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ABSTRACT  

The majority of industrial production processes can be divided into a series of object manipulation and handling tasks that 

can be adapted for robots. Through significant advances in compliant grasping, sensing and actuation technologies, robots 

are now capable of carrying out human-like flexible and dexterous object manipulation tasks. During operation, robots are 

required to position objects within tolerances specified for every operation in an industrial process. The ability of a robot 

to meet these tolerances is the critical deciding factor that determines where the robot can be integrated and how proficient 

the robot can carry out high-precision tasks. Therefore, improving the positioning accuracy of robots can lead to new 

avenues for their integration into production industries. Given that tolerances in manufacturing processes are in the order 

of tens of micrometres or less, robots should guarantee high positioning accuracy when manipulating objects. The direct 

method of ensuring high accuracy is by introducing an additional measurement system(s) that can improve the inherent 

joint-angle-based robot position determination. In this paper, we present a high-accuracy robotic pose measurement 

(HARPM) system based on coordinate measurements from a multi-camera vision system. We also discuss the integration 

of measurements obtained by absolute distance interferometry and how the interferometric measurements can complement 

the vision system measurements. The performance of the HARPM system is evaluated using a laser interferometer to 

investigate robotic positions along a trajectory. The performance results show that the HARPM system can improve the 

positioning accuracy of robots from hundreds to a few tens of micrometres. 
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1. INTRODUCTION 

The widespread utilisation of robots in production industries is primarily fuelled by the enhanced economic feasibility they 

offer in efficiently executing routine tasks1. Robots have become indispensable in automating various repetitive operations, 

resulting in increased productivity and cost-efficiency for businesses2. These tasks often involve robot end-effector 

manipulation operations, where manipulation of the robot end-effector to accurately attain desired positions and 

configurations is paramount. To proficiently execute multiple manipulation tasks, it is important for robot positioning to 

not only be repeatable but also accurate3–5. However, achieving high-accuracy robotic positioning remains a challenge, 

which needs to be addressed to expand the industrial use of robots. 

 

Robots play a crucial role in the manufacturing industries for the execution of tasks such as welding, deburring, polishing, 

grinding, drilling, and inspecting, among others6. The economic viability of these industries increasingly relies on the 

successful deployment of robots for these tasks. To enhance the potential of robots, it is essential to improve their 

positioning accuracy to broaden their adoption in more demanding applications. The common method of improving robot 

positioning accuracy is primarily focused on reducing kinematic errors, which often overlook non-kinematic errors, 

thereby limiting the achievable absolute positioning accuracy7,8. To address this limitation, additional measurement 

sensors, alongside the inherent robot joint-angle-based sensors, have been suggested9. Multi-camera systems operating at 

distances of less than one metre have been demonstrated to enhance robotic positioning; however, even with such systems, 

positioning errors can still reach magnitudes of hundreds of micrometres or even millimetres9–11.  

 



 

 
 

 

To address challenges in robot accuracy, we introduce a high-accuracy robotic pose measurement (HARPM) system that 

uses a pre-calibrated spatially encoded artefact for robot coordinate measurement. Using the encoded artefact, the HARPM 

system derives coordinate measurements from the algorithms and methods introduced in our previous work12,13. The 

method for coordinate measurement relies on improved detection, localisation and error reduction strategies applied to 

multi-view images of the artefact. The comprehensive detection and modelling scheme outlined the work12 is shown to 

improve existing methodologies and reduce measurement errors. From accurate photometric positions of target features 

on the artefact, three dimensional (3D) reconstruction of the features is obtained through triangulation. 

 

In this paper, we extend the application of artefact-based coordinate metrology to include robotic pose measurement and 

analysis of six degrees of freedom errors. From the coordinate positions of multiple target features on the artefact, 

orientation information can be derived and tracked. Through increased accuracy, the proposed HARPM improves the 

measurement of robotic absolute position and orientation, opening up new possibilities for robotic operations with 

increased accuracy, efficiency and reliability in manufacturing processes and other critical applications. 

