity allocations are similar, nominal bond al-

locations tend to be lower for ALM investors compared to the allocations of AM investors.

In contrast, ALM portfolios contain substantially more inflation–indexed bonds than AM

portfolios, reflecting the liability hedging properties of inflation–indexed bonds. The dif-

ferences in the composition of the optimal portfolios between the two approaches translate

to substantial losses for a moderate and highly risk averse AM investor in the presence of

liabilities which increase as the investment horizon increases.

The rest of the paper is organized as follows. Section 2 specifies the investment setting

and derives the closed–form expression of asset weights for ALM optimal portfolios. Section 3

introduces the data and presents the results of the estimation of the dynamics of the available

investment opportunities. Section 4 examines the structure of optimal portfolios obtained

through the D–ALM and M–ALM strategies. Section 5 investigates the utility implications

associated with the M–ALM strategy and Section 6 examines the implications for asset

allocation and utility of funding ratio constraints and alternative liability benchmarks and

we also benchmark key empirical results to JV. Finally, Section 7 concludes. The Appendix

provides a detailed derivation of all the analytical results in the paper.

2 The setting

In this Section we outline the details of the dynamics of the investment opportunities that are

available to our investor; an investor that determines her holdings such that she will be able
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to finance a long–term stream of liabilities. We then define her multi–period portfolio choice

problem. Finally we apply an analytical recursive approach which results in a closed-form

solution and hence a closed–form expression for the optimal investment policy.

2.1 The dynamics of the available investment opportunities

We model the dynamics of the available investment opportunities through a VAR(1) spec-

ification as in Campbell and Viceira (2002).2 We augment the investment opportunity set

with the investor’s liabilities. Hence, our economy is one where expected returns, liabilities,

and interest rates are time-varying and are jointly determined through:

zt+1 = Φ0 + Φ1zt + vt+1 (1)

In equation (1), zt+1 denotes a column vector whose elements are the log returns on the

asset classes we consider as potential investments, the liabilities (an appropriate proxy is

considered as we discuss below), and the values of the state variables at time t + 1. Φ0

is a vector of intercepts, Φ1 is a square coefficient matrix, and vt+1 is a vector of zero

mean innovation process. We assume these innovations are homoskedastic and normally

distributed, that is vt+1
i.i.d.∼ N(0,Συ). Chacko and Viceira (2005) argue that the persistence

and volatility of risk do not affect the portfolio rule of long-term investors.

For ease of reference we can re-write the vector zt+1 as:

zt+1 =


rtb,t+1

xA,t+1

xL,t+1

st+1

 (2)

where rtb,t+1 denotes the log real return on the T-bill; xA,t+1 is a vector of log real excess

returns on all other assets (considered as potential investments) with respect to the real

return on T–bills, that is xA,t+1 = rA,t+1 − rtb,t+1 ; xL,t+1 is a vector of log excess returns

on the liabilities with respect to the real return on T–bills, that is xL,t+1 = rL,t+1 − rtb,t+1 ;

2Campbell and Viceira (2002) provide a comprehensive review of the applications of the VAR specification
for modelling the intertemporal behaviour of asset returns and their application to the portfolio choice
problem. Much of the dynamic portfolio choice literature utilizes a VAR(1) as a compromise between the
size of the model and the estimation error. Other modelling approaches combine dynamic asset allocation
with a regime–switching model which is beyond the scope of the paper (see for example Ang and Bekaert
(2002) and Graflund and Nilsson (2003) among others).
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and, finally, st+1 is a vector with the realizations of the state variables that are believed to

be important in determining asset prices. All returns are defined in real terms in excess of

realized inflation πt. We can also write the variance–covariance matrix of the shocks vt+1 as:

Συ =


σ2
tb σ>tbA σ>tbL σ>tbS

σtbA ΣAA σ>AL Σ>AS

σtbL σAL σ2
L σ>LS

σtbS ΣAS σLS ΣSS

 (3)

The elements on the main diagonal are σ2
tb, the variance of the real return on the T-

bill; ΣAA, the variance–covariance matrix of unexpected excess asset returns; σ2
L, the variance

of the unexpected excess liabilities returns; and ΣSS, the variance-covariance matrix of the

shocks to the state variables. The off-diagonal elements are the covariances of the real return

on the T–bill with excess returns on all other assets and liabilities, σtbA and σtbL, respectively;

the covariances of the real return on the T-bill and shocks to the state variables, σtbS; the

covariance of assets and liabilities σAL; and the covariances of excess returns and liabilities

with shocks to the state variables ΣAS and σLS, respectively.

2.2 The investor’s optimization problem

In the multi–period portfolio choice problem the investor targets a specific payoff at a given

investment horizon and takes into account the changes in the anticipations for the distribu-

tion of asset returns or relevant factors. Investors that determine their holdings such that

they will be able to finance a long–term stream of liabilities are concerned with the value of

their assets relative to the value of their liabilities; not the absolute value of their assets. For

example, a pension fund, should ensure that it covers future pension payments with their

assets, without the need for further contribution. Therefore, within an ALM context, the

investor’s utility optimization problem is expressed with respect to her funding ratio Ft at

time t. The funding ratio is defined as the ratio of Assets (A) over Liabilities (L), i.e. the

funding ratio at time t is Ft = At/Lt.
3 The investor is assumed to have Constant Relative

Risk Aversion (CRRA hereafter) preferences on the terminal funding ratio. We assume that

at each decision point the investor’s liability has a constant maturity.4 Hence we specify her

3 Leibowitz et al. (1994), McCarthy and Miles (2013), Binsbergen and Brandt (2014), and HMSS are
studies, among others in the ALM literature, that seek optimal asset allocations through maximization of
the investor’s funding ratio utility.

4For pension funds that means that the fund is closed to new entrants and that the value of contributions
is equal to the present value of the new liabilities created. Like HMSS we assume that the pension fund is in
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utility function at the terminal date t+K as:

u(Ft+K) =

{
1

1−γF
1−γ
t+K for γ 6= 1

log(Ft+K) for γ = 1
(4)

where γ is the relative risk aversion coefficient. We follow JV in that we assume that the

investor chooses the portfolio weights αALM,t+K−τ between times t and t + K − 1 so as to

maximize the expected value of the utility function, that is:

maxEt [u (Ft+K)] (5)

which we can re-write through equation (4) as:

{αALM,t+K−τ}τ=1
τ=K = argmax

1

1− γ
Et [exp {(1− γ)rF,t→t+K}] ,when γ 6= 1 (6)

{αALM,t+K−τ}τ=1
τ=K = argmaxEt [rF,t→t+K ] ,whenγ = 1 (7)

The subscript in the portfolio weight vector αALM,t+K−τ in equations (6) and (7) corresponds

to the time at which the portfolio weights are chosen and the superscript denotes the time

remaining. rF,t→t+K denotes the funding ratio log-return between time t and t + K , that

is the logarithmic return of the asset portfolio rA,t→t+K minus the logarithmic real return

on the liabilities rL,t→t+K . To compute rF,t+1, which is rF,t+1 = rA,t+1 − rL,t+1 we use a

standard log-linear approximation of rA,t+1 following Campbell et al. (2003) and JV among

others. Campbell et al. (2003) and JV use the following log–linear approximation to the

portfolio return rA,t+1, rA,t+1 ≈ α>AM,t

(
xA,+1 + 1

2
σ2
A

)
− 1

2
α>AM,tΣAAαAM,t + rtb,t+1, where

rtb,t+1 denotes the T–bill rate, αAM,t the allocation to risky assets and σ2
A is the vector

consisting of the diagonal elements of the variance covariance matrix of the risky assets. The

log return on the wealth portfolio is a linear combination of the excess returns, volatilities

and covariances on the benchmark asset (i.e. T–bill rate) and the risky assets. Campbell

et al. (2003) argue that the log–linear approximation to rA,t+1 becomes increasingly accurate

as the frequency of portfolio rebalancing increases and it is exact in the continuous limit. We

subtract the return on liabilities (rL) from both sides of the equation. Hence, the log–linear

a stationary state where the distribution of the age cohorts and the pension rights are constant over time.
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approximation to the log funding ratio return rF,t+1 can be expressed as:

rF,t+1 ≈ α>ALM,t

(
xA,t+1 +

1

2
σ2
A

)
− 1

2
α>ALM,tΣAAαALM,t − xL,t+1 (8)

where σ2
A is the vector consisting of the diagonal elements of ΣAA. In equation (8) the

benchmark asset is the investor’s liability – hence the negative sign – whereas in Campbell

et al. (2003) and JV the benchmark asset is the T–bill rate.

2.3 The optimal investment policy

We solve for the optimal dynamic optimization problem based on standard backwards re-

cursion as in JV. The first step of this process involves the derivation of the portfolio rule

(policy function) and the corresponding value function in the last period. In the second

step we define the portfolio rule of the period preceding the last period as a function of the

value and the policy function coefficients from the terminal period. The last step involves

iterating this relationship to derive the solution to the ALM multi–period portfolio choice

with dynamic rebalancing.

More specifically in the first step we define the optimal portfolio policy of an investor

with one period remaining to the terminal date t+K :

α
(1)
ALM,t+K−1 =

1

γ
Σ−1
AA

(
Et+K−1 [rA,t+K − rtb,t+K ] +

1

2
σ2
A − (1− γ)σAL

)
(9)

where

Et+K−1 [rA,t+K − rtb,t+K ] = HA (Φ0 + Φ1zt+K−1) (10)

and HA is a matrix operator that selects the rows corresponding to the vector of asset excess

returns xA from the target matrix.

Equation (9) is the myopic or one–period mean–variance efficient portfolio rule. The op-

timal myopic portfolio has two components. A speculative component, which is the tangency

portfolio, usually referred to as the Performance Seeking Portfolio (PSP):

1

γ
Σ−1
AA

(
Et+K−1 [rA,t+K − rtb,t+K ] +

1

2
σ2
A

)
(11)

which depends on expected returns and the variance–covariance matrix of asset returns, and
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a hedging component, the Liability Hedge Portfolio (LHP):5(
1− 1

γ

)
Σ−1
AAσAL (12)

which depends only on the variance–covariance matrix of asset returns and the covariance

of asset returns with the liabilities.

Under the assumption of time-varying expected returns and homoskedasticity, the PSP

changes with the investment opportunities in contrast to the LHP which remains constant

across the investment opportunities. Log utility investors (γ = 1) hold only the PSP, while

highly risk adverse investors (γ →∞) hold only the LHP.

In the second and third steps we derive the solution to the ALM multi–period portfolio

choice with dynamic rebalancing (see ??):

α
(τ)
ALM,t+K−τ = 1

γ
Σ−1
AA

(
Et+K−τ [rA,t+K−τ+1 − rtb,t+K−τ+1] + 1

2
σ2
A − (1− γ)σAL

)
−
(

1− 1
γ

)
Σ−1
AAΣA

(
B

(τ−1)>

ALM,1 +
(
B

(τ−1)
ALM,2 +B

(τ−1)>

ALM,2

)
Et+K−τ [zt+K−τ+1]

) (13)

where ΣA =
[
σtbA ΣAA σ>AL Σ>AS

]
and B

(τ−1)>

ALM,1 , B
(τ−1)
ALM,2 and B

(τ−1)>

ALM,2 are functions of

the remaining investment period, the coefficient risk aversion γ and the coefficients of the

VAR system. The multi–period optimal portfolio obtained through equation (13) has two

components too. The first component:

1

γ
Σ−1
AA

(
Et+K−τ [rA,t+K−τ+1 − rtb,t+K−τ+1] +

1

2
σ2
A − (1− γ)σAL

)
(14)

is the myopic component given by equation (9). The optimal myopic portfolio in equation

(14) combines the PSP, i.e. equation (11), and the LHP, i.e. equation (12). It is a function of

one–period expected returns and the conditional variance–covariance matrix of one–period

returns of assets and liabilities.

The second component:(
1− 1

γ

)
Σ−1
AAΣA

(
B

(τ−1)>

ALM,1 +
(
B

(τ−1)
ALM,2 +B

(τ−1)>

ALM,2

)
Et+K−τ [zt+K−τ+1]

)
(15)

is the ALM–intertemporal hedging component. The ALM–intertemporal hedging component

5The corresponding portfolio in the AM framework is the Global Minimum Variance as defined in JV.
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is the unique element of our model. It differs from the intertemporal hedging component

which was first introduced by Merton (1969; 1971; 1973) under an AM context. It is the prod-

uct of two factors. The first term Σ−1
AAΣA captures the ability of assets to hedge changes in the

investment opportunities, taking also into account the instantaneous correlation with the lia-

bilities, a correlation that it is not considered in the intertemporal hedging component of Mer-

ton. The second term,
(

1− 1
γ

)
Σ−1
AAΣA

(
B

(τ−1)>

ALM,1 +
(
B

(τ−1)
ALM,2 +B

(τ−1)>

ALM,2

)
Et+K−τ [zt+K−τ+1]

)
,

captures the effect of changes in investment opportunities on the investor’s marginal utility.

It corresponds to the ratio of the cross–partial derivative of the value function with respect

to funding ratio and the vector of state variables, and, the product of funding ratio and the

second derivative of the value function with respect to funding ratio.

For simplicity we can rewrite equation (13) as:

α
(τ)
ALM,t+K−τ = A

(τ)
ALM,0 + A

(τ)
ALM,1zt+K−τ (16)

where A
(τ)
ALM,0 and A

(τ)
ALM,1 can be deduced from equation (13). Equation (16) shows that

the solution to the ALM multi–period portfolio choice with dynamic rebalancing is an affine

function of the vector of state variables zt+K−τ . This suggests that as in JV A
(τ)
ALM,0 and

A
(τ)
ALM,1 (and hence also the optimal investment policy), depend on the time remaining to

the terminal horizon date but are themselves independent of time.

Some special cases of equation (16) deserve further attention. We show in ?? that for a

log utility investor (γ = 1) or a constant investment opportunity set (Φ1 = 0) the dynamic

portfolio choice problem converges to a myopic portfolio choice problem. In addition, an

infinite risk averse investor (γ →∞) invests in the least–risky portfolio which is independent

of the vector of unconditional expected returns; under a constant investment opportunity

set the infinite risk averse investor holds the LHP.

One limitation of analytical approaches is that they cannot accommodate portfolio con-

straints explicitly. In our empirical analysis we adopt Brandt et al. (2009). We impose

short–sales constraints by truncating the negative portfolio weights in equation (16) at zero

and renormalizing the optimal weights in order to sum to one, that is:

α+
ALM,i,t =

max [0,αALM,i,t]∑N
j=1 max [0,αALM,j,t]

. (17)
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3 Data and model calibration

In this Section, we discuss the investment opportunity set we consider and the data we use in

our empirical analysis. We additionally discuss the estimation procedure and the estimates

of the fitted dynamics of the available investment opportunities. Finally, we present the

term structure of risk of the asset classes as well as the term structure of the correlation of

the asset classes with liabilities.

3.1 Assets, liabilities and state variables

The framework we propose is a general one and hence its empirical implications can be

investigated with any number of asset classes and state variables. In the empirical imple-

mentation of the model we present later we assume that the investor has access to equities,

nominal bonds, cash and inflation-linked bonds.

The empirical implementation of the D–ALM portfolio choice problem also requires a

measure of investors’ liabilities. The liability structure however depends on the particular

circumstances of the investor. From an individual investor’s perspective for example the

retirement portfolio’s objective is to maintain the investor’s standard of living after retire-

ment. We can therefore assume that the investor aims for a positive real return and hence

that her “liability” is similar to an inflation-indexed bond. From the perspective of a de-

fined benefit pension fund we can assume that the age cohorts and vested pension rights

per cohort are constant over time and future benefits are fully indexed to inflation. We

also assume that future contributions equal the present value of the liability created. Under

these conditions the liabilities of the pension fund could be proxied by the returns of an

inflation–indexed portfolio with duration equal to the duration of the pension’s liabilities.

