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ABSTRACT 

 
This paper presents the results of a recent experimental research study where metallic (high strength 

steel cord) fabric jackets (MF jackets) were utilized for the seismic upgrading of substandard 

reinforced concrete members. The proposed intervention method and its practical application are 

described in detail. Specimens were cantilevers with a square cross section, representing a typical 

building column at half scale. The length of the test region corresponded to half the span of a typical 

storey building column under lateral sway. Due to lack of adequate seismic detailing the specimens 

were susceptible to various modes of failure such as web shear failure, buckling of compression 

reinforcement or failure in the lap splice region. The as-built specimens were first damaged up to 

failure after being subjected to combined axial loading and cyclic lateral displacement reversals 

simulating seismic loading. In the next phase, specimens were retrofitted with both composite and 

metallic fabric jackets and then tested again under the same load history.  The results of this 

preliminary experimental research program show that the metallic fabric jackets performed in an 

excellent way compared to G- and C-FRP jackets, increasing substantially both the strength and the 

deformation capacity of the repaired members. The excellent mechanical performance of the metallic 

fabrics combined with many of the advantages of the synthetic wraps (easy handling, no change in 

member dimensions) and the intrinsic favourable properties of steel (fire resistance), underline the 

potential of this novel material in repair/strengthening of reinforced concrete as an alternative option 

for jacketing applications.  
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INTRODUCTION 
 

Earthquakes worldwide have repeatedly demonstrated the poor seismic performance of old, 

substandard reinforced concrete construction. Retrofitting is the only viable option in order to upgrade 

the level of seismic protection provided by the existing building stock. The evolution of material 

technology has contributed towards this direction. Nowadays, Fiber Reinforced Polymer (FRP) 

jacketing is used extensively worldwide as a fast and efficient retrofit solution through jacketing of 

substandard reinforced concrete members. A new intervention method is introduced in this paper 

where instead of FRP fabrics, metallic fabrics that consist of high strength steel cords are utilized. The 

metallic fabrics combined with cementitious grout that serves as the connecting matrix, create a new 

composite system that is simple and fast in its application. In this paper the technology of the 

proposed method and the application procedure entailed are described in detail. 

 An experimental program was conducted in order to identify the efficiency of metallic fabrics 

(MF) as jacketing devices for reinforced concrete. Five half-scale reinforced concrete columns were 

tested under combined axial load and a reversed cyclic lateral displacement history simulating 

earthquake effects. Prior to retrofitting, specimens were first damaged under combined axial 

compression and reversed cyclic shear-flexure up to failure. The specimens were representative of 

older construction practices having poor reinforcement detailing such as insufficient transverse 

reinforcement (inadequately anchored, sparse stirrups, smooth bars) and lap-splices in the plastic 

hinge region. The metallic fabric jackets were applied to three of the available specimens, whereas 

glass- and carbon-FRP jackets were applied respectively to the other two specimens for comparison. 

The retrofit procedure and the behaviour of the retrofitted specimens are described in detail in the 

paper. Test results demonstrate the effectiveness of the introduced intervention method compared to 

established methods such as G- and C-FRP jacketing.  

 
EXPERIMENTAL PROGRAM 

 
Test setup; specimen geometry; test parameters 

The experimental program included five test assemblies each of which comprised one specimen tied 

back to back with a dummy column of identical external geometry including the footing stub, which 

was however much stronger than the test specimen (Fig. 1). This support specimen was reused to 

conduct all the tests and underwent negligible damage throughout the experimental program. The 

system of the two specimens (test and support) resembles a simply supported beam with a stub in the 
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center. All assemblies were tested with simple hinge supports at their ends. Transverse load was 

applied through the middle stub under displacement control using a predefined history of 

displacement reversals. Axial load was applied directly on the metal cap through a pinned support; in 

these cases the axial load was applied to its full magnitude first and was subsequently maintained at 

that level while the system was cycled in the transverse direction. The reason why there was no 

monolithic connection between the test column and the support column was so as to achieve realistic 

bond conditions and anchorage of the longitudinal bars in the test column. The relative displacements 

were measured for both the test and the support specimen from fixed reference points using Linear 

Variable Displacement Transducers (LVDTs).   

The square cross section cantilever specimens are representative of a typical building column 

from column mid–height between floors to the beam-column connection at a scale of 1:2. The 

specimens were designed without seismic detailing, and were representative of typical construction 

found in reinforced concrete frames in Southern Europe dating from the 1970’s. The geometry and 

reinforcement detailing of a typical column and support column are illustrated in Figure 2. The cross-

sectional dimension was 200mm square and the length of the shear span, Ls, was 900 mm. The 

longitudinal reinforcement consisted of 8Ø12, S500 bars distributed uniformly around the perimeter of 

the cross-section, with a clear cover of approximately 15mm. The nominal concrete compressive 

strength was fck=20MPa (Table 1). Transverse reinforcement comprised smooth steel, rectangular 

shaped stirrups of nominal diameter Ø6, S220.  Stirrup ends were simply lapped at the corner. 