 

The following sections provide the methods employed for the proposed HARPM system, where robot positional and 

angular errors are determined. Investigations of the pose measurement results obtained from verification experiments are 

described in the results section. By analysing the methodology and results, we aim to demonstrate the effectiveness of the 

HARPM method in enhancing robotic absolute position, thus paving the way for the broader adoption of robots in 

manufacturing processes and other applications. 

2. METHODS 

To accurately measure the pose of a robot, a multi-view measurement approach is employed, which involves capturing 

images from multiple viewpoints of sphere targets attached to a robot's end-effector. The proposed HARPM solution builds 

on the vision-based detection and 3D coordinate metrology techniques introduced in our previous work12. The vision-

based approach uses an artefact with pre-calibrated dimensions and an improved detection algorithm12, enabling accurate 

localisation and identification of the artefact sphere features on the robot end-effector. 

 

The uncertainty of measurements obtainable by vision-based methods is usually higher than the uncertainties achievable 

by interferometric methods. A frequency scanning interferometry (FSI) based technique, shown in Figure 1d), is proposed 

for robotic measurements alongside the vision system13. The concept involves the use of FSI for measurement of the more 

accuracy-demanding part of the robot trajectory. However, the integration of a FSI system has some drawbacks, such as 

limited signal intensity, the need for high-bandwidth hardware integration and concerns regarding eye safety14. 

 

2.1 Vision-based pose measurement 

For the spherical artefact targets shown in Figure 1b), using their 3D coordinate positions obtained by the vision-based 

evaluation12, we can track six degrees of freedom changes in the robot end-effector. The pre-calibration dataset15 for the 

artefact plays a crucial role in this process, providing essential information, such as the sphere-to-sphere distances and 

diameters. The calibrated dimensions of the eleven sphere targets (𝑖 = 1,2, …11) fully define the target 3D coordinate 

positions 𝒙
𝑖

𝐴𝑗
 in the artefact coordinate system at the robot’s 𝑗th position. As shown in Figure 1a), the artefact coordinate 

system 𝐴𝑗𝐶𝑆, which is arbitrarily affixed to the centroid of the eleven targets, moves together with the artefact at the twenty 

positions (𝑗 = 1,2, …20) along the path of the robot trajectory. 

 

The vision system shown in Figure 1c) consists of three camera views 𝐴, 𝐵, and 𝐶 where the stationary vision coordinate 

system is attached to viewpoint 𝐴. The vision system described elsewhere12 uses images from 𝐴𝐵, 𝐵𝐶 and 𝐵𝐶 binocular 

view pairs to triangulate 3D coordinates. The robot path begins from the path number 𝑗 = 1 where the artefact coordinate 

system starts at the frame 𝐴1𝐶𝑆 and moves to an intermediate frame 𝐴𝑗𝐶𝑆. Similar to the vision coordinate system, the 



 

 
 

 

robot coordinate system, from which the joint-sensor-based position measurement of the robot is referenced, is also 

stationary.   

 

Figure 1. Diagram showing the coordinate system in a) of measurement artefact attached to a robot end-effector in b) where robotic 

measurements are carried out using the vision system in c) and the FSI system in d). 

We assign 𝒙𝑖,𝑗
𝑉  as the 3D coordinate positions of the target 𝑖 measured by the vision system at the 𝑗th robot position along 

the path shown in Figure 1. At the 𝑗th robotic position, the robotic pose is defined by six unknown parameters consisting 

of three coordinates of position and three angular orientations of the artefact coordinate system. When the robotic pose is 

evaluated with respect to the vision coordinate system, we can relate target positions 𝒙𝑖,𝑗
𝑉  and 𝒙