The choice of inflation–indexed bonds as a proxy for liabilities allows us to gain empirical

insights with the proposed model in the context of a very general, yet representative, type of

liability. The drawback of this choice is that risks that may affect the dynamics of liabilities,

such as actuarial, longevity and demographic risks, are not taken into account. Future work

should focus exclusively on the integration of such risks with market risks in the strategic

asset allocation problem (see, e.g. Bisetti et al. (2016)).

When index–linked bonds do not exist or there is a short history of indexed bond prices,

index–linked bond prices could be estimated from nominal bond yields. This is the approach

taken in studies based on US data where indexed–bonds (TIPS) first appeared in 1998.

Before the introduction of TIPS, Campbell and Shiller (1997) use short–term real interest
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rates and the expectations theory of the term structure to create a hypothetical series for

index–linked bond returns. Kothari and Shanken (2004), and HMSS use the observed yield

on long term nominal bonds and assumptions about expected inflation and the inflation

premium to calculate real yields for indexed bonds. This approach generates a long history

of data which however it is subject to estimation errors.6 To isolate potential estimation

errors of this kind, we use information about inflation–indexed bonds prices and yields from

the UK. The first indexed–linked bond was introduced in the UK in the budget of 1981 and

the first bond was traded in 1982. Prices and yields are available since then providing the

longest history of real yields compared to other developed markets.

We source data from DataStream. All data are in pounds. Stock returns are represented

by the UK Datastream value-weighted stock index (including distributions). We proxy

for nominal bonds through the DataStream’s UK twenty-year constant maturity bond, for

inflation-indexed bonds through the FTSE British Government Index Linked All Maturities

index and for the cash we use the UK interbank 3–months rate.

As proxies of the state variables that determine the dynamics of stock excess returns,

bond excess returns and interest rates as per equation (1) we use a set of common variables

used in previous research.7 These include the dividend–price ratio (DY) on the UK value–

weighted stock index; the short–term nominal interest rate; the term spread (the difference

between the ten–year treasury constant maturity rate and the three–month T–Bill rate) and

the ex–post real rate of return on a 3 month Treasury bill (the difference between the return

on the three-month UK Treasury bills and the inflation rate). We consider the ex–post real

rate as the real return on an investable asset (cash) as well as a state variable. JV find that

the utility losses of dynamic investors who do not rebalance their portfolios on a monthly

basis increase as the rebalancing frequency decreases. We therefore base our analysis on

monthly data covering the period January 1982 to December 2014.

Table 1 presents the descriptive statistics of monthly nominal returns of the asset classes

and state variables included in the VAR model for the entire period. The returns of the

assets classes are expressed in nominal terms. The mean and the standard deviation are

annualized. Equities achieved the highest annual nominal mean return (11.45%), albeit

6Campbell and Viceira (2009) study the differences between synthetic and actual index-linked returns.
They find that synthetic yields are lower on average and less volatile compared to actual ones. Additionally,
they observe a correlation equal to 0.70 for the period 1982–2008.

7Key papers in this literature are Campbell and Shiller (1988; 1991; 1998; 2005),Fama and Schwert
(1977), Campbell (1987),Glosten et al. (1993),Fama and Bliss (1987), Fama and French (1989), Campbell
et al. (2003), Campbell and Viceira (2005). The evidence on predictability are controversial (Bossaerts and
Hillion, 1999; Welch and Goyal, 2008).
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only slightly higher than the return of nominal bonds (10.23%). During the period, the

realized equity premium vis a vis nominal long-term bonds were significantly lower to the

long-term historical average. Inflation–indexed bonds had a return of 7.54% per annum,

lower than equities and nominal bonds. Equity returns are negatively skewed and have the

highest kurtosis among all asset classes. Volatility is much higher for stocks (15.71%) than

for nominal bonds (9.44%) and real bonds (6.89%); nominal bonds are more volatile than

indexed bonds.

3.2 VAR estimates and term structure of risk and correlation

We present the estimates of the parameters of equation (1) in Table 2.8 Panel A of Table 2

shows the slope coefficient parameter estimates of the VAR system. Panel B of Table 2

reports the standard deviations (in the diagonal) and the correlations (off-diagonal elements)

of the innovations. As in previous studies, we find that excess stock returns are predictable

by the dividend–price ratio and the short term real interest rate. For the excess nominal

bond return its lagged return and the term spread are important, statistically, variables that

predict future bond premia. A high spread and nominal bond return are associated with

higher future nominal bond returns. The short term nominal yield is a strong predictors of

the real interest rate. Finally, an increase in short term nominal interest rate is associated

with lower returns for indexed bonds and by implication liabilities. The R2 for the equations

of the excess market and bond as well as the liabilities returns are fairly low but typical

of estimates reported in the predictability literature. Campbell and Thompson (2008) argue

that while R2 increases at lower frequencies, even low values are associated with economically

meaningful outcomes. Evidence in Rapach and Zhou (2013) for stock returns suggests that

even a small degree of predictability can produce substantial utility gains.

The dynamics of the state variables we document are consistent with the empirical lit-

erature (Brennan et al., 1997; Campbell and Viceira, 2002; Campbell et al., 2003). The

coefficients of the dividend–price ratio, the nominal short interest rate, and the term spread

suggest persistent autoregressive processes. The maximal eigenvalue of the coefficient ma-

trix equals 0.9933, implying that the VAR is stationary with a half-life of about 7 years.

The system is stable, but close to being integrated of order one. We do not make any ad-

justment in the coefficient estimates of the VAR system for possible biases related to near

8Incorporating parameter and model uncertainty is beyond the scope of this paper but results in Hoeve-
naars et al. (2014) suggest that taking this uncertainty into account will increase the allocation to nominal
bonds at the expense of equity allocation as the investment horizon increases.
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non-stationarity of some time series (Brennan et al., 1997; Campbell and Viceira, 2002;

Campbell et al., 2003). Campbell and Yogo (2006) argue that the processes for the state

variables are highly persistent rather than unit-root processes.

The results presented in Panel B of Table 2 suggest that the innovations to the dividend–

price ratio are negatively correlated with unexpected excess returns on equities. The negative

correlation between shocks to the dividend–price ratio and shocks to stock excess returns

combined with the positive relation between the dividend–price ratio and subsequent stock

returns is consistent with mean reversion in stock prices. A decrease in the dividend–price

ratio following an increase in stock prices is associated with high returns today but followed

by higher expected returns in the future. Mean reversion in stock prices is also indicated

by the positive relation between the short term real rate and future stock returns and the

negative correlation between shocks to returns and interest rates. The term spread reinforces

the mean reversion of stock returns. The most important variables for nominal bond excess

returns are the term spread and the short term real rate. The effects of these variables on

the future behavior of bond returns are opposite. The term spread predicts positively future

bond returns while shocks to the term spread and bond returns are negatively correlated.

The combined effect is consistent with mean reversion in bond prices. In contrast, the

positive relation between bond returns and real rates and the positive correlation between

innovations to the real rate and bond returns suggest mean aversion. Which effect dominates

is an empirical issue. The VAR estimates for the real interest rate are consistent with findings

in the literature (see Campbell and Viceira (2005) and HMSS) and are indicative of increased

risk with the horizon (mean aversion). Finally, future real bond returns and hence liabilities

are positively related with short term real rates and negatively related to short term nominal

rates. Shocks to indexed–bond returns are strongly negatively correlated with shocks to the

nominal short yield.

The VAR model provides a convenient framework to calculate the conditional term struc-

ture of volatilities and correlation of asset returns, assuming that the VAR model captures

correctly the dynamics of asset returns.

As shown in the Appendix, Figure B1 presents the term structure of risk of T-bills,

equities, nominal and real bonds/liabilities. We find that equities are less risky in the long

run, whilst nominal bond return volatility exhibits mild mean aversion as in Campbell and

Viceira (2005). T–bills are riskier in the long run. Liability returns, as proxied by real bond

returns, exhibit also a mean averting behavior, implying that liability risk is higher in the

long run. The latter magnifies the importance of considering liabilities in a dynamic asset
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allocation policy.

Figure B2 shows the correlation structure of asset returns with real returns on liabilities.

In the short-term, equities are weakly correlated with liabilities; in the medium and long

term the correlation declines to about zero. Real returns on nominal bonds with constant

maturity are positively correlated with returns on liabilities at all investment horizons; at

short horizons the correlation is about 55% and increases in the long run to 80%.9Finally,

T–bills are a bad liability hedge at all investment horizons, due to their negative correlation

with liabilities.

4 Portfolio allocations in the presence of liabilities

In this Section we provide an investigation of the D–ALM implications for portfolio manage-

ment. We are interested in particular at the differences between the optimal mean-variance

portfolios generated by the dynamic asset liability model (D–ALM) and the optimal port-

folios generated by a single period mean-variance approach that incorporates liabilities (the

M–ALM). For each model, we derive two sets of optimal weights. One is derived through

equation (16), and a second set of optimal weights is derived with short-selling constraints

through equation (17).

To compute the allocations we assume a long–term expected real return on the T-bill

equal to 2% per year, a return on the value-weighted stock index of 7% per year, a return

on the nominal bond index of 4% per year, and a return on the real bond of 3.5% per year.

We believe that these premia represent a reasonable compromise between historical averages

(based on data covering the period January 1982 to December 2014) and historical/forward-

looking estimates reported in Dimson et al.( 2008; 2011). Campbell and Viceira (2002) make

similar assumptions, i.e. riskless real interest rate of 2% per year, equity premium of 4%

per year. We also assume an inflation risk premium of 0.5% based on Kothari and Shanken

(2004). To generate the asset allocation weights we use the long term expected returns and

the VAR model to generate time varying forecasts of returns, combined them with equation

(16) to get one set of asset allocation weights per future time period for the dynamic asset-

liability investor. In particular, we impose long–term views on asset returns and risk premia

by adjusting the constant term of the proposed VAR model. The constant term can be

derived as Φ∗0 = (I−Φ1)µ, where µ is a (n× 1) vector containing the long–term means of

9Kothari and Shanken (2004) find that the correlation between nominal and real bonds is 0.53 and 0.58
when nominal and real returns are used respectively.
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the risk premia and state variables. Hence, the transformed constant Φ∗0 and the estimated

coefficient matrix Φ1 (shown in Table 2) are used to generate the asset allocation weights.

Finally, the state variables are at their long run historical mean.

For both the M–ALM and the D–ALM cases we assume that portfolio decisions are made

monthly. The main difference between M–ALM and D–ALM is that under the dynamic

asset-liability setting the optimal weights today depend on the time–varying expectations

of returns and risks. In contrast, under M–ALM portfolio weights today take into account

the expected return, volatility and correlations to the horizon but assumes that the investor

does not take into account monthly time varying opportunities. Dynamic investors take into

account not only the short–term return and risk characteristics of assets but also their ability

to hedge liabilities and provide a hedge against changes in the opportunity set.

Table 3 reports asset class weights for the D–ALM and M–ALM investor for different

investment horizons (from 1 to 300 months) and different attitudes towards risk (different

risk aversion parameters). Panel A of Table 3 tabulates the allocations for portfolios with

no constraints on portfolio weights. Note that for the one month horizon both dynamic and

myopic investors hold exactly the same portfolios. For reasonable risk aversion parameters,

both myopic and dynamic investors would borrow to invest in the risky assets. The negative

weight of cash reflects the increased volatility and the negative correlation of short term

interest rates with liabilities.

Low and moderate risk averse dynamic investors invest in general less in equities than

myopic investors. In contrast, dynamic investors invest more in nominal bonds for different

risk aversion parameter and horizons. The allocation to inflation–indexed bonds tend to be

higher for dynamic rather than myopic investors as the horizon increases.

For the myopic investor, an increase in the investment horizon is associated with increased

demand for equities and nominal bonds and decreased demand for index linked bonds. For

the myopic investor asset allocation weights depend on expected returns, risks and the corre-

lation between asset and liabilities. The increasing weight of equities as the horizon lengthens

reflects the decrease in equity volatility due to mean reversion of stock prices. The increasing

weight in nominal bonds reflects two opposing forces: the good liability hedging properties

of nominal bonds and the increased volatility of bonds at longer horizons. More conservative

investors tend to put a large part of their portfolio to indexed bonds at the expense of both

equities and nominal bonds, assets that are only partial hedges against liabilities.

Dynamic investors, in addition to their concerns to match liabilities, also take into account

the predictability of asset returns. The main differences in portfolio weights compared to
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the myopic investor is that as the investment horizon increases, the dynamic investor invests

more in equities and nominal bonds financed by more borrowing than the myopic investor.

The additional weight in bonds and equities reflects the ability of nominal bonds and stocks

to hedge changes in the opportunity set. Indexed bond weights are almost stable at all

investment horizons.

To gain further insights on the drivers of the differences in portfolio allocations and the

role of state variables in their variation we turn our eye to Tables 2 and 3. For equities the

most important driver of equity allocations is the dividend yield. An increase in the market

dividend yield is associated with an increase in expected equity returns and an increase in

the intertemporal hedging demand for equities. For nominal bonds, a negative innovation in

the term spread reduces expected returns and increases the hedging demand for bonds

Panel B in Table 3 shows optimal weights for dynamic and myopic investors assuming

borrowing is not allowed. Borrowing to invest may be unrealistic for most investors and in

particular for pension funds. We observe that short–selling constraints have a significant

impact on portfolio allocations. Both dynamic and myopic investors increase the weight of

stocks as the horizon increases. Equities are attractive because volatility falls. For example

dynamic investors with risk aversion equal to 5 increase the equity weights from 28% when

the investment horizon is one month to 48% when the horizon is 300 months. For the

myopic investors equity holdings increase from 28% to 63%. Myopic investors assume a

lower volatility as a result of equity mean reversion than dynamic investors who use the full

term structure of volatility estimates and therefore use on average higher volatility estimates

in the asset allocation construction process.

Myopic investors with moderate risk aversion (γ = 5) allocate 29% in nominal bonds in

the short term and the weight decrease to 17% for long term investors. Similarly, dynamic

investors start with 29% at the monthly horizon and invest 25% at the 300 month horizon.

The decrease in bond holdings as the horizon increases reflects the mean aversion properties

of nominal bond prices discussed in Section 3. Myopic investors invest less than dynamic

investors since they use, on average, a higher volatility estimate (mean aversion) in the asset

allocation process. The asset allocation weight of indexed bonds is slightly over 40% and

decreases to 20% at 25 years investment horizon. More conservative investors (higher risk

aversion parameters) switch from equities and nominal bonds to indexed bonds as expected.

The fall in bond portfolio weights as the horizon increases reflects the mean averting prop-

erties of nominal bonds whilst the increase in equity weights reflects the mean reversion

properties of stocks.
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Overall, the evidence presented in this Section suggests that dynamic optimal portfolios

are different to myopic optimal portfolios primarily in their allocations to nominal bonds (for

all investors and moderate to long investment horizons). Dynamic investors tend to allocate

less in equities and more in indexed bonds. We study the economic implications of these

differences in the next Section.

5 The economic value of dynamic rebalancing

The empirical results presented above suggest that a dynamic ALM investor holds a different

portfolio compared with the portfolio held by a myopic ALM investor. In this Section we

investigate the utility implications associated with these differences.

We measure the economic implications of different allocations through the certainty

equivalent (CE hereafter) of the funding ratio Ft, which is defined as follows:

FCE = u−1
(
E
[
u
(
F̃T

)])
(18)

To compute the CE, we first simulate 10,000 paths of the VAR system for the monthly fre-

quency. We compute the optimal asset allocation policy through equation (16), the realized

terminal funding ratio, and the realized utility of the terminal funding ratio along each path.