Reinforcement details of specimens are depicted in Figure 2.  

Dimensioning and detailing of the old-type specimens followed the German DIN 1045 which 

was the design code used extensively in Europe from 1960’s up to the mid-eighties. The materials 

used for the construction of the test specimens followed the requirements for seismic applications; 

primary reinforcement should be StIIIb, stirrups should be at least StI and concrete quality should be 

at least B225 (corresponding to a nominal concrete strength of 16MPa – classified as C16 in EC2). 

The stirrups used were smooth bars Ø6 having a nominal yield strength of 220MPa (S220), which 

corresponds to StI. The longitudinal bars had nominal yield strength of 500MPa (S500) that 

corresponds to steel quality StIIIb. The nominal compressive strength of concrete fck=20MPa, i.e., 

within the range of values recommended in the period of interest. 

In the present study, the original specimens were designed so as to develop various brittle or 
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semi-brittle modes of failure in order to simulate the performance of older structures with poor 

detailing in strong earthquakes. Here, test specimens were constructed in a scale of 1:2. Thus, the 

8Ø12 used as longitudinal reinforcement in the 200mm square cross-section corresponded to a 

percentage of longitudinal reinforcement of ρs=2.26%. As an area ratio of steel, this is within the range 

encountered in the lower-storey columns of medium rise residential buildings; in the full-scale 

reference column, the cross section would be 400mm square, reinforced with 12Ø20. According with 

DIN1045, the maximum value of longitudinal reinforcement ρs,max given as a percentage over the 

statically required concrete section should be ρs,max=6%. The minimum stirrup bar diameter was Ø5 

and the maximum stirrup spacing smax would be the minimum of the cross-section size and 12 times 

the longitudinal bar diameter (i.e. 12x20=240 mm.  In the scaled specimen this is 120 mm).  

To encourage the occurrence of a particular sequence of failure which was the study 

objective, the Capacity-Based Prioritizing framework1 was applied in the design of the old-type 

specimens. In this framework the strength of a substandard specimen may be controlled by a number 

of alternative modes of failure that may occur either prematurely or may prevail after flexural yielding 

but before attainment of the ultimate flexural capacity which is the classical mode anticipated in 

modern design. In the absence of well detailed stirrups, as in the case of the test specimens (smooth 

Ø6, S220, open stirrups), either a shear failure, or failure in the lap splice region could occur before or 

even after flexural yielding. In case that the dependable shear strength was sufficient to support 

flexural response at large ductility demands, then lap–splice failure could prevail. This type of 

behavior is entirely controlled by stirrup spacing. Thus, specimens tested in this series with a very 

sparse arrangement of stirrups (with stirrup spacing equal to 110mm2) failed abruptly in shear after 

flexural yielding. In the case of the lap-spliced specimens (L36Db_a, L36Db_b, LN36Db_a), the 

specimen design objective was to produce failure in the lap-splice region after flexural yielding. The 

stirrup spacing was determined at 70mm(≈6Db), which was enough to avoid shear failure, but also to 

prevent early post-yield buckling of longitudinal bars (based on results from past research3,4,5, when 

stirrup spacing exceeds 68Db, buckling of longitudinal reinforcement may occur before the concrete 

core may even mobilize the full confining action of the ties.) The stirrup spacing in case of specimens 

FN_a and FN_b was defined at 50mm(≈4Db) since the design for those specimens was aimed at a 

flexure-controlled behaviour.  
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Specimen identification codes denote the intended mode of failure (F for flexural mode, L for 

Lap-splice failure; in the latter the numeral 36Db represents the length of the splice given in multiples 

of the main bar diameter, Db), N indicates that axial load has been applied (when this was the case, N 

was 8% of the column squashing load Agfc/, in the range of 6 tons), whereas index a or b marks the 

loading history type considered.  Spacing of the transverse reinforcement was differentiated from 

50mm to 70mm. A summary of the properties of the test units is presented in Table 1.  

The specimens were subjected to two alternative types of displacement histories, “a” and “b”. 