𝑖

𝐴𝑗
 through  

[𝒙𝑖

𝐴𝑗

1
] = 𝑻𝑉

𝐴𝑗
⋅ [

𝒙𝑖,𝑗
𝑉

1
] , (1) 

where 𝑇𝑉

𝐴𝑗
 is the transformation matrix of the vision coordinate system with respect to the artefact coordinate system. The 

information about the six pose parameters is included in this transformation matrix. Since a minimum of three targets need 

to be detected in order to evaluate 𝑇𝑉

𝐴𝑗
, the artefact is designed to allow visibility of three or more targets from any 

orientation12.  Figure 2a) and b) show the detected sphere targets at the measured coordinate positions in Figure 2d). The 

spheres are identified using the pre-calibrated artefact dataset. For identification purposes, the adjacency of the sphere 

targets is expressed in graphs, where the detected spheres are subgraphs of the complete artefact graph, as shown in Figure 

2e) and 2f). 

 

From Equation (1), where the transformation matrix 𝑇𝑉

𝐴𝑗
 is unknown, the problem of determining the rigid transform given 

paired 3D points is encountered. The transformation matrix can be calculated by singular value decomposition (SVD) 



 

 
 

 

when three or more targets are detected16. First, the points 𝒙
𝑖

𝐴𝑗
 and 𝒙𝑖,𝑗

𝑉  are translated to their respective centroids and the 

rotation matrix of 𝑇𝑉

𝐴𝑗
 is evaluated by SVD. Then, the translation in 𝑇𝑉

𝐴𝑗
 necessary to satisfy Equation (1) is evaluated 

using the evaluated rotation matrix. 

 

While determining the pose or transformation of the end-effector with respect to the vision system is valuable, it may not 

directly provide actionable insights for industrial processes. In practical applications, the goal is often to achieve a specific 

robotic path or trajectory. Therefore, it becomes critical to evaluate how the actual robotic path aligns with the desired 

path.  

 

 

Figure 2. Detected and measured sphere coordinates in d), identified as spheres 9, 10 and 11, are shown from views A in a) and B 

in b). The subgraph of the identified spheres in e) is overlaid on the overall graph of the pre-calibrated artefact in c). Reflector of a 

laser interferometer is attached to the target to measure displacements. 

 

2.2 Evaluation of pose measurement error 

By comparing the measured poses along a robot trajectory with the desired poses, we can assess the accuracy and 

performance of the robot in executing the desired path. This evaluation allows for the identification of any discrepancies 

or deviations from the intended trajectory, from which adjustments can be made accordingly. Pose measurement errors are 

investigated using a linear robotic path where errors in position and orientation are examined. In this section, the two 

experiments for robotic displacement and pose measurement are discussed.  

 

In the first experiment, the displacements of a Universal Robots UR5 robotic arm are investigated by evaluating errors in 

the vision-based HARPM system and the robot in-built (joint-angle-based) measurements. The experiment involves 

measuring twenty steps of 15 mm robot displacements which is repeated five times. Here, a laser interferometer is 

employed to measure reference displacements. The laser interferometer used in the experiment is the Renishaw XL-80 

model to measure displacements in the measurement travel range of 300 mm. At this specific measurement range, the 

expanded uncertainty provided by the manufacturer corresponds to ± 0.3 μm (k=2), at the environmental conditions of 



 

 
 

 

0°C, 1150 mbar and 50% relative humidity. For the laser interferometer displacement 𝑠𝑗
𝐿𝐼 at the 𝑗th robot position (𝑗 > 1), 

the displacement error of the vision system is expressed as 

𝑒𝑣 = ‖𝒙𝑖,𝑗
𝑉 − 𝒙𝑖,𝑗−1

𝑉 ‖ − 𝑠𝑗
𝐿𝐼 . (2) 

Similarly, for the in-built robotic coordinate measurement at the 𝑗th position 𝒙𝑗
𝑅, the displacement error can be expressed 

as 

𝑒𝑟 = ‖𝒙𝑗
𝑅 − 𝒙𝑗−1

𝑅 ‖ − 𝑠𝑗
𝐿𝐼 . (3) 