Finally, we compute the average realized utility across paths and based on equation (18) we

obtain the CE. The value function with periods remaining is:

max
1
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{
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)}]
(19)

The utility loss of a myopic investor who does not use the D–ALM is calculated as the

percentage difference between the CE of the M–ALM strategy and the CE of the D–ALM

strategy. The asset allocation of the myopic investor will be the same throughout a given

investment horizon while the optimal asset mix of the dynamic investor will be time varying

reflecting changes in expected returns and risks. The management fee quantifies the “profit’

or “loss’ that a dynamic achieves by holding a different portfolio to the constant mix adopted

by the myopic investor.

We report the results of this analysis in Table 4, considering an investor who faces short

selling constraints. Panel A reports the utility losses of the M–ALM strategy over D–ALM.

Panel B reports the largest monthly management fee an investor who now uses the M–ALM

19



would be prepared to pay to gain access to the D–ALM. JV highlight that fees re-scale the

utility losses to facilitate comparisons across investment horizons.

As Panel A shows there are significant utility losses from not using the D–ALM. Utility

losses increase as the horizon lengthens but conservative investors lose more than more risk

tolerant investors. Our analysis suggests that a M-ALM investor with experiences utility

losses that range from -37.76% (5-year investment horizon) to -96.82% (25-year investment

horizon). The differences in the CE we document translate to management fees that range

from 0.79% (5-year investment horizon) to 1.14% (25-year investment horizon) per month

(Panel B). Additionally, the management fee increases significantly as investor risk tolerance

falls. For a twenty five year investment horizon the maximum monthly management fee

ranges from 0.73% (for a risk aversion of 2) to 1.16% (for a risk aversion of 20). The

management fees for M–ALM investors who allow leverage in order to gain access to the D–

ALM strategy range from 1.83% (5-year investment horizon) to 6.49% (25-year investment

horizon) per month.

Our analysis to this point considers inflation–indexed bonds as possible investment assets.

In what we present below we relax this assumption. Investing in inflation-indexed bonds

might not be possible or desirable for a number of reasons. First, inflation indexed bonds

are less liquid than nominal bonds (D’Amico et al., 2014; Gürkaynak et al., 2010; Pflueger

and Viceira, 2011). Second, despite the sharp growth of the linker market,10 a number of

countries do not issue inflation-indexed bonds. Third, many investors might regard inflation

indexed bonds unacceptable investments when the real yield to maturity is close to zero or

even negative.11

We report the results of this analysis in Table 5, considering an investor who faces short

selling constraints. Panel A reports the utility losses of the M–ALM strategy over the D–

ALM strategy. Panel B reports the largest monthly management fee an investor who now

uses the M–ALM would be prepared to pay to gain access to the D–ALM. We observe

significant utility losses from not using the D–ALM strategy. A moderate risk averse M–

ALM investor for example with experiences utility losses that range from -22.74% (5-year

investment horizon) to -89.43% (25-year investment horizon). These losses translate to a

maximal monthly management fees that range from 0.43% (5- year investment horizon) to

0.75% (25-year investment horizon) per month.

10Based on the Barclays Capital World Government Inflation-Linked Bond Index (WGILB) in April 2012,
the global market value of inflation-indexed bonds was $2.0 trillion: US ($866 billion), UK ($549 billion),
France ($235 billion), Italy ($132 billion).

11As of May 2014 the real yield of 10-year TIPS is 0.37% and UK inflation-indexed bond -0.40%.
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The evidence in this Section overall suggests that the economic benefits of pursuing

optimal portfolios with the D–ALM model are substantial. The outperformance over the

M–ALM strategy is due to the implicit pursuance of tactical asset allocation within the

strategic asset allocation framework. The D–ALM model exploits the predictability in the

investment opportunity set while the M–ALM does not. This predictability has been shown

to provide sizeable economic benefits even in instances when it is marginal.

6 Additional Analysis

In this section we study the effects of minimum and maximum funding constraints and alter-

native liability benchmarks that include equities on asset allocation weights and utility for

M–ALM and D–ALM investors. We also study the asset allocation and utility differences of

a liability driven investor (dynamic ALM model) and an investor without liabilities (dynamic

AM model, as in JV).

6.1 The economic value of dynamic rebalancing with funding ratio

constraints

The empirical evidence presented in the previous section shows substantial utility benefits if

an investor with liabilities switches from M–ALM to D–ALM. The benefits are reduced but

remain significant when the investor operates under short–selling constraints. Investing un-

der short-selling constraints represents the typical investment framework in which individual

investors invest. Defined benefit pension funds face, in addition to short-selling constraints,

constraints with respect to the minimum funding ratio. In many countries regulations or

internal pension fund rules dictate that when the funding ratio of the pension fund is close to,

or below, a minimum threshold the sponsor of the pension fund is asked to increase contri-

butions until it reaches the target value. There are also regulations and customary practices

in many countries which “force” pension funds whose assets are much higher than liabilities

to cease contribution until the surplus disappears (contribution holiday). In this Section we

investigate the utility losses associated with the presence of funding ratio constraints.

Pugh (2006) provides a comprehensive review on the regulations of the pension funds in

the OECD countries. Minimum fund requirements whether imposed by legislation or not

aim to protect plan member benefits. For example, for Dutch pension funds the minimum

funding level is set at 105%, while the maximum (or target) funding ratio is on average 130%.
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For UK pension plans there is no minimum funding level imposed by regulation but each

pension fund is required to adopt a statutory funding objective. In the UK pension funds

face a maximum funding level constrain which dictates that pension fund assets should not

exceed 105% of accrued liabilities.

The imposition of minimum and maximum funding level constraints means that outcomes

below the minimum funding level and above the maximum funding level are not possible. In

our analysis we assume that the fund sponsor increases immediately contributions when the

asset liability ratio reaches the minimum fund level.12 Similarly when the asset to liability ra-

tio reaches the maximum funding level we assume that the fund sponsor ceases contributions

until the funding ratio falls below the maximum funding level. In the simulations we pursue

to address these issues we assume (a) that the asset liability ratio should not fall below 1

and (b) that the target minimum funding level is 90% (asset/liability ratio of 90%). In both

cases that contributions cease when the asset to liability ratio reaches 135%. We recognize

that the nature of our model does not allow to internalize the funding ratio constraint in the

optimal solution as in approaches that involve numerical analysis (see, e.g. Berkelaar and

Kouwenberg (2010)).

The effect of minimum–maximum funding ratios on the distribution of funding ratios is

significant. The median funding ratio for the M–ALM strategy increases from 97% in the

five–year horizon to a modest 113% at the end of twenty five years. Increasing the minimum

funding ratio from 90% to 100% and keeping the same maximum funding ratio (135%) leads

as expected to better future funding ratios. The median funding ratio increases from 102% in

the five-year horizon to 108% at the end of twenty five years (see Table B1, Panels B and C,

Appendix). Imposing a min–max funding ratio constraint of 90%-135% reduces considerably

the median funding ratios for the D-ALM investor too. At the end of twenty five years the

median funding ratio is 129%. Similarly if the minimum funding ratio is 100% the median

funding ratio at the twenty five year horizon is slightly higher at 130% (see Table B2, Panels

B and C, Appendix).

In relative terms, the M–ALM strategy suffers from lower minimum funding ratios. For

instance, the minimum funding ratio for the M–ALM strategy is 0.01 at the twenty five year

horizon, while the minimum funding ratio for the D–ALM strategy is 0.91 over the same

horizon. Moreover, in the absence of funding ratio constraints the median/mean funding

ratio of the D–ALM strategy is always higher than the median/mean funding ratio of the

12In practice the pension fund with the sponsor and the advice of the pension fund’s actuary agree a multi–
year plan of increased contributions or a contribution holiday until the deficit or surplus are eliminated.
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M–ALM strategy, across all investment horizons. The latter are consistent with the results

we present earlier, i.e. that the D–ALM strategy exhibits utility benefits over the M–ALM for

a constrained investor in the absence of regulatory constraints. Imposing a min-max funding

ratio constrain of 90% (100%) -135% reduces considerably the difference of the median/mean

funding ratios between the two strategies.

To investigate the economic value of the D–ALM strategy in the presence of funding ratio

constraints we calculate the utility loss from using the M–ALM (instead of the D–ALM)

strategy as well as the associated management fee with results reported in Table 6 and

Table 7 respectively. For example, a M–ALM investor with γ = 5 experiences utility losses

that range between -14.70% (5-year investment horizon) and -17.25% (25-year investment

horizon) for a min-max funding ratio constraint of 90% -135%. The utility losses are lower

when the asset liability ratio is required to stay in the 100% - 135% range. Similarly, from

the results reported in Table 7 we show that the largest monthly management fee an investor

who currently uses the M–ALM would pay to gain access to the D–ALM ranges from 0.25%

(5-year horizon) to to 0.06% (25-year horizon).

Collectively, the evidence in this Section suggests that imposing tight funding constraints

reduces but does not eliminate the benefits from hedging dynamically the investment oppor-

tunity set and liabilities.

6.2 Asset Liability Management vs. Asset Management: Asset

Allocation and Utility Implications

In this Section we examine the structure of the optimal portfolios and the utility implications

of the proposed ALM model compared with the AM model developed by JV. The data inputs

are the same as those described in section 4.

Table 8 reports the asset allocation at any investment horizon ranging from 1 to 300

months (25 years) and risk-aversion levels ranging from 2 to 500 (γ = 2, 5, 10, 20, 500) for

both the dynamic ALM and AM models. Panel A of Table 8 tabulates the allocations

for portfolios with no constraints on portfolio weights. Panel B in Table 8 presents the

optimal weights assuming borrowing is not allowed. The 1–month mean percentage portfolio

allocation corresponds to the one–period (myopic) asset allocation.

We begin our discussion with the case of unconstrained portfolio weights. For low and

moderate levels of risk-aversion equity allocations are similar for both AM and ALM models.

Equity allocations increase as the investment horizon increases and decrease as risk aversion

increases. The allocation to equities when γ = 5 for example ranges from 0.56 (0.56) in 6
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months to 1.61 (1.62) in 300 months for an ALM (AM) investor.

We observe significant differences in the allocations to inflation–indexed bonds. These

differences are almost entirely attributable to the myopic portfolio. The myopic allocation

to real bonds for an investor with for example is 73% and only increases to 89% for the same

investor with a twenty five year investment horizon. On the other hand, the allocation to

real bonds for the AM investor who ignores liabilities is very low (even negative) both across

different levels of risk-aversion and investment horizons. For an ALM investor the allocation

to inflation indexed bonds is increasing in the degree of risk aversion. Brennan and Xia (2002)

also find that optimal real terminal wealth portfolios are tilted towards inflation–indexed

bonds as risk–aversion increases, and are entirely invested in inflation–indexed bonds in the

limit.

AM and ALM investors allocate similar amounts to nominal bonds for low levels of risk

aversion and moderate levels up to five-year investment horizon, but the differences become

material for relatively high risk aversion levels. ALM optimal portfolios comprise lower

allocations to nominal bonds than AM optimal portfolios. The lower allocation to nominal

bonds in the ALM optimal portfolios seems to come “at the expense” of higher allocation

to inflation-indexed bonds relative to AM optimal portfolios. The increasing allocation to

inflation indexed bonds reflects the myopic and intertemporal hedging demand for inflation-

indexed bonds by an ALM investor to hedge real liabilities.

The allocation to T–bills is negative regardless of the length of the investment horizon

and the level of risk aversion in ALM optimal portfolios; T–bills are a bad liability hedge

asset class since their correlation with liabilities is negative at all investment horizons. On

the other hand, AM optimal portfolios with moderate and high levels of risk aversion are

heavily invested in T–bills, especially at short horizons.

Assuming for short–selling constraints, both dynamic ALM and AM investors increase

their allocation to stocks as the investment horizon increases. ALM optimal portfolios com-

prise lower allocations to equities than AM optimal portfolios for moderate and high levels

of risk aversion. For example dynamic ALM (AM) investors with risk aversion equal to 5

increase the equity weights from 28% (45%) when the investment horizon is one month to

48% (56%) when the horizon is 300 months.

AM investors with moderate risk aversion (γ = 5) allocate 45% in nominal bonds in the

short term and the allocation decreases to 39% for long term investors. ALM investors start

with 29% at the monthly horizon and invest 25% at the 300 month horizon. The asset

allocation to real bonds for AM investors is almost negligible at all investment horizons and
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levels of risk aversion. For ALM investors is slightly over 40% and remains constant over the

horizon.

Our analysis so far finds that the composition of the optimal portfolios that we obtain

when we use the proposed model is different from the composition of the optimal portfolios

obtained through the model in JV. Hence, we need to investigate the utility implications

that are associated with these differences. Our analysis utilizes the certainty equivalent of

the funding ratio, as defined in section 5. For the AM strategy (JV), we compute the optimal

allocation policy, the realized terminal funding ratio, and the realized utility of the terminal

funding ratio along each path. We therefore consider that the AM investor has the same

liabilities as the ALM investor.

Table 9 reports the utility losses of the D–AM strategy over D–ALM (Panel A) and the

largest monthly management fee an investor who now uses the D–AM would be prepared to

pay to gain access to the D–ALM (Panel B). We consider an investor who faces short selling

constraints. The utility loses for investor with γ = 5 who allocates her wealth according to

JV, range from -0.25% (1–month investment horizon) to -15.75% (300–months investment

horizon). Accounting for liabilities, under short-sale constraints, makes little difference to

the asset allocation and utility of AM and ALM investors with low to moderate risk aversion

(γ < 5). For pension funds with young membership and few retired members, liabilities do

not play an important role in their asset allocation decision. For more risk averse investors

(γ > 5) liabilities play a very important role in the determination of the optimal asset mix.

At an investment horizon of 300 months for example, the utility losses from disregarding

liabilities range from -15.75% (γ = 5) to -64.95% (γ = 20). The differences in CE overall

translate to management fees that range between 0.06% and 0.35% per month or between

0.72% and 4.20% per annum, respectively.

Collectively, we observe material differences between optimal ALM and optimal AM port-

folios in inflation–indexed bonds and T–Bills (for all investors), and in equities and nominal

bonds (for moderate to highly risk-averse investors). HMSS find also significant differences

in the portfolio allocations of myopic asset-liability investors who ignore liabilities. Further-

more, the economic benefits of pursuing optimal portfolios with our model are significant for

moderate and highly risk averse investors. The economic benefits over the JV strategy arise

from the intertemporal liability hedging portfolio. This portfolio is a unique element of our

model. As we highlight earlier, it takes into account the correlation between the innovations

of liabilities and the innovations in the changes of the state variables.
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6.3 Alternative Liability Benchmark

The asset allocation of investors with liabilities depends critically on the properties of the

investor’s liabilities. In our model liabilities are exogenously determined following the ap-

proach of other papers in the academic literature (Hoevenaars et al., 2008; Amenc et al.,

2009; Binsbergen and Brandt, 2014). In practice a pension fund’s liabilities will be a function

of many parameters defined in the pension fund rules. Partial or full indexation of pensions

in payment and the particular mix of active, deferred and retired members are two of the

most important characteristics of a pension’s liabilities.

Index–linked bonds will be the appropriate benchmark for a pension fund’s fully indexed

Accumulated Benefit Obligations (ABO). It will also be a good proxy for a mature pension

fund’s Projected Benefit Obligations (PBO). For defined benefit plans PBO liabilities will

depend on economic productivity. To hedge part of PBO liabilities Black (1989), Lucas

and Zeldes (2006; 2009), Waring (2011) among others suggest that equities might provide a

better hedge assuming that wage growth and equities are positively correlated.13

For mature pension funds with full or partial indexation of pensions in payment a portfolio

of index–linked bonds and equities would be a more appropriate liability benchmark. The

exact mix of equities and index-linked bonds will depend on the particular characteristics of

the pension fund but a 30% equity, 70% index–linked bonds portfolio represents a reasonable

benchmark for a mature pension fund where wage growth does not affect the pensions of

retired employees.