In both histories the displacement amplitude was given as fraction of the estimated tip yield 

displacement of the specimens, Δy(=14mm). Three-cycle increments were applied at each 

displacement level in both directions. In particular for displacement history “a”, the increase of 

displacement from cycle to cycle was 0.25Δy, 0.50Δy, 0.75Δy, 1.00Δy, 1.50Δy, 2.00Δy, 2.50Δy, 

continuing up to 4.0Δy. In displacement history “b” which resembled near field earthquake effects 

displacement was increased significantly from cycle to cycle with a sudden large pulse following the 2 

Δy cycle (0.50Δy, 1.00Δy, 2.00Δy-one cycle, 5.00Δy). The same types of displacement histories were 

used to test specimens both before and after retrofit.  Displacement capacity was associated with a 

20% drop of strength in the post-peak branch of the envelope curve drawn by connecting the peak 

points of the experimental hysteresis loops.   

The main objective of this experimental study was to assess the potential of using metallic 

fabric (high strength steel cords) jackets as an alternative strengthening system to FRP jackets (glass 

or carbon). The primary benefit of the steel chord as compared with the glass or carbon fiber lies 

foremost in the redundancy of the system which is partly owing to the use of a cementitious matrix 

rather than epoxy. Other benefits are, the better resistance to fire (the jacket is immersed in the 

cementitious matrix and it is not externally bonded, so it is protected better than the conventional FRP 

jacket) and the greater familiarity that structural engineers have with steel. A secondary objective was 

to investigate the influence of the type of applied displacement history on the response of the 

retrofitted specimens. In light of the above, specimens were divided into two groups based on the 

parameter under investigation. The first group comprised lap-spliced specimens all tested with 

displacement history “b” where the parameter under investigation was the comparative effectiveness 

of the three alternative methods of jacketing; glass-, carbon-FRP jackets vs metallic fabric jackets 

(RgLN36Db_b, RcLN36Db_b, RmLN36Db_b). The second group, comprising specimens FN_a and 
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FN_b both retrofitted with metallic fabric jackets, were subjected to displacement histories “a” and “b”, 

in order to investigate the response of this innovative composite system to the different displacement 

histories.  

The as-built specimens were first damaged up to failure after being subjected to simulated 

seismic loading. In the next phase, the pre-damaged specimens were retrofitted and then loaded 

again under cyclic lateral displacement reversals simulating earthquake effects with constant axial 

load.  

Materials used in retrofitting  

Both glass and carbon unidirectional fiber systems were used in the retrofit procedure. The properties 

of the FRP plies and of the epoxy matrix utilized are presented in Table 2 and Table 3, respectively. 

Two types of high carbon steel cords with a micro-fine brass also known as AO-brass (Adhesion 

Optimised) coating were utilized. The 12X wire cord is made by twisting two different individual wire 

diameters together in 12 strands with over twisting 1 wire around the bundle (Fig. 3a). The 3X2 wire 

cord is made by twisting 5 individual wires together – 3 straight filaments wrapped by 2 filaments at a 

high twist angle (Fig. 3b). The density of both 3X2 and 12X consisted of 9.06 cords per centimetre, 

which is considered high density tape. The geometrical and mechanical properties of single roving 

(cord) are summarized in Table 4. Cementitious grouts played a double role in the retrofit procedure 

(Table 5). They were used as pour material to replace damaged (spalled) concrete. Moreover, they 

were used as substrate material for the application of the metallic fabric jackets.    

 
 

BEHAVIOUR OF EXISTING MEMBERS 
 

The retrofit design was based on the behaviour of the existing members which were tested up to 

failure prior to repair. Specimens L36Db_a and L36Db_b were tested without axial compression. At the 

attainment of ductility μΔ=2 the lap-splice failed with wide longitudinal cracks running over the lapped 

region in the compression and tension faces of the element (Fig. 4). Specimen L36Db_a completed 3 

cycles at a ductility level of μΔ=2.0, whereas specimen L36Db_b completed 1 cycle at ductility μΔ=5.0. 

The mode of failure of specimen LN36Db_a was markedly different from that observed in the other 

lap-spliced columns, due to the influence of the axial loading. During the initial cycles of loading (up to 

a ductility of μΔ=1.5), flexural cracking was observed, with a predominant crack forming around the 

perimeter of the column cross-section at the face of the foundation block.  With increasing ductility 
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demand damage was concentrated in the plastic hinge region. In the end of the test (after completing 

3 cycles at ductility μΔ=2.5) the bottom row of longitudinal reinforcing bars buckled within the first 

stirrup spacing (Fig. 4).  Specimen FN_a exhibited initially a flexure-controlled behaviour up to the first 

cycle at ductility μΔ=1.5. From that point onwards the behaviour became increasingly controlled by 

shear action, marked by diagonal cracking and damage accumulation in the plastic hinge zone.   At 

the end of the first cycle with ductility μΔ=2.5, the nominal deformation capacity of the specimen had 

been exhausted (marked by 20% unrecoverable loss of strength past the peak point in the envelope).   