 

The second experiment investigates the errors in the six degrees of freedom of motion associated with the vision system 

pose measurements of the artefact that is attached to a linear actuator. The experiment involves applying nominal step 

displacements of 25 mm to the linear actuator within its 300 mm travel range. The 𝑥-directional measurements obtained 

from the vision system are then compared to the reference measurements provided by the laser interferometer to obtain 

the linear error 𝛿𝑥. The other linear error components of the measurements are the straightness errors which are the 𝑦-

directional (𝛿𝑦) and 𝑧-directional (𝛿𝑧) error components. The directions of the errors are shown in Figure 1.  

 

Considering the artefact (and robot end-effector) coordinate system 𝐴1𝐶𝑆 that moves to a new coordinate system 𝐴𝑗𝐶𝑆 

through a linear displacement of 𝑥 = 𝑠𝑗
𝐿𝐼 along the 𝑥-direction of 𝐴1𝐶𝑆, we can represent the transformation matrix of 

𝐴𝑗𝐶𝑆 with respect to 𝐴1𝐶𝑆 as  

𝑻𝐴𝑗

𝐴1 = 𝑻𝑉
𝐴1 ⋅ 𝑻𝑉

𝐴𝑗
−1

, (4) 

where 𝑻𝑉

𝐴𝑗
 can be determined using the method described in Section 1.1. The linear direction of motion, contained in 𝑻𝐴𝑗

𝐴1  

is used to reevaluate 𝑻𝐴𝑗

𝐴1  using Equation (4) after the orientation of 𝐴1𝐶𝑆 is aligned such that the 𝑥-direction of 𝐴1𝐶𝑆 

coincides with the linear direction of motion of the actuator. The linear error components [𝛿𝑥 𝛿𝑦 𝛿𝑧]⊤ are then evaluated 

from the elements of 𝑻𝐴𝑗

𝐴1  as 

[

𝛿𝑥

𝛿𝑦

𝛿𝑧

] =

[
 
 
 
 𝑇𝐴𝑗

𝐴1(4,1) − 𝑠𝑗
𝐿𝐼

𝑇𝐴𝑗

𝐴1(4,2)

𝑇𝐴𝑗

𝐴1(4,3) ]
 
 
 
 

, (5) 

where 𝑇𝐴𝑗

𝐴1(𝑛,𝑚) denotes the element at the 𝑛th row and the 𝑚th column of the transformation matrix 𝑇𝐴𝑗

𝐴1 . The angular 

error components [𝜖𝑥 𝜖𝑦 𝜖𝑧]⊤ represent the roll, pitch and yaw degrees of freedom of motion and can be expressed by 

the Euler angles given by 

[

𝜖𝑥

𝜖𝑦

𝜖𝑧

] =

[
 
 
 
 
 
 
 
 
 
 

tan−1 (
𝑇𝐴𝑗

𝐴1(3,2)

𝑇𝐴𝑗

𝐴1(3,3)
)

tan−1

(

 −
𝑇𝐴𝑗

𝐴1(3,1)

√𝑇𝐴𝑗

𝐴1(3,2)2 + 𝑇𝐴𝑗

𝐴1(3,3)2

)

 

tan−1 (
𝑇𝐴𝑗

𝐴1(2,1)

𝑇𝐴𝑗

𝐴1(1,1)
)

]
 
 
 
 
 
 
 
 
 
 

. (6) 

 



 

 
 

 

Equations (5) and (6) present the degree-of-freedom errors of the vision system and indicate the performance of the vision 

system in accurately measuring the pose of the artefact. 