Table 10 shows the asset allocation of a dynamic and myopic investor with liabilities,

proxied by a portfolio of 30% equities and 70% index–linked bonds, assuming short sales

are not allowed. When equities are part of the liability benchmark the investor as expected

allocates more to equities, at the expense of index-linked bonds compared with an investor

whose liabilities are exclusively index–linked bonds. Both dynamic and myopic investors in-

vest sizeable part of their portfolio in equities. The percentage allocated to equities decreases

from over 50% for low risk aversion dynamic investors to 30% for very conservative investors.

For myopic, low risk aversion, long-term investors the percentage invested in equities is close

to 80%. For moderate risk aversion (γ = 5, 10 ) the weight invested in equities is between

42% (γ = 5 , horizon 1 month) to 52% (γ = 10 , horizon 300 months). Investors with 100%

index-linked liabilities invest less in equities and more in index-linked bonds except when

13Empirical evidence on the relation between wages and equities are controversial. Benzoni et al. (2007)
find that wages and equities are highly correlated over long horizons. Lustig and Van Nieuwerburgh (2008)
report a negative relation.
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risk aversion is low and therefore liabilities are not important in the asset allocation decision.

The percentage allocated to nominal bonds is very similar under both liability benchmarks.

In unreported results, we find that the new liability benchmark does not change significantly

the utility gains of the D–ALM over the M–ALM strategy.

Excluding inflation-linked bonds from the investor’s investment opportunity set reduces

marginally the weight of equities but the main effect is a substitution of inflation-linked

bonds with nominal bonds. An investor with average risk aversion (γ = 5 ) invests over

50% of her portfolio in nominal bonds (detailed allocation results available from the authors

upon request).

7 Conclusions

In this paper we develop a closed-form solution for the dynamic multi–period portfolio choice

problem in the presence of liabilities. The model is analytically tractable allowing the study

and interpretation of factors affecting optimal portfolio choice in an ALM framework. The

model can accommodate investment opportunity sets which comprise any number of assets

and state variables. It also allows for time–varying risk premia and interest rates.

Investors who invest their portfolios with the objective to meet future liabilities, tak-

ing time–varying opportunities into account results in different portfolios compared with

investors who do not. Access to a dynamic asset liability model provides significant utility

benefits to a myopic investor. The benefits are reduced but not eliminated when the in-

vestor faces short-sell constraints and in particular the ability to borrow. The model should

be of particular interest to individual investors with liabilities who invest under short–sell

constraints.

Under pension fund regulation and internal rules, pension funds usually operate within

funding ratio constraints. Pension fund strategic asset allocation in practice tend to follow a

myopic asset allocation strategy that is re-visited every three to five years and usually ignores

time–varying opportunities. Imposing funding ratio constraints reduces but do not elimi-

nate the benefits of exploiting return predictability and hedging dynamically the investment

opportunity set and liabilities.

We believe that there are several promising directions for future research. While we as-

sume that our investor is endowed with a power utility of real end-of-period funding ratio

for a finite horizon, it would be valuable to consider an ALM investor who takes into ac-

count intermediate consumption or labor income (Campbell et al., 2003; Rapach and Wohar,
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2009). Another extension would be to investigate the optimal asset allocation and the utility

implications of a dynamic investor who faces different types of liabilities and longevity and

demographic risks.
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Table 1: Summary Statistics
This Table reports summary statistics for the period 1982:01 to 2014:12 (396 data points). Data are sourced
from DataStream. The Series Name corresponds to the mnemonic available from DataStream. Panel A
present the characteristics of the traditional asset classes (log nominal return on 3- month T–bill (rtb), log
ex post real return on a 3 - month T-bill (realrtb), log nominal return on a value weighted market portfolio
(rs), log nominal return on a 20 -year nominal bond (rb) and the log nominal return on an inflation-indexed
bond (rib)). Panel B presents the state variables (term spread (ts), log dividend price ratio (log dp) and the
nominal yield 3-month (ynom)) and Panel C presents the inflation rate (log cpi).The returns of the assets
classes are expressed in nominal terms. The mean and standard deviation are annualized. The remaining
statistics are on a monthly basis.

Panel A. Traditional Assets

Mean S.D Max Min Skew Kurt Source Series Name Initial Date

rtb 6.61% 1.17% 1.37% 0.04% 0.28 -0.69 DataStream LDNIB3M(RI) 29/01/1982

realrtb 3.57% 1.67% 1.59% -2.27% -0.30 1.56 DataStream - 29/01/1982

rs 11.45% 15.71% 14.00% -29.63% -1.17 5.24 DataStream TOTMKUK(RI) 29/01/1982

rb 10.23% 9.44% 10.63% -9.03% 0.14 0.72 DataStream BMUK20Y(RI) 29/01/1982

rib 7.54% 6.89% 8.75% -6.95% 0.52 2.36 DataStream BGILALL(DSRI) 29/01/1982

Panel B. State Variables

ts 2.38% 5.83% 3.51% -4.87% -0.46 -0.01 DataStream - 29/01/1982

log dp 1.31 0.22 1.81 0.82 0.11 -0.73 DataStream TOTMKUK(PE) 29/01/1982

ynom 6.62% 4.05% 16.14% 0.50% 0.27 -0.71 DataStream - 29/01/1982

Panel C. Other Variables

log cpi 3.05% 1.49% 3.32% -0.97% 1.13 7.78 DataStream UKCONPRCF 29/01/1982
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Table 2: VAR Estimation
Panel A reports parameter estimates of the VAR system zt+1 = Φ0 + Φ1zt + vt+1 with variables: real
returns of 3-month T-bill (realrtb) and the excess real returns of 20-year bonds (realxb), stocks (realxs),
inflation–indexed bonds (realxib) , dividend-price ratio (log dp) , nominal 3-month T-bill (ynom), term spread
(ts). t-statistics are reported in parentheses and are computed using Newey-West standard errors. The last
column contains the R2 and the p-value of the F-statistic for no predictability in parentheses. The VAR
estimates are obtained using monthly data from 1982:01 to 20142:12 (396 data points). Panel B reports
the residual correlation matrix of the VAR system zt+1 = Φ0 + Φ1zt + vt+1 with variables: 3-month T-bill,
20-year nominal bonds, stocks, inflation–indexed bonds, dp ratio, nominal 3-month T-bill, term spread.
Diagonal entries correspond to monthly residual standard deviations; off-diagonal entries correspond to their
correlations.

Panel A. VAR Estimates

realxs,t realxb,t realxib,t tst log dpt ynom,t realrtb,t R2

realxs,t+1 0.0545 0.0700 -0.0501 0.0000 0.0432 -0.2138 0.9964 4.04%

(0.794) (0.629) (-0.312) (-0.007) (2.183) (-1.425) (1.911) (0.000)

realxb,t+1 -0.0343 0.1322 -0.1246 0.0019 0.0080 -0.0023 0.1638 4.77%

(-1.128) (1.882) (-1.142) (1.925) (0.802) (-0.028) (0.528) (0.000)

realxib,t+1 0.0147 0.1447 -0.1308 -0.0002 0.0062 -0.1098 0.0776 5.49%

(0.397) (2.321) (-1.479) (-0.213) (0.724) (-1.541) (0.338) (0.000)

tst+1 -0.4131 0.8124 -1.0740 0.9172 0.4074 -3.5353 -2.8244 94.25%

(-0.950) (0.750) (-0.634) (39.097) (3.118) (-3.080) (-0.534) (0.000)

log dpt+1 -0.0595 -0.1570 0.1456 0.0010 0.9446 0.2975 -0.9558 95.21%

(-0.771) (-1.269) (0.749) (0.345) (38.414) (1.582) (-1.687) (0.000)

ynom,t+1 0.0087 -0.0267 0.0299 0.0007 -0.0049 1.0311 -0.0031 98.90%

(2.003) (-2.498) (1.544) (2.570) (-3.493) (78.085) (-0.062) (0.000)

realrtb,t+1 -0.0053 0.0055 0.0080 0.0000 -0.0024 0.0645 0.0347 23.88%

(-1.212) (0.534) (0.562) (0.209) (-1.629) (6.271) (0.843) (0.000)

Panel B. VAR Error Correlations and Standard deviations

realxs realxb realxib ts log dp ynom, realrtb

realxs 0.0443 0.1246 0.2163 0.0007 -0.9138 -0.1397 -0.0050

realxb 0.0264 0.5428 -0.3149 -0.1329 -0.3703 0.0583

realxib 0.0196 -0.2041 -0.2407 -0.2309 -0.0284

ts 0.4028 0.0152 -0.6518 -0.0997

log dp 0.0485 0.1188 -0.0230

ynom 0.0042 0.0888

realrtb 0.0042
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Table 3: Optimal Portfolio Choice; Dynamic ALM vs. Myopic Rebalancing ALM
Panel A shows the dynamic (D–ALM) and the myopic (M–ALM) strategy of an asset-liability investor who
plans to invest in the four asset classes: T–bills, equities, nominal and inflation-indexed (I–I) Bonds for an
investment horizon ranging from 1 to 300 months and for five levels of risk aversion (2, 5, 10, 20, 500),
when portfolio weights are unconstrained. Panel B shows the dynamic (D–ALM) and the myopic (M–ALM)
rebalancing strategy of an asset-liability investor who plans to invest in the four asset classes: T–bills,
equities, nominal and inflation–indexed (I–I) Bonds for an investment horizon ranging from 1 to 300 months
and for five levels of risk aversion (2, 5, 10, 20, 500), when portfolio weights are constrained. The case of
the one-month investment horizon corresponds to the myopic investor.γ denotes the investor’s coefficient of
relative risk aversion. Weights may not add up to one due to rounding.

Panel A. Unconstrained Weighting Scheme

D–ALM

Investment Horizon(in months)

γ Assets 1 6 12 24 60 120 180 240 300

2

T–bills -1.74 -1.89 -2.08 -2.39 -2.87 -3.19 -3.33 -3.38 -3.40

Equities 1.19 1.32 1.48 1.76 2.13 2.20 2.21 2.22 2.22

Nominal Bonds 1.22 1.15 1.16 1.17 1.28 1.52 1.64 1.68 1.70

I–I Bonds 0.33 0.42 0.44 0.46 0.46 0.47 0.48 0.48 0.48

5

T–bills -0.70 -0.79 -0.93 -1.18 -1.69 -2.09 -2.26 -2.32 -2.35

Equities 0.47 0.56 0.68 0.91 1.35 1.53 1.58 1.60 1.61

Nominal Bonds 0.49 0.44 0.44 0.44 0.49 0.69 0.79 0.83 0.85

I–I Bonds 0.73 0.79 0.81 0.83 0.85 0.87 0.89 0.89 0.89

10

T–bills -0.35 -0.40 -0.48 -0.64 -0.99 -1.30 -1.44 -1.50 -1.52

Equities 0.24 0.29 0.35 0.50 0.82 0.99 1.04 1.06 1.07

Nominal Bonds 0.24 0.22 0.22 0.21 0.23 0.35 0.43 0.46 0.47

I–I Bonds 0.90 0.91 0.92 0.94 0.96 0.97 0.91 0.98 0.98

20

T–bills -0.17 -0.20 -0.25 -0.33 -0.54 -0.74 -0.84 -0.88 -0.89

Equities 0.12 0.14 0.18 0.26 0.46 0.58 0.62 0.63 0.64

Nominal Bonds 0.12 0.11 0.11 0.10 0.11 0.18 0.22 0.24 0.25

I–I Bonds 0.93 0.95 0.96 0.96 0.98 0.99 1.00 1.00 1.00

500

T–bills -0.01 -0.01 -0.01 -0.01 -0.02 -0.03 -0.04 -0.04 -0.04

Equities 0.00 0.01 0.01 0.01 0.02 0.03 0.03 0.03 0.03

Nominal Bonds 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01

I–I Bonds 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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M–ALM

Investment Horizon(in months)

γ Assets 1 6 12 24 60 120 180 240 300

2

T–bills -1.74 -1.73 -2.00 -2.44 -3.08 -3.99 -4.68 -5.17 -5.51

Equities 1.19 1.35 1.61 2.13 3.19 4.10 4.57 4.85 5.05

Nominal Bonds 1.22 1.33 1.40 1.45 1.37 1.35 1.35 1.34 1.35

I–I Bonds 0.33 0.05 -0.01 -0.14 -0.48 -0.46 -0.23 -0.03 0.12

5

T–bills -0.70 -0.69 -0.80 -0.98 -1.23 -1.59 -1.87 -2.07 -2.20

Equities 0.47 0.54 0.64 0.85 1.28 1.64 1.83 1.94 2.02

Nominal Bonds 0.49 0.53 0.56 0.58 0.55 0.54 0.54 0.54 0.54

I-I Bonds 0.73 0.62 0.60 0.54 0.41 0.42 0.51 0.59 0.65

10

T–bills -0.35 -0.35 -0.40 -0.49 -0.62 -0.80 -0.94 -1.03 -1.10

Equities 0.24 0.27 0.32 0.43 0.64 0.82 0.91 0.97 1.01

Nominal Bonds 0.24 0.27 0.28 0.29 0.27 0.27 0.12 0.27 0.27

I–I Bonds 0.87 0.81 0.80 0.77 0.70 0.71 0.75 0.79 0.82

20

T–bills -0.17 -0.17 -0.20 -0.24 -0.31 -0.40 -0.47 -0.52 -0.55

Equities 0.12 0.13 0.16 0.21 0.32 0.41 0.46 0.48 0.50

Nominal Bonds 0.12 0.13 0.14 0.14 0.14 0.13 0.13 0.13 0.13

I–I Bonds 0.93 0.91 0.90 0.89 0.85 0.85 0.88 0.90 0.91

500

T–bills -0.01 -0.01 -0.01 -0.01 -0.01 -0.02 -0.02 -0.02 -0.02

Equities 0.00 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02

Nominal Bonds 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

I–I Bonds 1.00 1.00 1.00 1.00 0.99 0.99 1.00 1.00 1.00
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Panel B. Constrained Weighting Scheme

D–ALM

Investment Horizon(in months)

γ Assets 1 6 12 24 60 120 180 240 300

2

T–bills 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Equities 0.43 0.46 0.48 0.52 0.55 0.53 0.51 0.51 0.50

Nominal Bonds 0.45 0.40 0.38 0.35 0.33 0.36 0.38 0.38 0.39

I–I Bonds 0.12 0.15 0.14 0.13 0.12 0.11 0.11 0.11 0.11

5

T–bills 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Equities 0.28 0.31 0.35 0.42 0.50 0.50 0.49 0.48 0.48

Nominal Bonds 0.29 0.25 0.23 0.20 0.18 0.22 0.24 0.25 0.25

I–I Bonds 0.43 0.44 0.42 0.38 0.32 0.28 0.27 0.27 0.27

10

T–bills 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Equities 0.18 0.20 0.24 0.31 0.41 0.43 0.43 0.43 0.43

Nominal Bonds 0.18 0.15 0.15 0.13 0.11 0.15 0.17 0.18 0.19

I–I Bonds 0.64 0.64 0.61 0.56 0.47 0.42 0.40 0.39 0.39

20

T–bills 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Equities 0.10 0.12 0.15 0.20 0.30 0.33 0.34 0.34 0.34

Nominal Bonds 0.10 0.09 0.09 0.08 0.07 0.10 0.12 0.13 0.13

I–I Bonds 0.79 0.79 0.77 0.72 0.63 0.57 0.54 0.53 0.53

500

T–bills 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Equities 0.00 0.01 0.01 0.01 0.02 0.03 0.03 0.03 0.03

Nominal Bonds 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01

I–I Bonds 0.99 0.99 0.99 0.99 0.98 0.97 0.96 0.96 0.96
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M–ALM