At that point the test was terminated so that repair could be viable (Fig. 5). In case of specimen FN_b, 

the behaviour was flexure controlled up to the first cycle at ductility μΔ=1.0. In the following cycles, the 

behaviour was dominated by shear (diagonal cracking and disintegration). Failure was attained at the 

end of first cycle at a ductility μΔ=5.0 (Fig. 5). 

 

DESIGN OF RETROFIT SCHEMES 
 

The retrofit design in case of specimens L36Db_a and L36Db_b was intended to alleviate the 

likelihood of  failure in the lap-splice region. FRP jacketing was the intervention method selected for 

these two specimens: L36Db_a was retrofitted using glass fabric and is referred to hereon as 

Rg_LN36Db_b (R stands for retrofitted, g: glass-FRP, _b refers to the displacement history used in 

testing the retrofitted specimen).  L36Db_b was retrofitted with carbon wraps and is referred to hereon 

as Rc_LN36Db_b (c: carbon-FRP). The jackets were wrapped externally so that the fibers were 

oriented normal to the anticipated splitting cracks over a length of 400mm from the support (this 

length was sufficient to cover the lap-spliced region).  

The number of FRP plies required was determined based on a methodology developed by 

Pantazopoulou and Tastani6 for repair/strengthening of anchorage/lap splices in reinforced concrete 

using externally bonded FRP jackets. The required bond stress, fbdem, for a lap-splice length, Lb, is 

estimated from: 
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where Db(=12mm) the bar diameter, fy(=500MPa) the yield strength of steel and Lb(=36Db=430mm) 

the anchorage length. The average bond stress fb,d  developing along the lateral surface of the bar 

equals:  
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where  =2μ  and μ  is the coefficient of friction at the steel-concrete interface taken equal to 0.91, 

Nb(=8) is the number of bars (or pairs of spliced bars) laterally restrained by the transverse pressure, 

Db(=12mm) the bar diameter and σlat
c, σlat

f the radial pressure exerted upon the lateral surface of the 

bar by the concrete cover and jacketing reinforcement, respectively. c(=15mm) is the concrete cover, 

ft’(=1.5MPa) the tensile strength of concrete, kf
anch(=1) is the effectiveness coefficient for the jacket, n tf 

is the jacket thickness (tf=0.36mm), Ef(=76000MPa)  is the elastic modulus of the FRP wrap, 

b(=200mm) is the cross-section width (orthogonal to the applied shear force). The number of the FRP 

layers is defined as:  
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where εhc(=0.0024) is the is the surface strain value associated with attainment of peak bond stress 

along the bar.  

 The three layers of composite fabric applied in case of specimens RgLN36Db_b and 

RcLN36Db_b provided resistance to alternative failure modes such as shear and buckling and 

increased the confinement (increase of deformation capacity). The required number of layers for 

avoiding the alternative failure modes appears in Table 6. In case of specimen RgLN36Db_b, one 

layer of glass fabric suffices to avoid shear failure and buckling (for ductility level equal to μΔ=2.5), 

whereas two layers are required for ductility equal to μΔ=2.5. The most critical mode of failure was 

used to determine the final number of FRP layers applied in the retrofitted specimens (Table 6).  

No specific guidelines or directions are currently available regarding detailing of externally 

bonded metallic fabric jackets as this is a novel application. To maintain similar stiffness as with the 

carbon jacket in the direction of the main fibers, a single ply of metallic fabric was used in specimens 

LN36Db_b, FN_a and FN_b.  To facilitate immersion of the metallic fabric in the relatively stiff 

cementitious grout that served as a matrix, the cords in the fabric used were spaced at a lateral 

distance of 5 mm. 
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MECHANICAL CHARACTERISTICS OF THE FRP JACKETED MEMBERS 
 

The three layers applied in the retrofitted specimens (RgLN36Db_b, RcLN36Db_b) modified the 

hierarchy of the failure modes with the failure in flexure to occur first (Table 7).  

Shear strength: The shear strength (Vshear) which comprises the concrete shear resistance (Vc) and 

the shear resistance of the FRP jacket (Vw
f) increased significantly, leading to failure in flexure 

(Vflex<Vshear) (Table 7). The shear resistance of the FRP jacket, Vw
f, given the number of the FRP 

layers, n, is calculated from:    
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where Kf
conf is the effectiveness coefficient of the jacket, n is the number of FRP layers, tf is the FRP 

ply thickness, Ef is modulus of elasticity of the FRP, εf
eff is the effective tensile strain of the FRP jacket 

and h is the height of the cross-section.   