3. RESULTS AND DISCUSSION 

In this section, we present the analysis of results using the pose error evaluation methods described in Section 2.2. First, 

we use the displacement errors described in Equations (2) and (3) to examine the distribution of errors, as shown in Figure 

3. Specifically, Figure 3a) displays the errors in displacements obtained by the in-built robot coordinates, while Figure 3b) 

showcases the errors in displacements obtained by the HARPM system coordinates. Upon observation, it becomes evident 

from the standard deviation that the vision coordinates are more accurate than those obtained by the in-built measurement 

coordinate systems. This finding highlights the capability of the HARPM vision system to enhance the precision of robotic 

positions. Additionally, it should be noted that in applications where the robot is subjected to additional forces, the accuracy 

of the in-built coordinates tends to deteriorate due to added kinematic errors. However, the vision system remains 

unaffected by such errors.  

 

The displacement results compare the error of the robot's inherent measurement system with that of the vision system for 

unidirectional displacement measurements, using reference displacements measured by the laser interferometer. This 

experimental comparison provides evidence that the vision measurement system can outperform the internal robot's 

measurement system. 

 

Figure 3. Displacement error distribution of a) in-built robot coordinates and b) measured vision system coordinates for 15 mm 

displacements using 𝐴𝐵, 𝐵𝐶 and 𝐵𝐶 binocular vision. The standard deviation of the error distributions are given by the indicated 

values of 𝜎. 

 

In addition to assessing the unidirectional distance error, a comprehensive evaluation of the six degrees of freedom error 

is conducted. This evaluation involves measuring the pose of the artefact and comparing it to the nominal trajectory. To 

achieve this, we utilise an actuator that provides linear motion. The linear actuator has been designed to minimise errors, 

with straightness errors below 20 μm and angular errors below 1 mrad17,18. By employing this linear motion, we can 

accurately quantify any variations in the measured pose of the artefact across all six degrees of freedom. 

 

The values of the linear and angular pose error measured by the HARPM are shown in Figure 4. Figures 4a), 4b) and 4c) 

show the linear error components while Figures 4d), 4e) and 4f) show the angular error components for the 𝐴𝐵, 𝐴𝐶 and 

𝐵𝐶 binocular vision systems illustrated in Figure 1c). The results shown in Figure 4 indicate that the 𝐵𝐶 binocular vision 

system results in slightly higher error compared to the other parings, probably because the 𝐵𝐶 vision system has the 



 

 
 

 

shortest baseline. The 3D coordinates triangulated from short baselines have been reported to be less accurate18. The 𝐴𝐵 

and 𝐴𝐶 binocular vision systems have linear distance errors that are mostly less than 100 μm, straightness errors that are 

below 200 μm and angular errors that largely less than 1.5 mrad. It is noteworthy that the straightness and angular errors 

contain the kinematic errors of the linear actuator. Besides excluding binocular systems with short baselines, pose errors 

can be further reduced when a trinocular vision system that integrates the three binocular vision systems is implemented. 

 

 

Figure 4. Linear and angular error results of the measured artefact pose along a linear path. For 𝐴𝐵, 𝐴𝐶 and 𝐵𝐶 binocular vision 

systems, the errors shown are a) linear distance error, b) straightness error along 𝑦-direction, c) straightness error along 𝑧-direction, 

d) yaw angular error, e) pitch angular error and f) roll angular error. 

 

4. CONCLUSION 

Acknowledging the demand for the use of robots in high-precision industrial tasks, we present high-accuracy robotic pose 

measurement to improve industrial manipulation and handling of objects. We verify the performance of the measurement 

system using an interferometer and a linear actuator. The measurement system can be integrated into industrial robots for 

use in high-precision tasks where tolerance requirements are not guaranteed without the measurement system. From the 

performance verification of the system, it is possible to measure pose changes in the scale of 10 μm for linear displacements 

and 0.1 mrad for rotational displacements. It is also shown that the proposed coordinate measurement system outperforms 

the robot in-built coordinate system for displacement measurements. Further research and development in this area could 

lead to significant advancements in robotic metrology and enable the realisation of precise and flexible object manipulation 

tasks in various industries. 
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