Investment Horizon(in months)

γ Assets 1 6 12 24 60 120 180 240 300

2

T–bills 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Equities 0.43 0.49 0.54 0.60 0.70 0.75 0.77 0.78 0.78

Nominal Bonds 0.45 0.49 0.46 0.40 0.30 0.25 0.23 0.22 0.21

I–I Bonds 0.12 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.02

5

T–bills 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Equities 0.28 0.32 0.36 0.43 0.57 0.63 0.64 0.63 0.63

Nominal Bonds 0.29 0.31 0.31 0.29 0.25 0.21 0.19 0.18 0.17

I–I Bonds 0.43 0.37 0.33 0.28 0.18 0.16 0.18 0.19 0.20

10

T–bills 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Equities 0.18 0.20 0.23 0.29 0.40 0.46 0.47 0.48 0.48

Nominal Bonds 0.18 0.20 0.20 0.19 0.17 0.15 0.14 0.13 0.13

I–I Bonds 0.64 0.60 0.57 0.52 0.44 0.39 0.39 0.39 0.39

20

T–bills 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Equities 0.10 0.11 0.13 0.17 0.24 0.29 0.31 0.32 0.33

Nominal Bonds 0.10 0.11 0.12 0.12 0.10 0.10 0.09 0.09 0.09

I–I Bonds 0.79 0.77 0.75 0.71 0.65 0.61 0.60 0.59 0.59

500

T–bills 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Equities 0.00 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02

Nominal Bonds 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

I–I Bonds 0.99 0.99 0.99 0.99 0.98 0.98 0.98 0.98 0.97
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Table 4: Utility Implications and Management Fee for Investors with Liabilities
Panel A presents the utility losses of the myopic (M-ALM) strategy relative to the dynamic (D–ALM) policy,
in an constrained weighting scheme. The results are obtained by Monte Carlo simulation using 10,000 VAR
paths based on the method of antithetic variates, with the same path set being used to evaluate the utility
loss in all cases. The CE of the funding ratio is computed by evaluating the mean utility realized across the

simulated paths and computing FCE = u−1
(
E
[
u
(
F̃T

)])
. Panel B reports the largest monthly management

fee which a constrained investor who behaves myopically within an ALM framework would pay to gain access
to the dynamic asset-liability management strategy, when portfolio weights are constrained. In Panel A the
utility losses are computed as the percentage difference between the CE of the myopic (M-ALM) and the
CE of the dynamic (D–ALM) strategy (base strategy). γ denotes the investor’s coefficient of relative risk
aversion. In Panel B the management fee is computed as fee = 1− (1 +WelfareLoss)1/horizon.

Panel A. Utility Losses for Constrained M–ALM

Investment Horizon (in months)

γ 60 120 180 240 300

1 - - - - -

2 -30.82% -55.60% -71.95% -82.36% -89.06%

5 -37.76% -67.18% -84.09% -92.13% -96.82%

10 -48.65% -75.08% -87.86% -93.08% -96.83%

20 -46.63% -77.52% -91.18% -94.64% -93.95%

Panel B. Maximal Monthly Fee for Constrained M–ALM

Investment Horizon (in months)

γ 60 120 180 240 300

1 - - - - -

2 0.61% 0.67% 0.70% 0.72% 0.73%

5 0.79% 0.92% 1.02% 1.05% 1.14%

10 1.10% 1.15% 1.16% 1.11% 1.14%

20 1.04% 1.24% 1.34% 1.21% 1.16%
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Table 5: Utility Implications and Management Fee for Investors with Liabilities
when inflation indexed bonds are excluded from the asset universe list
Panel A presents the utility losses of the myopic (M-ALM) strategy relative to the dynamic (D–ALM)
policy, in an constrained weighting scheme. The results are obtained by Monte Carlo simulation using
10,000 VAR paths based on the method of antithetic variates, with the same path set being used to evaluate
the utility loss in all cases. The CE of the funding ratio is computed by evaluating the mean utility realized

across the simulated paths and computing FCE = u−1
(
E
[
u
(
F̃T

)])
. Panel B reports the largest monthly

management fee which a constrained investor who behaves myopically within an ALM framework would pay
to gain access to the dynamic asset-liability management strategy, when portfolio weights are constrained.
In Panel A the utility losses are computed as the percentage difference between the CE of the myopic (M-
ALM) and the CE of the dynamic (D–ALM) strategy (base strategy). γ denotes the investor’s coefficient of
relative risk aversion. In Panel B the management fee is computed as fee = 1−(1 +WelfareLoss)1/horizon.
Inflation–indexed bonds are excluded from the asset universe list of the investor.

Panel A. Utility Losses for Constrained M–ALM

Investment Horizon (in months)

γ 60 120 180 240 300

1 - - - - -

2 -24.02% -45.92% -62.86% -74.87% -83.19%

5 -22.74% -51.58% -74.99% -83.88% -89.43%

10 -31.94% -61.85% -73.42% -82.58% -88.78%

20 -21.96% -61.53% -69.06% -78.27% -79.21%

Panel B. Maximal Monthly Fee for Constrained M–ALM

Investment Horizon (in months)

γ 60 120 180 240 300

1 - - - - -

2 0.46% 0.51% 0.55% 0.57% 0.59%

5 0.43% 0.60% 0.77% 0.76% 0.75%

10 0.64% 0.80% 0.73% 0.73% 0.73%

20 0.41% 0.79% 0.65% 0.63% 0.52%
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Table 6: Utility Implications for Investors with Liabilities in the Presence of
Maximum and Minimum Funding Ratio Constraints
Panel A presents the utility losses of the constrained myopic (M-ALM) strategy relative to the dynamic
(D–ALM) policy, in the presence of minimum and maximum funding ratio constraints 90% and 135%,
respectively. Panel B presents the utility losses of the constrained myopic (M-ALM) strategy relative to the
dynamic (D–ALM) policy, in the presence of minimum and maximum funding ratio constraints 100% and
135%, respectively. The results are obtained by Monte Carlo simulation using 10,000 VAR paths based on
the method of antithetic variates, with the same path set being used to evaluate the utility loss in all cases.
The CE of the funding ratio is computed by evaluating the mean utility realized across the simulated paths

and computing FCE = u−1
(
E
[
u
(
F̃T

)])
. The utility losses are computed as the percentage difference

between the CE of the myopic (M–ALM) and the CE of the dynamic (D–ALM) strategy (base strategy). γ
denotes the investor’s coefficient of relative risk aversion.

Panel A. Utility Losses for constrained M–ALM (90%-135%)

Investment Horizon (in months)

γ 60 120 180 240 300

1 - - - - -

2 -14.58% -15.95% -16.20% -16.24% -16.26%

5 -14.70% -16.96% -17.27% -17.26% -17.25%

10 -14.05% -17.97% -18.57% -18.45% -18.39%

20 -11.48% -17.37% -18.80% -18.63% -18.50%

Panel B. Utility Losses for constrained M–ALM (100%-135%)

Investment Horizon (in months)

γ 60 120 180 240 300

1 - - - - -

2 -10.21% -10.98% -11.15% -11.16% -11.18%

5 -10.25% -11.38% -11.52% -11.49% -11.47%

10 -9.93% -12.07% -12.24% -12.10% -12.04%

20 -8.13% -12.26% -13.06% -12.79% -12.59%
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Table 7: Management Fee for Investors with Liabilities in the Presence of Max-
imum and Minimum Funding Ratio Constraints
Panel A reports the largest monthly management fee which an investor who behaves myopically within
an ALM framework would pay to gain access to the dynamic asset-liability management strategy, in the
presence of minimum and maximum funding ratio constraints 90% and 135%, respectively. Panel B reports
the largest monthly management fee which an investor who behaves myopically within an ALM framework
would pay to gain access to the dynamic asset-liability management strategy, in the presence of minimum
and maximum funding ratio constraints 100% and 135%,respectively.The management fee is computed as
fee = 1− (1 +WelfareLoss)1/horizon. γ denotes the investor’s coefficient of relative risk aversion.

Panel A. Maximal Monthly Fee for constrained M- ALM (90%-135%)

Investment Horizon (in months)

γ 60 120 180 240 300

1 - - - - -

2 0.26% 0.14% 0.10% 0.07% 0.06%

5 0.26% 0.15% 0.11% 0.08% 0.06%

10 0.25% 0.16% 0.11% 0.08% 0.07%

20 0.20% 0.16% 0.12% 0.09% 0.07%

Panel B. Maximal Monthly Fee for constrained M- ALM (100%-135%)

Investment Horizon (in months)

γ 60 120 180 240 300

1 - - - - -

2 0.18% 0.10% 0.07% 0.05% 0.04%

5 0.18% 0.10% 0.07% 0.05% 0.04%

10 0.17% 0.11% 0.07% 0.05% 0.04%

20 0.14% 0.11% 0.08% 0.06% 0.04%
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Table 8: Optimal Portfolio Choice; Dynamic ALM vs. Dynamic AM
Panel A shows the dynamic strategy of an asset–liability investor (D–ALM) and the dynamic strategy of
an asset–only investor (D–AM) who plans to invest in the four asset classes: T–bills, equities, nominal and
inflation-indexed (I–I) Bonds for an investment horizon ranging from 1 to 300 months and for five levels
of risk aversion (2, 5, 10, 20, 500), when portfolio weights are unconstrained. Panel B shows the dynamic
strategy of an asset–liability investor (D–ALM) and the dynamic strategy of an asset–only investor (D–AM)
who plans to invest in the four asset classes: T–bills, equities, nominal and inflation–indexed (I–I) Bonds for
an investment horizon ranging from 1 to 300 months and for five levels of risk aversion (2, 5, 10, 20, 500),
when portfolio weights are constrained. The case of the one-month investment horizon corresponds to the
myopic investor.γ denotes the investor’s coefficient of relative risk aversion. Weights may not add up to one
due to rounding.

Panel A. Unconstrained Weighting Scheme

D–ALM

Investment Horizon(in months)

γ Assets 1 6 12 24 60 120 180 240 300

2

T–bills -1.74 -1.89 -2.08 -2.39 -2.87 -3.19 -3.33 -3.38 -3.40

Equities 1.19 1.32 1.48 1.76 2.13 2.20 2.21 2.22 2.22

Nominal Bonds 1.22 1.15 1.16 1.17 1.28 1.52 1.64 1.68 1.70

I–I Bonds 0.33 0.42 0.44 0.46 0.46 0.47 0.48 0.48 0.48

5

T–bills -0.70 -0.79 -0.93 -1.18 -1.69 -2.09 -2.26 -2.32 -2.35

Equities 0.47 0.56 0.68 0.91 1.35 1.53 1.58 1.60 1.61

Nominal Bonds 0.49 0.44 0.44 0.44 0.49 0.69 0.79 0.83 0.85

I–I Bonds 0.73 0.79 0.81 0.83 0.85 0.87 0.89 0.89 0.89

10

T–bills -0.35 -0.40 -0.48 -0.64 -0.99 -1.30 -1.44 -1.50 -1.52

Equities 0.24 0.29 0.35 0.50 0.82 0.99 1.04 1.06 1.07

Nominal Bonds 0.24 0.22 0.22 0.21 0.23 0.35 0.43 0.46 0.47

I–I Bonds 0.90 0.91 0.92 0.94 0.96 0.97 0.91 0.98 0.98

20

T–bills -0.17 -0.20 -0.25 -0.33 -0.54 -0.74 -0.84 -0.88 -0.89

Equities 0.12 0.14 0.18 0.26 0.46 0.58 0.62 0.63 0.64

Nominal Bonds 0.12 0.11 0.11 0.10 0.11 0.18 0.22 0.24 0.25

I–I Bonds 0.93 0.95 0.96 0.96 0.98 0.99 1.00 1.00 1.00

500

T–bills -0.01 -0.01 -0.01 -0.01 -0.02 -0.03 -0.04 -0.04 -0.04

Equities 0.00 0.01 0.01 0.01 0.02 0.03 0.03 0.03 0.03

Nominal Bonds 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01

I–I Bonds 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

45



D–AM

Investment Horizon(in months)

γ Assets 1 6 12 24 60 120 180 240 300

2

T–bills -1.24 -1.38 -1.58 -1.91 -2.43 -2.80 -2.96 -3.01 -3.04

Equities 1.19 1.32 1.48 1.76 2.14 2.21 2.22 2.23 2.23

Nominal Bonds 1.21 1.10 1.12 1.15 1.30 1.58 1.71 1.76 1.78

I–I Bonds -0.16 -0.04 -0.03 -0.01 0.00 0.01 0.02 0.03 0.03

5

T–bills 0.10 0.01 -0.13 -0.42 -1.04 -1.56 -1.77 -1.85 -1.88

Equities 0.47 0.56 0.66 0.88 1.31 1.52 1.58 1.61 1.62

Nominal Bonds 0.48 0.41 0.44 0.48 0.64 0.92 1.05 1.10 1.12

I-I Bonds -0.05 0.02 0.03 0.05 0.09 0.12 0.14 0.15 0.15

10

T–bills 0.55 0.50 0.41 0.22 -0.28 -0.74 -0.94 -1.02 -1.04

Equities 0.24 0.28 0.33 0.45 0.76 0.97 1.04 1.07 1.08

Nominal Bonds 0.23 0.20 0.23 0.29 0.45 0.66 0.76 0.80 0.82

I–I Bonds -0.02 0.02 0.03 0.04 0.08 0.11 0.13 0.14 0.14

20

T–bills 0.77 0.75 0.70 0.57 0.20 -0.17 -0.33 -0.39 -0.42

Equities 0.12 0.14 0.15 0.20 0.38 0.55 0.62 0.64 0.65

Nominal Bonds 0.11 0.10 0.13 0.20 0.36 0.53 0.60 0.63 0.64

I–I Bonds 0.00 0.01 0.02 0.03 0.06 0.09 0.11 0.12 0.12

500

T–bills 0.99 0.99 0.98 0.93 0.75 0.55 0.47 0.44 0.43

Equities 0.00 0.00 -0.02 -0.06 -0.08 -0.01 0.03 0.04 0.05

Nominal Bonds -0.01 0.01 0.04 0.12 0.30 0.40 0.43 0.44 0.45

I–I Bonds 0.02 0.01 0.00 0.01 0.03 0.06 0.07 0.07 0.07
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Panel B. Constrained Weighting Scheme

D–ALM

Investment Horizon(in months)

γ Assets 1 6 12 24 60 120 180 240 300

2

T–bills 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Equities 0.43 0.46 0.48 0.52 0.55 0.53 0.51 0.51 0.50

Nominal Bonds 0.45 0.40 0.38 0.35 0.33 0.36 0.38 0.38 0.39

I–I Bonds 0.12 0.15 0.14 0.13 0.12 0.11 0.11 0.11 0.11

5

T–bills 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Equities 0.28 0.31 0.35 0.42 0.50 0.50 0.49 0.48 0.48

Nominal Bonds 0.29 0.25 0.23 0.20 0.18 0.22 0.24 0.25 0.25

I–I Bonds 0.43 0.44 0.42 0.38 0.32 0.28 0.27 0.27 0.27

10

T–bills 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Equities 0.18 0.20 0.24 0.31 0.41 0.43 0.43 0.43 0.43

Nominal Bonds 0.18 0.15 0.15 0.13 0.11 0.15 0.17 0.18 0.19

I–I Bonds 0.64 0.64 0.61 0.56 0.47 0.42 0.40 0.39 0.39

20

T–bills 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Equities 0.10 0.12 0.15 0.20 0.30 0.33 0.34 0.34 0.34

Nominal Bonds 0.10 0.09 0.09 0.08 0.07 0.10 0.12 0.13 0.13

I–I Bonds 0.79 0.79 0.77 0.72 0.63 0.57 0.54 0.53 0.53

500

T–bills 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Equities 0.00 0.01 0.01 0.01 0.02 0.03 0.03 0.03 0.03