Confinement – Deformation capacity increase: The three layers provided an increase in the 

displacement ductility, μΔ, due to the significant level of confinement provided. The volumetric ratio of 

the FRP jacket, ρfv, is calculated given the number of the FRP layers applied: 
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where n is the number of FRP layers, tf is the FRP ply thickness and b, h the width and height of the 

cross-section. The passive confining pressure in the cross-section, σlat
conf, which corresponds to a 

level of displacement ductility, μΔ, is given by:  
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where ρfv is the volumetric ratio of the FRP jacket, Kf
conf is the effectiveness coefficient of the jacket, Ef 

is modulus of elasticity of the FRP, εf
eff is the effective tensile strain of the FRP jacket and h is the 

height of the cross-section and  fc/ is the concrete compressive strength.  

Confinement – bar buckling delay: In case of bar-buckling delay due to confinement, the passive 

confining pressure developed, σlat
conf, is estimated based on the curvature ductility, μφ, which is a 

function of displacement ductility, μΔ: 
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where εsy is the steel strain at yield, fc/ is the concrete compressive strength, Ls shear span length, μΔ  

the displacement ductility and lp the plastic hinge length.  

 
 

RETROFIT PROCEDURE 
 
Preparation of specimens 

After the first phase of loading, the loose concrete fragments were removed by hand using chisel and 

hammer. In specimens L36Db_b, L36Db_a and LN36Db_a, the concrete core was preserved as shown 

in Figure 6. However, in specimens FN_a and FN_b, concrete had spalled and disintegrated 

completely in the damaged area due to the extended crack patterns, and for this reason it was entirely 

removed (Fig. 7). Success of this phase was critical for the next steps of retrofitting and required 

caution to avoid damaging the healthy concrete parts and the longitudinal reinforcement and 

persistence to progress systematically through the complex crack system. 

 In the next phase moulds were constructed whereby the repairing cementitious high strength 

grout was poured in the voids created after removal of the concrete fragments (Cementitious grout 1, 

Table 4). After casting of the replacement grout, specimens were kept in the moulds for 48 hours. To 

avoid premature failure of the externally bonded FRP jackets owing to stress concentrations at the 

specimen’s corner, corners were chamfered using a concrete grinder, as recommended for practice7. 

The radius of the rounded corners was in the order of 25mm. Before the application of the FRP 

jackets, the surfaces of the repaired specimens were cleaned thoroughly by pressurized air.  

FRP jackets 

Procedures used for the application of the FRP fabrics followed the manufacturer’s directions.  The 

wet lay-up method was used for the application of the glass fabric (Glass, Table 2). The concrete 

surface was sealed using a primer (Epoxy 2, Table 3) and the dry glass fibers were impregnated by 

using epoxy resin (Epoxy 1, Table 3). Once saturated, the fabric was wrapped directly on the concrete 

member. Additional layers were applied while the epoxy on the underlying layer was still tacky. The 

dry lay-up method was applied in the case of the carbon sheets (Carbon, Table 2). The epoxy resin 

(Epoxy 2, Table 3) was applied directly onto the substrate (column) as a primer and the fabric was 

wrapped directly on the concrete member, using a rolling brush to squeeze out the epoxy and any 

trapped air between the rovings of the fabric. Additional carbon plies were added on the member by 

applying first the epoxy resin (Epoxy 2, Table 3).  Particular attention was placed to secure uniform 
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impregnation of the fibers in the epoxy matrix, to eliminate entrapped air voids without wrinkling or 

distortion of the predominantly hoop directed fibers. The fabric (both glass and carbon) was 

continuous (three layers=2.4m) and the last jacket layer was lapped over one full-side of the cross-

section as per the manufacturer’s instructions for field applications of FRP sheets.  

Metallic fabric jackets 

In developing this jacketing procedure the aim was to use familiar materials that are easily accessible 

while maintaining the simplicity and easy handling of the FRP wraps.  To improve impregnation of the 

metallic fibers in the intended matrix, the structure of the original metallic fabric was modified as 

shown in Figure 8 to reduce its density; an added objective was to reduce the axial stiffness of the 

metallic fabric to the level of a carbon sheet. The modified density of both the 3X2 and 12X consisted 

of 1.85 cords per centimetre, which may be considered a low to medium density. The distance 

between successive cords was 0.5 cm; thus cords and the supporting plastic net formed a grid of 

square openings that was considered satisfactory for uninhibited flow of the cementitious grout 

through the metallic fabric. This was an essential requirement for the success of the method, since 

grouts are more ductile than epoxy whereas the poor resistance of epoxy to fire and other aggressive 

agents render its possible replacement by common cementitious grout a desirable goal.  Redundant 