Nominal Bonds 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01

I–I Bonds 0.99 0.99 0.99 0.99 0.98 0.97 0.96 0.96 0.96
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D–AM

Investment Horizon(in months)

γ Assets 1 6 12 24 60 120 180 240 300

2

T–bills 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Equities 0.49 0.54 0.57 0.60 0.62 0.58 0.56 0.56 0.55

Nominal Bonds 0.51 0.46 0.43 0.40 0.38 0.42 0.43 0.44 0.44

I–I Bonds 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01

5

T–bills 0.10 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Equities 0.45 0.56 0.58 0.62 0.64 0.59 0.57 0.56 0.56

Nominal Bonds 0.45 0.41 0.39 0.34 0.31 0.36 0.38 0.38 0.39

I–I Bonds 0.00 0.02 0.03 0.04 0.04 0.05 0.05 0.05 0.05

10

T–bills 0.54 0.50 0.41 0.22 0.00 0.00 0.00 0.00 0.00

Equities 0.23 0.28 0.33 0.45 0.59 0.55 0.54 0.53 0.53

Nominal Bonds 0.23 0.20 0.23 0.29 0.35 0.38 0.39 0.40 0.40

I–I Bonds 0.00 0.02 0.03 0.04 0.06 0.07 0.07 0.07 0.07

20

T–bills 0.77 0.75 0.70 0.57 0.20 0.00 0.00 0.00 0.00

Equities 0.12 0.14 0.15 0.20 0.38 0.47 0.46 0.46 0.46

Nominal Bonds 0.11 0.10 0.13 0.20 0.36 0.45 0.45 0.45 0.45

I–I Bonds 0.00 0.01 0.02 0.03 0.06 0.08 0.08 0.08 0.08

500

T–bills 0.98 0.99 0.95 0.88 0.69 0.54 0.47 0.44 0.43

Equities 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.04 0.05

Nominal Bonds 0.00 0.01 0.04 0.11 0.27 0.40 0.43 0.44 0.45

I–I Bonds 0.02 0.01 0.00 0.01 0.03 0.06 0.07 0.07 0.07
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Table 9: Utility Implications and Management Fee for Investors who Ignore
Liabilities
Panel A presents the utility losses of the dynamic asset-only (D-AM) strategy relative to the dynamic asset-
liability (D–ALM) policy, in an constrained weighting scheme. The results are obtained by Monte Carlo
simulation using 10,000 VAR paths based on the method of antithetic variates, with the same path set being
used to evaluate the utility loss in all cases. The CE of the funding ratio is computed by evaluating the

mean utility realized across the simulated paths and computing FCE = u−1
(
E
[
u
(
F̃T

)])
. Panel B reports

the largest monthly management fee which a constrained investor who behaves dynamically within an AM
framework would pay to gain access to the dynamic asset–liability management strategy, when portfolio
weights are constrained. In Panel A the utility losses are computed as the percentage difference between the
CE of the dynamic asset–only (D–AM) and the CE of the dynamic asset-liability (D–ALM) strategy (base
strategy).. γ denotes the investor’s coefficient of relative risk aversion. In Panel B the management fee is
computed as fee = 1− (1 +WelfareLoss)1/horizon.

Panel A. Utility Losses for Constrained D–AM

Investment Horizon (in months)

γ 60 120 180 240 300

1 - - - - -

2 18.06% 36.21% 58.03% 81.95% 112.04%

5 -0.25% -2.23% -5.65% -2.51% -15.75%

10 -46.90% -40.72% -43.35% -43.79% -57.98%

20 -53.49% -58.94% -66.62% -66.85% -64.95%

Panel B. Management Fee for Constrained D–AM

Investment Horizon (in months)

γ 60 120 180 240 300

1 - - - - -

2 -0.28% -0.26% -0.25% -0.25% -0.25%

5 0.00% 0.02% 0.03% 0.01% 0.06%

10 1.05% 0.43% 0.32% 0.24% 0.29%

20 1.27% 0.74% 0.61% 0.46% 0.35%
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Table 10: Optimal Portfolio Choice under an Alternative Liability Benchmark
This Table shows the dynamic (D–ALM) and myopic(M–ALM) strategy of an asset–liability investor who
plans to invest in the four asset classes: T–bills, equities, nominal and inflation-indexed (I–I) Bonds for an
investment horizon ranging from 1 to 300 months and for five levels of risk aversion (2, 5, 10, 20, 500),
when portfolio weights are unconstrained. The case of the one-month investment horizon corresponds to
the myopic investor.γ denotes the investor’s coefficient of relative risk aversion. Weights may not add up to
one due to rounding. The liability benchmark is represented by a mix of 30% equities and 70% index-linked
bonds.

Constrained Weighting Scheme

D–ALM

Investment Horizon(in months)

γ Assets 1 6 12 24 60 120 180 240 300

2

T–bills 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Equities 0.50 0.52 0.54 0.57 0.59 0.56 0.55 0.54 0.54

Nominal Bonds 0.46 0.43 0.40 0.37 0.34 0.37 0.39 0.39 0.39

I–I Bonds 0.04 0.05 0.06 0.06 0.06 0.06 0.06 0.06 0.06

5

T–bills 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Equities 0.43 0.45 0.48 0.53 0.59 0.57 0.55 0.55 0.55

Nominal Bonds 0.30 0.27 0.25 0.22 0.19 0.23 0.25 0.25 0.26

I–I Bonds 0.27 0.28 0.27 0.25 0.22 0.20 0.20 0.20 0.20

10

T–bills 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Equities 0.38 0.39 0.42 0.47 0.54 0.54 0.53 0.53 0.52

Nominal Bonds 0.19 0.17 0.16 0.14 0.12 0.16 0.18 0.18 0.19

I–I Bonds 0.43 0.43 0.42 0.39 0.33 0.30 0.29 0.29 0.29

20

T–bills 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Equities 0.34 0.35 0.37 0.41 0.48 0.49 0.48 0.48 0.48

Nominal Bonds 0.11 0.10 0.10 0.09 0.08 0.11 0.12 0.13 0.13

I–I Bonds 0.55 0.54 0.53 0.50 0.45 0.41 0.40 0.39 0.39

500

T–bills 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Equities 0.30 0.30 0.30 0.30 0.31 0.31 0.31 0.31 0.31

Nominal Bonds 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

I–I Bonds 0.69 0.69 0.69 0.69 0.68 0.68 0.68 0.68 0.68
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M–ALM

Investment Horizon(in months)

γ Assets 1 6 12 24 60 120 180 240 300

2

T–bills 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Equities 0.50 0.52 0.54 0.60 0.70 0.76 0.77 0.79 0.79

Nominal Bonds 0.46 0.48 0.46 0.40 0.30 0.24 0.23 0.21 0.21

I–I Bonds 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5

T–bills 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Equities 0.43 0.46 0.49 0.55 0.68 0.73 0.72 0.71 0.70

Nominal Bonds 0.30 0.33 0.33 0.31 0.26 0.21 0.19 0.18 0.17

I–I Bonds 0.27 0.22 0.19 0.14 0.06 0.06 0.09 0.11 0.12

10

T–bills 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Equities 0.38 0.40 0.42 0.47 0.56 0.61 0.61 0.61 0.61

Nominal Bonds 0.19 0.21 0.21 0.21 0.18 0.16 0.14 0.14 0.13

I–I Bonds 0.43 0.40 0.37 0.33 0.26 0.24 0.25 0.26 0.26

20

T–bills 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Equities 0.34 0.35 0.37 0.40 0.46 0.49 0.50 0.51 0.51

Nominal Bonds 0.11 0.12 0.12 0.12 0.11 0.10 0.10 0.09 0.09

I–I Bonds 0.55 0.53 0.51 0.48 0.43 0.40 0.40 0.40 0.40

500

T–bills 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Equities 0.30 0.30 0.30 0.30 0.30 0.31 0.31 0.31 0.31

Nominal Bonds 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

I–I Bonds 0.69 0.70 0.69 0.69 0.69 0.68 0.68 0.68 0.68
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Appendix A

DYNAMIC PORTFOLIO CHOICE FOR THE “ASSET LIABILITY”
INVESTOR14

Portfolio Rule with one period remaining t+K − 1 (τ = 1)

First we will define the policy and value function of the investor at the time with one
period remaining.

Policy function in the one period remaining (τ = 1)

The objective function of the investor with one period to the terminal date is to choose
α

(1)
ALM,t+K−1 such that max

α
(1)
t+k−1

Et+K−1 [exp {(1− γ)rF,t→t+K}]

We substitute the log–linear approximation to the funding ratio return

rF,t+1 = α>ALM,t

(
xA,t+1 +

1

2
σ2
A

)
− 1

2
α>ALM,tΣAAαALM,t − xL,t+1 (1)

into the previous objective function and we conclude to the following form of the objective
function:

max
α

(1)
ALM,t+k−1

Et+K−1 [exp {(1− γ)rF,t+K}] ≡

max
α

(1)
ALM,t+k−1

exp

{
(1− γ)Et+K−1 [rF,t+K ] +

1

2
(1− γ)2V art+K−1 [rF,t+K ]

}
(2)

We define the two first moments of the funding ratio log-return :
(a) The expected of the funding ratio log-return rF is :

Et+K−1 [rF,t+K ] = α
(1)>
ALM,t+k−1HA (Φ0+Φ1zt+K−1)−HL (Φ0+Φ1zt+K−1)

+
1

2
α

(1)>
ALM,t+K−1

(
σ2
A −ΣAAα

(1)
ALM,t+K−1

)
(3)

(b) The variance of the funding ratio log-return rF is :

V art+K−1 [rF,t+K ] = σ2
L − 2α

(1)>
ALM,t+k−1σAL +α

(1)>
ALM,t+k−1ΣAAα

(1)
ALM,t+k−1 (4)

We substitute in the objective function the moments of the funding ratio log-return rF
and we obtain the following first order condition:

14For reasons of convenience and comparison , the structure of the Appendix is based on the corresponding
Appendix (C) of Jurek and Viceira (2011).
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HA (Φ0 + Φ1zt+K−1) + 1
2
σ2
A −ΣAAα

(1)
ALM,t+k−1 + (1− γ)

(
ΣAAα

(1)
ALM,t+k−1 − σAL

)
= 0

Therefore, solving for α
(1)
ALM,t+K−1 the optimal weight of the investor with one period

remaining is:

α
(1)
ALM,t+K−1 =

1

γ
Σ−1
AA

(
HA (Φ0 + Φ1zt+K−1) +

1

2
σ2
A − (1− γ)σAL

)
(5)

We can also write the optimal portfolio as an affine function of the:

α
(1)
ALM,t+K−1 = A

(1)
ALM,0 + A

(1)
ALM,1zt+K−1 (6)

where

A
(1)
ALM,0 =

1

γ
Σ−1
AA

(
ΦA

0 +
1

2
σ2
A − (1− γ)σAL

)
(7)

A
(1)
ALM,1 =

1

γ
Σ−1
AAΦA

1 (8)

Value function in the one period remaining (τ = 1)
Now we proceed to the derivation of the value function of the investor at the time. Based

on the conditional log normality of rF,t+K and equation (2), the value function at the time
of the one period remaining depends both on the expected log return on the funding ratio
and its variance. We substitute the optimal portfolio rule (5) into the two first moments of
the funding ratio and we conclude that both expected return and the variance are quadratic
functions of the vector zt+K−1 :

Et+K−1 [rF,t+K ] =
(
A

(1)
ALM,0 + A

(1)
ALM,1zt+K−1

)> (
ΦA

0 + ΦA
1 zt+K−1

)
−
(
ΦL

0 + ΦL
1 zt+K−1

)
+ 1

2

(
A

(1)
ALM,0 + A

(1)
ALM,1zt+K−1

)> (
σ2
A −ΣAA

(
A

(1)
ALM,0 + A

(1)
ALM,1zt+K−1

))
= −ΦL

0 + A
(1)>
ALM,0

(
ΦA

0 + 1
2

(
σ2
A −ΣAAA

(1)
ALM,0

))
+ z>t+K−1A

(1)>
ALM,0

(
ΦA

0 + 1
2

(
σ2
A −ΣAAA

(1)
ALM,0

))
+ (−ΦL

1 + A
(1)>
ALM,0

(
ΦA

1 − 1
2
ΣAAA

(1)
ALM,1

)
zt+K−1

+ z>t+K−1A
(1)>
ALM,1

(
ΦA

1 − 1
2
ΣAAA

(1)
ALM,1

)
zt+K−1

V art+K−1 [rF,t+K ] = σ2
L + A

(1)>
ALM,0

(
ΣAAA

(1)
ALM,0 − 2σAL

)
+ A

(1)>
ALM,0ΣAAA

(1)
ALM,1zt+K−1+

+z>t+K−1A
(1)>
ALM,1

(
ΣAAA

(1)
ALM,0 − 2σAL

)
+ z>t+K−1A

(1)>
ALM,1ΣAAA

(1)
ALM,1zt+K−1
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We can express the objective function in the following form:

Et+K−1 [exp {(1− γ)rF,t+K}] = exp
{

(1− γ)Et+K−1 [rF,t+K ] + 1
2
(1− γ)2V art+K−1 [rF,t+K ]

}
= exp

{
(1− γ)

[
Et+K−1 [rF,t+K ] + 1

2
(1− γ)V art+K−1 [rF,t+K ]

]}
(9)

We substitute the two moments in the previous objective function and we conclude that the
value functions constitutes an exponential quadratic polynomial of the vector zt+K−1

Et+K−1 [exp {(1− γ)r∗F,t+K}] =

exp
{

(1− γ)
(
B

(1)
ALM,0 +B

(1)
ALM,1zt+K−1 + z>t+K−1B

(1)
ALM,2zt+K−1

)}
(10)

where:

B
(1)
ALM,0 = −ΦL

0 + A
(1)>
ALM,0

(
ΦA

0 +
1

2
σ2
A

)
+

1− γ
2

(
σ2
L − 2A

(1)>
ALM,0σAL

)
− γ

2
A

(1)>
ALM,0ΣAAA

(1)
ALM,0 (11)

B
(1)
ALM,1 = −ΦL

1 + A
(1)>
ALM,0

(
ΦA

1 − γΣAAA
(1)
ALM,1

)
+

(
ΦA

0 +
1

2
σ2
A − (1− γ)σAL

)>
A

(1)
ALM,1 (12)

B
(1)
ALM,2 = A

(1)>
ALM,1

(
ΦA

1 −
γ

2
ΣAAA

(1)
ALM,1

)
(13)

Portfolio Rule with two periods remaining t+K − 2 (τ = 2)

When the remaining horizon is two periods, the objective function of the investor is the
following:

max
α

(2)
t+K−2,a

(1)
t+K−1

1
1−γEt+K−2 [exp {(1− γ) (rF,t+K−1 + rF,t+K)}]

= max
α

(2)
t+K−2

1
1−γEt+K−2

[
exp

{
(1− γ)

(
rF,t+K−1 +B

(1)
ALM,1zt+K−1 + z>t+K−1B

(1)
ALM,2zt+K−1

)}]
(14)

The term inside the expectation is an exponential quadratic polynomial function of the
vector of state variables zt+K−1. We will present an analytical expression for equation (10).
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We can write the log–linear approximation to the funding ratio return as:

rF,t+K−1 = α
(2)>
ALM,t+K−2xA,t+K−1 − xL,t+K−1 + 1

2
α

(2)>
ALM,t+K−2

(
σ2
A −ΣAAα

(2)
ALM,t+K−2

)
=

[
0 α

(2)
ALM,t+K−2 −1 0

]
zt+K−1 + 1

2
α

(2)>
ALM,t+K−2

(
σ2
A −ΣAAα

(2)
ALM,t+K−2

)
(15)

We substitute the above formula at the objective function (14)

Et+K−2[{(1− γ)(1
2
α

(2)>
ALM,t+K−2

(
σ2
A −ΣAAα

(2)
ALM,t+K−2

)
+B

(1)
ALM,0+(

B
(1)
ALM,1 +

[
0 α

(2)
ALM,t+K−2 −1 0

])
zt+K−1 + z>t+K−1B

(1)
ALM,2zt+K−1)}

(16)

Since the last two summands are random, we therefore focus on these summands.

Et+K−2

[
exp

{
(1− γ)

((
B

(1)
ALM,1 +

[
0 α

(2)
ALM,t+K−2 −1 0

])
zt+K−1 + z>t+K−1B

(1)
ALM,2zt+K−1

)}]
(17)

We substitute (17) into (16) and we obtain the value function of the investor at the time
t+K−2. The distribution of zt+K−1 conditional on time t+K−2 shows that (17) computes
the expectation of the exponential quadratic polynomial in a normal random variable.

For convenience, we introduce the following notation:

zt+K−1/zt+K−2 ∼ N(Φ0 + Φ1zt+K−2,Συ)

For our convenience, we introduce the following notation:

C
(2)
ALM,1 = (1− γ)


0

α
(2)
ALM,t+K−2

−1
0

+ (1− γ)B
(1)>
ALM,1

C
(2)
ALM,2 = (1− γ)B

(1)
ALM,2

Based on the aforementioned notations we can express (17) as

Et+K−2

[
exp

{
C

(2)>
ALM,1zt+K−1 + z>t+K−1C

(2)
ALM,2zt+K−1

}]
= Et+K−2

[
exp

{
C

(2)>
ALM,1(Φ0 + Φ1zt+K−2

+ vt+K−2) + Φ0 + Φ1zt+K−2 + vt+K−2)>C
(2)
ALM,2(Φ0 + Φ1zt+K−2 + vt+K−2)

}]
(18)
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Et+K−2 [exp()] = exp
(
C

(2)>
ALM,1(Φ0 + Φ1zt+K−2) + (Φ0 + Φ1zt+K−2)>C

(2)
ALM,2(Φ0 + Φ1zt+K−2)

)
× Et+K−2

[
exp

{
C

(2)>
ALM,1 vt+K−2 + v>t+K−2C

(2)
ALM,2(Φ0 + Φ1zt+K−2)+

+ (Φ0 + Φ1zt+K−2)>C
(2)
ALM,2v

>
t+K−2 + v>t+K−2C

(2)
ALM,2vt+K−2

}]
= exp

(
C

(2)>
ALM,1(Φ0 + Φ1zt+K−2) + (Φ0 + Φ1zt+K−2)>C

(2)
ALM,2(Φ0 + Φ1zt+K−2)

)
× Et+K−2

[
{expC

(2)>
ALM,1vt+K−2 + v>t+K−2C

(2)
ALM,2(Φ0 + Φ1zt+K−2)+

(Φ0 + Φ1zt+K−2)>C
(2)
ALM,2v

>
t+K−2}× exp

{
v>t+K−2C

(2)
ALM,2vt+K−2

}]
= exp

(
C

(2)>
ALM,1(Φ0 + Φ1zt+K−2) + (Φ0 + Φ1zt+K−2)>C

(2)
ALM,2(Φ0 + Φ1zt+K−2)

)
× Et+K−2[exp

{
v>t+K−2C

(2)
ALM,2vt+K−2

}
× exp

{(
C

(2)>
ALM,1 + 2(Φ0 + Φ1zt+K−2)>C̃ALM,2

(2)
)

vt+K−2

}
(19)

where

C̃ALM,2

(2)

≡ 1

2

(
C

(2)
ALM,2 + C

(2)′

ALM,2

)
There are two approximations in order to evaluate the above expectation operator: the

complementary and the exact approximation
Following the complementary approximation:

lim
∆t→0

exp
{

v>t+K−2C
(2)
ALM,2vt+K−2

}
/dt = exp

{
tr
(
C

(2)
ALM,2Συ

)}
Thus equation (19):

exp
(
C

(2)>
ALM,1(Φ0 + Φ1zt+K−2) + (Φ0 + Φ1zt+K−2)>C

(2)
ALM,2(Φ0 + Φ1zt+K−2) + tr(C

(2)
ALM,2Συ)

)
× Et+K−2

[
exp

{(
C

(2)>
ALM,1 + 2(Φ0 + Φ1zt+K−2)>C̃ALM,2

(2)
)

vt+K−2

}]
(20)

where:

Et+K−2

[
exp

{(
C

(2)>
ALM,1 + 2(Φ0 + Φ1zt+K−2)>C̃ALM,2

(2)
)

vt+K−2

}]
=

= exp

{
1
2

(
C

(2)>
ALM,1 + 2(Φ0 + Φ1zt+K−2)>C̃ALM,2

(2)
)>

Συ

(
C

(2)>
ALM,1 + 2(Φ0 + Φ1zt+K−2)>C̃ALM,2

(2)
)}

(21)

56



Substituting equations (20) and (21) into (17) the equation in the continuous time limit:

lim
∆t→0

Et+K−2

[
exp

{
C

(2)>
ALM,1zt+K−1 + z>t+K−1

}]
=

exp
{
tr
(
C

(2)
ALM,2Συ

)
+D

(t+K−2)
ALM,0 + 1

2
D

(t+K−2)
ALM,1 Σ−1

υ D
(t+K−2)>
ALM,1

} (22)

where:

D
(2)
ALM,0 = C

(2)>
ALM,1(Φ0 + Φ1zt+K−2) + (Φ0 + Φ1zt+K−2)>C

(2)
ALM,2(Φ0 + Φ1zt+K−2) (23)

D
(2)
ALM,1 = C

(2)>
ALM,1 + 2(Φ0 + Φ1zt+K−2)>C̃ALM,2

(2)

(24)

Following the exact evaluation (Campbell et al., 2003) :

Et+K−2

[
exp

{
C

(2)>
ALM,1zt+K−1 + z>t+K−1C

(2)
ALM,2zt+K−1

}]
=

= |Συ |−
1
2∣∣∣Σ−1

υ −2D
(t+K−2)
ALM,2

∣∣∣ 12 exp
(
D

(t+K−2)
ALM,0 + 1

2
D

(t+K−2)
ALM,1

(
Ω(1)

)−1
D

(t+K−2)>
ALM,1

) (25)

where:

Ω(1) ≡
(
Σ−1
υ − 2D

(2)
ALM,2

)−1

=
(
Σ−1
υ − 2(1− γ)B

(1)
ALM,2

)−1

(26)

We replace expectations (22) or (25) into the value function (17) :

max
α

(2)
t+K−2

{(1− γ) (1
2
α

(2)>
ALM,t+K−2

(
σ2
A −ΣAAα

(2)
ALM,t+K−2

)
+B

(1)
ALM,0 +D

(t+K−2)
ALM,0 + 1

2
D

(t+K−2)
ALM,1 Ω(1)D

(t+K−2)>
ALM,1 )}

(27)

The first order condition with respect to α
(2)
ALM,t+K−2 is the following

(1− γ)
(
ΦA

0 + ΦA
1 zt+K−2 + 1

2
σ2
A −ΣAAα

(2)
ALM,t+K−2

)
+ 1

2

(
∂D

(t+K−2)>
ALM,1

∂α
(2)
ALM,t+K−2

)> (
Ω(1) + Ω(1)>)D(t+K−2)>

ALM,1 =

= (1− γ)
(
ΦA

0 + ΦA
1 zt+K−2 + 1

2
σ2
A −ΣAAα

(2)
ALM,t+K−2

)
+

(
∂D

(t+K−2)>
ALM,1

∂α
(2)
ALM,t+K−2

)>
Ω̃(1)D

(t+K−2)>
ALM,1 = 0

In addition: (
∂D

(t+K−2)>
ALM,1

∂α
(2)
ALM,t+K−2

)>
= (1− γ) HA

Thus the first order condition takes the following form:
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ΦA
0 + ΦA

1 zt+K−2 + 1
2
σ2
A −ΣAAα

(2)
ALM,t+K−2 + HAΩ̃(1)

(
C

(2)
ALM,1 + 2C̃ALM,2

(2) (
ΦA

0 + ΦA
1 zt+K−2

))
=

= ΦA
0 + ΦA

1 zt+K−2 + 1
2
σ2
A −ΣAAα

(2)
ALM,t+K−2+

(1− γ)Ω̃
(1)
A




0

α
(2)
ALM,t+K−2

−1
0

+B
(1)>
ALM,1 + 2B̃

(1)
ALM,2 (Φ0 + Φ1zt+K−2)

 =

= ΦA
0 + ΦA

1 zt+K−2 + 1
2
σ2
A −ΣAAα

(2)
ALM,t+K−2+

(1− γ)
(
Ω̃

(1)
AAα

(2)
ALM,t+K−2 − Ω̃

(1)
AL + Ω̃

(1)
A B

(1)>
ALM,1 + 2Ω̃

(1)
A B̃

(1)
ALM,2 (Φ0 + Φ1zt+K−2)

)
=

=
(

(1− γ)Ω̃
(1)
AA −ΣAA

)
α

(2)
ALM,t+K−2 + ΦA

0 +

(1− γ)
(
−Ω̃

(1)
AL + Ω̃

(1)
A

(
B

(1)′

ALM,1 + 2B̃
(1)
ALM,2Φ0

))
+

+1
2
σ2
A +

(
ΦA

1 + 2(1− γ)Ω̃
(1)
A B̃

(1)
ALM,2Φ1

)
zt+K−2 = 0

Therefore, solving for α
(2)
ALM,t+K−2, the optimal weight of the investor at time t+K − 2

is an affine function of zt+K−2

α
(2)
ALM,t+K−2 = A

(2)
ALM,0 + A

(2)
ALM,1zt+K−2 (28)

where

A
(2)
ALM,0 =

(
ΣAA − (1− γ)Ω̃

(1)
AA

)−1
(

ΦA
0 +

1

2
σ2
A + (1− γ)

(
−Ω̃

(1)
AL + Ω̃

(1)
A

(
B

(1)>
ALM,1 + 2B̃

(1)
ALM,2Φ0

)))
(29)

A
(2)
ALM,1 =

(
ΣAA − (1− γ)Ω̃

(1)
AA

)−1 (
ΦA

1 + 2(1− γ)Ω̃
(1)
A B̃

(1)
ALM,2Φ1

)
(30)

or (replacing Ω̃(1) with Συ)

A
(2)
ALM,0 =

1

γ
Σ−1
AA

(
ΦA

0 +
1

2
σ2
A + (1− γ)

(
−ΣAL + ΣA

(
B

(1)>
ALM,1 + 2B̃

(1)
ALM,2Φ0

)))
(31)

A
(2)
ALM,1 =

1

γ
Σ−1
AA

(
ΦA

1 + 2(1− γ)ΣAB̃
(1)
ALM,2Φ1

)
(32)

Value function in the two periods remaining (τ = 2)

Substituting the optimal portfolio policy at time t+K − 2 , into the objective function
(14), we define the value function with coefficients B

(2)
ALM,0, B

(2)
ALM,1 and B

(2)
ALM,2, which are
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different from the coefficients B
(2)
ALM,0, B

(2)
ALM,1 and B

(2)
ALM,2 of the value function at time

t+K − 1.

Et+K−2

[
exp {(1− γ)rF,t+K−1} exp

{
(1− γ)

(
B

(1)
ALM,0 +B

(1)
ALM,1zt+K−1 + z>t+K−1B

(1)
ALM,2zt+K−1

)}]
=

= exp{(1− γ)
(

1
2
α

(2)>
ALM,t+K−2

(
σ2
A −ΣAAα

(2)
ALM,t+K−2

)
+B

(1)
ALM,0

)
+

D
(t+K−2)
ALM,0 + 1

2
D

(t+K−2)
ALM,1 Ω(1)D

(t+K−2)>
ALM,1 }

= exp
{

(1− γ)
(
B

(2)
ALM,0 +B

(2)
ALM,1zt+K−2 + z>t+K−1B

(2)
ALM,2zt+K−2

)}
(33)

where:

B
(2)
ALM,0 = −ΦL

0 + A
(1)>
ALM,0

(
ΦA

0 + 1
2
σ2
A

)
+ 1−γ

2

(
Ω

(1)
LL − 2A

(1)>
ALM,0Ω̃

(1)
AL

)
−

−1
2
A

(1)>
ALM,0

(
ΣAA − (1− γ)Ω̃

(1)
AA

)−1

A
(1)
ALM,0 +B

(1)
ALM,0 +

(
B

(1)
ALM,1 + Φ>0 B

(1)
ALM,2

)
Φ0+

+(1− γ)B
(1)
ALM,1

(
−Ω̃

(1)
L + 1

2
Ω(1)B

(1)>
ALM,1 + Ω̃

(1)
A A

(1)
ALM,0

)
+

+(1− γ)Φ>0

(
2Λ(1)Φ0 −Ξ

(1)>
L + Ξ

(1)>
A A

(1)
ALM,0 + Γ(1)B

(1)>
ALM,1

) (34)

B
(2)
ALM,1 = −ΦL

1 + A
(1)>
ALM,0

(
ΦA

1 −
(
ΣAA − (1− γ)Ω̃

(1)
AA

)
A

(1)
ALM,1

)
+(

ΦA
0 + 1

2
σ2
A − (1− γ)Ω̃

(1)
AL

)>
A

(1)
ALM,1+

+
(
B

(1)
ALM,1 + 2Φ>0 B̃

(1)
ALM,2

)
Φ1 + (1− γ)

(
B

(1)
ALM,1Ω̃

(1)>
A + Φ>0 Ξ

(1)>
A

)
A

(1)
ALM,1+

+(1− γ)
(

4Φ>0 Λ̃(1) −Ξ
(1)
L + A

(1)>
ALM,0Ξ

(1)
A +B

(1)
ALM,1Ξ(1)

)
Φ1

(35)

B
(2)
ALM,2 = A

(1)>
ALM,1

(
ΦA

1 − 1
2

(
ΣAA − (1− γ)Ω

(1)
AA

)
A

(1)
ALM,1

)
+

+Φ>1

(
B

(1)
ALM,2 + 2(1− γ)Λ(1)

)
Φ1+

+(1− γ)Φ>1 Ξ
(1)>
A A

(1)
ALM,1

(36)

and the auxiliary matrices Λ(1) = B̃ALM,2

(1)

Ω(1)B̃ALM,2

(1)>
, Γ(1) = 2B̃ALM,2

(1)

Ω̃(1),Ξ(1) =
Γ(1)>

or (replacing Ω̃(1) with Συ)

B
(2)
ALM,0 = −ΦL

0 + A
(1)>
ALM,0

(
ΦA

0 + 1
2
σ2
A

)
+ 1−γ

2

(
Σ

(1)
LL − 2A

(1)>
ALM,0Σ

(1)
AL

)
− γ

2
A

(1)>
ALM,0ΣAAA

(1)
ALM,0+

+B
(1)
ALM,0 +

(
B

(1)
ALM,1 + Φ>0 B

(1)
ALM,2

)
Φ0 + (1− γ)B

(1)
ALM,1

(
−Σ

(1)>
L + 1

2
ΣυB

(1)>
ALM,1 + Σ

(1)>
A A

(1)
ALM,0

)
+

+(1− γ)Φ>0

(
2Λ(1)Φ0 −Ξ

(1)>
L + Ξ

(1)>
A A

(1)
ALM,0 + Γ(1)B

(1)>
ALM,1

)
(37)
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B
(2)
ALM,1 = −ΦL

1 + A
(1)>
ALM,0

(
ΦA

1 − γΣAAA
(1)
ALM,1

)
+
(
ΦA

0 + 1
2
σ2
A − (1− γ)ΣAL

)>
A

(1)
ALM,1+

+
(
B

(1)
ALM,1 + 2Φ>0 B̃

(1)
ALM,2

)
Φ1 + (1− γ)

(
B

(1)
ALM,1Σ

>
A + Φ>0 Ξ

(1)>
A

)
A

(1)
ALM,1+

+(1− γ)
(

4Φ>0 Λ̃(1) −Ξ
(1)
L + A

(1)>
ALM,0Ξ

(1)
A +B

(1)
ALM,1Ξ

(1)
)

Φ1

(38)

B
(2)
ALM,2 = A

(1)>
ALM,1

(
ΦA

1 −
γ

2
ΣAAA

(1)
ALM,1

)
+ Φ>1

(
B

(1)
ALM,2 + 2(1− γ)Λ(1)

)
Φ1

+ (1− γ)Φ>1 Ξ
(1)>
A A

(1)
ALM,1 (39)

and the auxiliary matrices Λ(1) = B̃ALM,2

(1)

ΣυB̃ALM,2

(1)>
, Γ(1) = 2B̃ALM,2

(1)

Συ, Ξ(1) =
Γ(1)>.