cords were removed manually, paying attention not to damage the underlying net that essentially 

keeps the cords in position. Prior to its placement the fabric was bent manually with little effort as 

shown in Figure 8c in order to facilitate the jacketing application. The procedure used for mounting the 

metallic fiber jacket is illustrated in steps in Figure 9. After removing the moulds the specimens were 

in the state shown in Figure 9a. The substrate was saturated with water before proceeding to the 

application of the cementitious grout. A repairing cementitious high strength grout that could be 

trowelled (Cementitious grout 2 - Table 5) was applied directly onto the substrate (column). The 

metallic fabric was placed immediately after each side of specimen was trowelled with the 

cementitious grout. The grout was squeezed out between the rovings of the fabric by applying 

pressure manually, using a rolling brush (Fig. 9b). The last jacket layer was lapped over one full-side 

of the cross-section. A final coat of the cementitious grout was applied to the exposed surface (Fig. 

9c). The effect on the geometric dimensions of the jacketed specimens was small – the grout layer 

including the metallic jackets was 10mm thick, so that the final cross-section after retrofit was 220mm 

square.  
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TEST RESULTS OF THE RETROFITTED SPECIMENS 
 
 

The primary experimental results are summarised in the present section, including observations from 

the failure mode characteristics and the damage patterns recorded on the specimens.  

RgLN36Db_b: In the early stages of loading (μΔ=0.5), cracks formed at the connection between the 

retrofitted specimen and the footing which continued around the perimeter of the cross-section of the 

cantilever. In the subsequent displacement cycles damage was localised in this area with increasing 

displacement. No damage was observed on the glass fabric. Actually, the glass fabric prevented the 

development of diagonal cracks in the jacketed region, so that no actual plastic hinge was visible, 

whereas bar pullout prevailed. The experiment was terminated at the second cycle of μΔ=5.0 since a 

20% drop of strength was observed (Figure 10a). The load vs. displacement diagram for the system 

of the two (retrofitted and support) specimens is shown in Figure 12a. The maximum load in both 

directions of loading was reached at the cycle with ductility μΔ=2.0. The behaviour of the system with 

the retrofitted specimen is compared to the original one in Figure 12a. The glass-FRP wrapping 

successfully increased both the strength and deformation capacity of the entire system.  

RcLN36Db_b: The behaviour of specimen RcLN36Db_b resembled that of specimen RgLN36Db_b.  

The same pattern of cracks was observed, which started to form during the first cycle at ductility 

μΔ=1.0.  As in the case of glass fabric, the carbon fabric prevented the development of a plastic hinge 

region and pullout was observed. The experiment was terminated in the second cycle at μΔ=5.0 

(Figure 10b). The load vs. displacement diagram for the system of the two (retrofitted and support) 

specimens is shown in Figure 12b. The maximum load in both directions of loading was reached at 

the cycle with ductility μΔ=2.0. Moreover, the behaviour of the system with the retrofitted specimen is 

compared to the original one in Figure 12b. The carbon-FRP wrapping improved substantially the 

behaviour of the retrofitted member over its original response.  As in the case of the glass jacket, by 

suppressing inelastic deformation in the nominal critical region (where a plastic hinge would be 

expected to form) all inelasticity was localised at the face of the support, thereby increasing the 

demand and the level of damage in the main bar anchorage inside the footing.  

RmLN36Db_b: Shear-flexural cracks formed along the length of specimen RmLN36Db_b during the 

first cycle at ductility μΔ=1.0. Additional cracks formed along the concrete cover and at the column to 

footing connection at ductility μΔ=2.0.  At that displacement level, the system of the retrofitted and the 
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support specimens attained their strength (i.e., peak load).  The existing cracks became wider and bar 

buckling took place at the bottom layer of longitudinal bars during the first cycle at ductility μΔ=5.0. 

Rupture of the bottom corner bar was observed (Figure 11b).  Figure 11(a) illustrates the specimen’s 

condition at failure (2nd cycle at μΔ=5.0), whereas Figure 11(b) focuses in the damaged region after 

removal of the loose concrete. Although no special measures were taken to improve connection of the 

external cementitious coating (that served as a matrix for the metallic fabric jacket) with the specimen, 

no relative slip was observed at the interface. Figure 12c demonstrates the efficiency of this new 

composite system (metallic fabric jacket) in improving the behaviour of the existing specimen.   