The previous formulas provide the link between the policy and value functions in any
two successive periods. The general recursive solution is obtained by making the following
replacements: (1)→ (τ − 1) and (2)→ (τ − 2).

Finally, the optimal dynamic portfolio choice literature converges to the following corner
solutions:

1. Log utility investor (γ = 1)
Substituting γ = 1 into the general recursive solution, then the portfolio choice coefficients
become

A
(τ)
ALM,0 = Σ−1

AA

(
ΦA

0 +
1

2
σ2
A

)
∀τ

A
(τ)
ALM,1 = Σ−1

AAΦA
1 ∀τ

Thus, the recursive equations (11), (12) and (13) become

B
(1)
ALM,0 = −ΦL

0 + A
(1)>
ALM,0

(
ΦA

0 +
1

2
σ2
A −

1

2
ΣAAA

(1)
ALM,0

)
= −ΦL

0

B
(1)
ALM,1 = −ΦL

1 + A
(1)>
ALM,0

(
ΦA

1 −ΣAAA
(1)
ALM,1

)
+
(
ΦA

0 + 1
2
σ2
A

)>
A

(1)
ALM,1

= −ΦL
1 +

(
ΦA

0 + 1
2
σ2
A

)>
Σ−1
AAΦA

1

B
(1)
ALM,2 = A

(1)>
ALM,1

(
ΦA

1 −
1

2
ΣAAA

(1)
ALM,1

)
=

1

2
ΦA>

1 Σ−1
AAΦA

1

and the recursive equations (37), (38) and (39) become
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B
(τ)
ALM,0 = −ΦL

0 + A
(τ−1)>
ALM,0

(
ΦA

0 + 1
2
σ2
A − 1

2
ΣAAA

(τ−1)
ALM,0

)
+B

(τ−1)
ALM,0 +

(
B

(τ−1)
ALM,1 + Φ>0 B

(τ−1)
ALM,2

)
Φ0

= −ΦL
0 +

(
ΦA

0 + 1
2
σ2
A

)>
Σ−1
AA

(
ΦA

0 + 1
2
σ2
A

)
+B

(τ−1)
ALM,0 +

(
B

(τ−1)
ALM,1 + Φ>0 B

(τ−1)
ALM,2

)
Φ0

B
(τ)
ALM,1 = −ΦL

1 + A
(τ−1)>
ALM,0

(
ΦA

1 −ΣAAA
(τ−1)
ALM,1

)
+
(
ΦA

0 + 1
2
σ2
A

)>
A

(τ−1)
ALM,1 +

(
B

(τ−1)
ALM,1 + 2Φ>0 B̃

(τ−1)
ALM,2

)
Φ1

= −ΦL
1 +

(
ΦA

0 + 1
2
σ2
A

)>
Σ−1
AAΦA

1 +
(
B

(τ−1)
ALM,1 + 2Φ>0 B̃

(τ−1)
ALM,2

)
Φ1

B
(τ)
ALM,2 = A

(τ−1)>
ALM,1

(
ΦA

1 −
1

2
ΣAAA

(τ−1)
ALM,1

)
+ Φ>1 B

(τ−1)
ALM,2Φ1 =

1

2
ΦA>

1 Σ−1
AAΦA

1 + Φ>1 B
(τ−1)
ALM,2Φ1

2. Investor with infinite risk aversion (γ →∞)
Substituting γ →∞ into the general recursive solution, we obtain the limits of the portfolio
choice coefficients in equations (7) and (8) :

A
(1)
ALM,0 → Σ−1

AAσAL

A
(1)
ALM,1 → 0

Thus, the recursive equations (11), (12) and (13) converge to

B
(1)
ALM,0 → −∞

B
(1)
ALM,1 → −ΦL

1 + σ>ALΣ−1
AAΦA

1

B
(1)
ALM,2 → 0

Based on the aforementioned results, we can infer that Ω(1) (see equation 26) will be
O(1) in the coefficient of risk aversion and, consequently, each iteration will result in a
non–negligible adjustment to the covariance matrix of the shocks. Thus

Ω(1) →
(
Σ−1
υ −ΦA>

1 Σ−1
AAΦA

1

)−1

Next, the equations (29) and (30) can be written in the following form, respectively

A
(2)
ALM,0 =(
1
γ
ΣAA −

(
1
γ
− 1
)

Ω̃
(1)
AA

)−1 (
1
γ
ΦA

0 + 1
2γ
σ2
A +

(
1
γ
− 1
)(
−Ω̃

(1)
AL + Ω̃

(1)
A

(
B

(1)>
ALM,1 + 2B̃

(1)
ALM,2Φ0

)))
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A
(2)
ALM,1 =

(
1

γ
ΣAA −

(
1

γ
− 1

)
Ω̃

(1)
AA

)−1(
1

γ
ΦA

1 + 2

(
1

γ
− 1

)
Ω̃

(1)
A B̃

(1)
ALM,2Φ1

)
Equations (29) and (30) converge to

A
(2)
ALM,0 → −

(
Ω̃

(1)
AA

)−1 (
−Ω̃

(1)
AL + Ω̃

(1)
A B

(1)
ALM,1

)
A

(2)
ALM,1 → 0

and equations (34), (35) and (36) converge to

B
(2)
ALM,0 → −∞

B
(2)
ALM,1 = −ΦL

1 + A
(1)>
ALM,0Φ

A
1 +B

(1)
ALM,1Φ1 − γB

(1)
ALM,1Ω̃

(1)>
A A

(1)
ALM,1

−γ
(
−Ξ

(1)
L + A

(1)>
ALM,0Ξ

(1)
A +B

(1)
ALM,1Ξ

(1)
)

Φ1

B
(2)
ALM,2 → 0

since Λ(1) ∼ O (γ−2), Γ(1) ∼ O (γ−1) and Ξ(1) ∼ O (γ−1).
As the agent becomes infinitely risk averse the policy function becomes decoupled from

the intercept vector Φ0 of the vector autoregressive model. Furthermore, the portfolio al-
location for an infinitely risk averse investor at t + K − 1 is the Liability Hedge Portfolio
(LHP) for the myopic one-period problem.

3. No predictability (Φ1 = 0)
Substituting Φ1 = 0 into the general recursive solution, then the portfolio choice coeffi-

cients in equations (7) and (8) become

A
(1)
ALM,0 =

1

γ
Σ−1
AA

(
ΦA

0 +
1

2
σ2
A − (1− γ)σAL

)
A

(1)
ALM,1 = 0

Thus, the recursive equations (11), (12) and (13) become

B
(1)
ALM,0 = −ΦL

0 +A
(1)>
ALM,0

(
ΦA

0 +
1

2
σ2
A

)
+

1− γ
2

(
σ2
L − 2A

(1)>
ALM,0σAL

)
− γ

2
A

(1)>
ALM,0ΣAAA

(1)
ALM,0

B
(1)
ALM,1 = 0

62



B
(1)
ALM,2 = 0

and equations (31) and (32) become

A
(2)
ALM,0 =

1

γ
Σ−1
AA

(
ΦA

0 +
1

2
σ2
A + (1− γ)

(
−ΣAL + ΣA

(
B

(1)>
ALM,1 + 2B̃

(1)
ALM,2Φ0

)))

A
(2)
ALM,1 =

1

γ
Σ−1
AA

(
ΦA

1 + 2(1− γ)ΣAB̃
(1)
ALM,2Φ1

)
and the recursive equations (37), (38) and (39) become

B
(2)
ALM,0 = −ΦL

0 +A
(1)>
ALM,0

(
ΦA

0 +
1

2
σ2
A

)
+

1− γ
2

(
Σ

(1)
LL − 2A

(1)>
ALM,0Σ

(1)
AL

)
−γ

2
A

(1)>
ALM,0ΣAAA

(1)
ALM,0+B

(1)
ALM,0

B
(2)
ALM,1 = 0

B
(2)
ALM,2 = 0

In the case of no predictability, the portfolio allocation is constant across time and de-
termined only by the coefficient AALM,0 and the value of the problem is determined by the
coefficient BALM,0.
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Appendix B

Figure B1: Term Structure of Risk of Assets and Liabilities
This Figure presents the annualized volatility per period of T-bills, equities, nominal bonds
and inflation-indexed (I-I) Bonds (liabilities) in an investment horizon of 300 months. The
framework comprises of four asset classes and state variables. The covariance matrix per

period T is given by the formula Σ(k) =
T∑
j=1

((
j−1∑
i=0

Φi
1

)
Σ

(
j−1∑
i=0

Φi
1

)>)
where the vectors

(zt+1 + zt+2 + . . . + zt+K) follow a VAR (1) process;Φ1 and Σ denote the square coefficient
matrix and variance covariance matrix of innovations, respectively.

 

(a) T-bills
 

(b) Equities

 

(c) Nominal Bonds

 

(d) Real Bonds
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Figure B2: Term Structure of Correlation of Assets with Liabilities
This Figure presents the correlation per period of T-bills, equities and nominal bonds with
inflation-indexed (I-I) Bonds (liabilities). The covariance matrix per period is given by the

formula Σ(k) =
T∑
j=1

((
j−1∑
i=0

Φi
1

)
Σ

(
j−1∑
i=0

Φi
1

)>)
where the vectors (zt+1+zt+2+. . .+zt+K) follow

a VAR (1) process;Φ1 and Σ denote the square coefficient matrix and variance covariance
matrix of innovations, respectively.

 

(a) T-bills
 

(b) Equities

 

(c) Nominal Bonds
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Table B1: Distribution of the Terminal funding Ratio under a Myopic Asset
Liability Management for Constrained Investor
Panel A reports the distribution of the terminal funding ratio of the myopic (M-ALM) strategy, in the absence
of funding ratio constraints. Panel B reports the distribution of the terminal funding ratio of the myopic
(M-ALM) strategy in the presence of minimum and maximum funding ratio constraints 90% and 135%,
respectively. Panel C reports the distribution of the terminal funding ratio of the myopic (M-ALM) strategy
in the presence of minimum and maximum funding ratio constraints 100% and 135%, respectively. By
distribution we denote the minimum (min), the 2.5%, 25%, 50%, 75%, 97.5% quantiles, the maximum(max)
and the average (mean) of the terminal funding ratio. γ denotes the investor’s coefficient of relative risk
aversion.The portfolio weighting scheme is constrained.

Panel A. Distribution of the funding ratio without funding ratio constraints

γ = 5

Horizon(months) min 2.50% 25% 50% 75% 97.50% max mean

60 0.14 0.93 0.83 0.97 1.11 1.63 7.12 0.99

120 0.13 0.40 0.70 0.95 1.27 2.58 16.88 1.07

180 0.06 0.54 0.64 0.98 1.52 3.93 18.03 1.25

240 0.03 0.20 0.61 1.05 1.83 6.16 33.57 1.54

300 0.01 0.88 0.60 1.13 2.20 9.08 54.87 1.94

Panel B. Distribution of the funding ratio with minimum(90%) and funding ratio constraints (135%)

γ = 5

Horizon(months) min 2.50% 25% 50% 75% 97.50% max mean

60 0.90 0.93 0.95 1.02 1.14 1.35 1.35 1.06

120 0.90 0.90 0.96 1.07 1.21 1.35 1.35 1.09

180 0.90 0.90 0.97 1.08 1.22 1.35 1.35 1.10

240 0.90 0.90 0.97 1.08 1.22 1.35 1.35 1.10

300 0.90 0.91 0.96 1.08 1.22 1.35 1.35 1.10

Panel C. Distribution of the funding ratio with minimum(100%) and funding ratio constraints(135%)

γ = 5

Horizon(months) min 2.50% 25% 50% 75% 97.50% max mean

60 1.00 1.00 1.04 1.10 1.21 1.35 1.35 1.13

120 1.00 1.00 1.05 1.14 1.58 1.35 1.35 1.16

180 1.00 1.00 1.05 1.15 1.26 1.35 1.35 1.16

240 1.00 1.00 1.05 1.15 1.26 1.35 1.35 1.16

300 1.00 1.00 1.05 1.15 1.26 1.35 1.35 1.16
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Table B2: Distribution of the Terminal Funding Ratio under a Dynamic Asset
Liability Management for Constrained Investor
Panel A reports the distribution of the terminal funding ratio of the dynamic (D–ALM) strategy, in the
absence of funding ratio constraints. Panel B reports the distribution of the terminal funding ratio of
the dynamic (D–ALM) strategy in the presence of minimum and maximum funding ratio constraints 90%
and 135%, respectively. Panel C reports the distribution of the terminal funding ratio of the dynamic
(D–ALM) strategy in the presence of minimum and maximum funding ratio constraints 100% and 135%,
respectively. By distribution we denote the minimum (min), the 2.5%, 25%, 50%, 75%, 97.5% quantiles, the
maximum(max) and the average (mean) of the terminal funding ratio. γ denotes the investor’s coefficient of
relative risk aversion. The portfolio weighting scheme is constrained.

Panel A. Distribution of the funding ratio without funding ratio constraints

γ = 5

Horizon(months) min 2.50% 25% 50% 75% 97.50% max mean

60 0.46 1.11 1.15 1.31 1.53 2.16 3.77 1.37

120 0.61 0.99 1.49 1.86 2.39 4.05 9.97 2.04

180 0.70 1.00 2.02 2.76 3.83 7.59 19.23 3.16

240 0.85 0.98 2.85 4.16 6.17 13.82 38.94 5.03

300 0.91 1.15 4.07 6.37 9.99 24.08 71.53 8.05

Panel B. Distribution of the funding ratio with minimum(90%) and funding ratio constraints (135%)

γ = 5

Horizon(months) min 2.50% 25% 50% 75% 97.50% max mean

60 0.90 1.11 1.16 1.27 1.34 1.35 1.35 1.23

120 0.90 0.99 1.25 1.31 1.35 1.35 1.35 1.28

180 0.90 1.00 1.26 1.32 1.35 1.35 1.35 1.29

240 0.90 0.98 1.26 1.31 1.35 1.35 1.35 1.29

300 0.90 1.05 1.26 1.31 1.35 1.35 1.35 1.29

Panel C. Distribution of the funding ratio with minimum(100%) and funding ratio constraints(135%)

γ = 5

Horizon(months) min 2.50% 25% 50% 75% 97.50% max mean

60 1.00 1.11 1.19 1.29 1.34 1.35 1.35 1.25

120 1.00 1.01 1.26 1.32 1.35 1.35 1.35 1.29

180 1.00 1.00 1.26 1.32 1.35 1.35 1.35 1.29

240 1.00 1.00 1.26 1.32 1.35 1.35 1.35 1.29

300 1.00 1.05 1.26 1.32 1.35 1.35 1.35 1.30
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