RmFN_a: The first crack formed at the face of the connection of specimen RmFN_a with the footing 

during the first cycle at ductility μΔ=0.5. When the displacement reached the value of μΔ=1.0, flexural 

cracks formed in the front side extending to the back side of the specimen. New cracks formed as the 

displacement increased till the second cycle at ductility μΔ=2.5. From this point onwards, the cracks 

stabilized and the damage concentrated at the crack that had formed initially at the connection with 

the footing. The test was terminated after completing the third cycle at ductility μΔ=4.0. No actual 

plastic hinge was visible, whereas bar pullout prevailed. It important to note that due to the significant 

strength increase of the specimen imparted by the metallic jacket, the upper threshold set for the 

available load cell was exceeded in the pull direction, thereby limiting the magnitude of transverse 

displacement that could be further imposed in the pull direction (Figure 14a). Overall the metallic 

jacket enhanced substantially the behaviour of the system imparting additional strength, enabling the 

retrofitted element to retain this strength over a large range of deformation (i.e. enhanced its 

deformation capacity).  

RmFN_b: Flexural cracks formed up to the first cycle at μΔ=1.0. Some cracks appeared along the 

concrete cover at displacement μΔ=2.0. Damage was detected within the region marked by a deep 

flexural crack that formed at the second stirrup spacing and the crack formed at the face of the 

connection with the footing.  During the fourth cycle at ductility μΔ=5.0, the metallic fabric located 

within the damaged area was ruptured (Figure 13b). The behaviour of the retrofitted specimen was 

substantially improved over its original pre-damaged properties but also over the strength and 

deformation capacity of retrofitted specimens jacketed with FRP wraps (Figure 14b). For one more 

time the single layer of the metallic fabric jacket proved quite efficient to recover and enhance the 

available strength and deformation capacity.  
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It is evident from the preceding that the retrofitted specimens attained an increased strength 

and deformation capacity as compared with the original pre-jacketing values. The strength and 

deformation capacities in both the push and the pull directions are summarised in Table 8 for the 

retrofitted specimen assemblies as ratios of the respective capacities of each original specimen 

assembly (an assembly comprises a test specimen tied back to back with a dummy specimen and 

tested as a simply supported beam under a midpoint load). Displacement capacity in all cases is 

associated with a 20% postpeak strength reduction.  

The behaviour of the three retrofitted lap-spliced specimens under displacement history b is 

compared in Figure 15a. The metallic fabric jacket exhibited excellent behaviour compared to the 

glass- and carbon-FRP jackets. One layer of this composite material (comprising the cementitious 

grout matrix and the high strength steel cord) sufficed to improve the strength and deformation 

capacity of the existing member to the same levels as was achieved with the three layers of glass- 

and carbon-FRP jackets. The behaviour of two specimens with identical retrofit, RmFN_a and 

RmFN_b, under the two different displacement histories, a and b, is compared in Fig. 15b. The higher 

damage potential displacement history b over that of history a is evident in the results.     

 
 

SUMMARY AND CONCLUSIONS 
 

The experimental program conducted comprised five half scale reinforced concrete columns which 

were tested under reversed cyclic lateral displacements and axial load. The columns which had 

reinforcement details typical of older construction were damaged before retrofit. An innovative 

intervention method, the metallic fabric jackets, were applied and compared to the G- and C-FRP 

jackets. Metallic fabric jackets made of high strength steel cords were utilized in combination with 

conventional cementitious grouts. The potentiality of this new composite jacketing system as a 

strengthening/repair procedure was illustrated from the experimental evidence. The behaviour of the 

retrofitted specimens was modified substantially by altering the modes of failure observed in the pre-

damage state. The retrofitted specimens increased both their strength and deformation capacity. The 

comparison with the FRP jackets (glass and carbon) demonstrated the efficiency of the metallic 

jackets. The critical role that the load history has on failure mode, deformation capacity attained and 

sustained strength was highlighted by the experimental evidence.   
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Table 1 Geometry and reinforcement details of the test units 
 

 
 
Table 2 Nominal material properties of FRP plies  

Description 
Thickness tf, 

mm 
Density, 
(gr/m2) 

Tensile strength 
ffu, MPa 

Tensile molulus Ef, 
MPa 

Ultimate elongation εfu, 
(mm/mm) 

Glass 0.36 935 2300 76000 0.028 

Carbon 0.11 200 3900 230000 0.015 

 
Table 3 Properties of epoxy matrix used for application of the FRP wraps 

Description 
Tensile 

strength*, MPa 
Flexural 

Modulus*, MPa 
Elongation*, % 

(Strain at failure) 

Epoxy 1 45 3000 1.5 

Epoxy 2 30 4500 0.9 

*at 7 days, 230 C, DIN 53455 

 
Table 4 Mechanical properties of single roving (cord) 

Description 
Filament diameters 

(mm) 
Cord diameter 

(mm) 
Tensile strength 

ffu, MPa 
Strain to failure εfu, 

(mm/mm) 

12X 
Three 0.22, 
nine 0.20 

0.889 2014 0.019 

3X2 0.35 0.889 2479 0.021 

 
Table 5 Characteristics of cementicious grout 

Description 
Flexural 

strength*, MPa 
Compressive 

strength*, MPa 
Bonding strength 

to steel*, MPa 

Cementitious grout 1 
(pour) 

6.5 55 20 

Cementitious grout 2 
(sprayed or trowelled) 

7.0 60 20 

*at 7days 

 

 

 

 

Existing specimens Retrofitted specimens 

Specimen 
Transverse 

reinforcement 
Lap-

splice 

Axial 
load 

(P/Agf’c) 

Load 
history 

Name 
External 

reinforcement 

Jacket 
Height  
(mm) 

No. 
of 

plies 

Axial 
load 

(P/Agf’c) 

Load 
history 

L36Db_a Ø6/70 (open) 36Db - a Rg_LN36Db_b Glass -100G 400 3 0.08 b 

L36Db_b Ø6/70 (open) 36Db - b Rc_LN36Db_b Carbon-200C 400 3 0.08 b 

LN36Db_a Ø6/70 (open) 36Db 0.08 a Rm_LN36Db_b 12X 400 1 0.08 b 

FN_a Ø6/50 (open) - 0.08 a Rm_FN_a 3X2 600 1 0.08 a 

FN_b Ø6/50 (open) - 0.08 b Rm_FN_b 3X2 600 1 0.08 b 
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Table 6. Required number of layers for mitigating the alternative failure modes 
 

 
 
Table 7.  Consequences of the number of layers on the mechanical characteristics of the 
cross-section 

*σlat
conf : passive confining pressure in the cross-section ε ccu: failure strain of confined concrete and μεc: compression strain 

ductility  

 

Table 8.  Strength and deformation capacity for the system of specimens 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Specimen Type of fabric Shear 
Confinement 
(for μΔ=2.5) 

Buckling     
(for μΔ=2.5) 

Lap-splicing Final layers 

RgLN36Db_b Glass 1 layer 2 layers 1 layer 3 layers 3 layers 

RcLN36Db_b Carbon 1 layer 3 layers 2 layers 3layers 3 layers 

Specimen Number of 
layers 

Flexure Shear Confinement Buckling 

Vflex=Μflex/Ls (kN) Vw
f (kN) Vshear=Vw

f +Vc (kN) μΔ σlat
conf* (MPa) εccu/μεc

* μΔ σlat
conf * (MPa) μεc

* 

RgLN36Db_b 3xGlass 41 460 470 5.0 8.0 0.0264/10.6 9.0 8.1 14.7 

RcLN36Db_b 3xCarbon 41 228 238 2.5 3.9 0.0113/4.5 3.5 4.0 4.7 

Existing  Retrofitted 
Strength 

capacity(%) 
Deformation 
capacity* (%) 

No. of cycles at the upper displacement 
level  

Push Pull Push Pull Existing Retrofitted 

FN_a RmFN_a 11.8 7.4 91.7 40.9 1 cycle  μΔ=2.5 3 cycles  μΔ=4.0 

FN_b RmFN_b 30.8 2.1 45.2 78.9 1 cycle  μΔ=5.0 4 cycles  μΔ=5.0 

L36Db_a RgLN36Db_b 15.2 38.9 35.6 154.6 3 cycles  μΔ=2.0 2 cycles  μΔ=5.0 

L36Db_b RcLN36Db_b 27.9 42.5 339.4 107.1 1 cycle  μΔ=5.0 2 cycles  μΔ=5.0 

LN36Db_b RmLN36Db_b 21.7 -8.4 42.5 -27.8 3 cycles  μΔ=2.5 2 cycles  μΔ=5.0 



19 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 

Figure 1 Test setup 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 Test assembly: geometry and reinforcement details (dimensions in mm) 

 

 
 
 
 
 
 
 
 
 
 

Figure 3 Steel cords (a) 12X; (b) 3X2  
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Figure 4 Lap-spliced columns at failure  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 Specimens FN_a and FN_b at failure  
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Figure 6 Specimens with lap-splices after removing the loose concrete fragments 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7 Specimens FN_a and FN_b after removal of damaged and fragmented concrete 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 8 Metallic fabric 12X (a) at initial condition; (b) after modification; (c) jacket   
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Figure 9 Steps of the method of application 

 
 

 

 

 

 

 

 

 
 

Figure 10 Specimens (a) RgLN36Db_b; (b) RcLN36Db_b at failure  
 
 
 
 

 

 

 

 

 

 

 

 
Figure 11 Specimen RmLN36Db_b (a) at failure; (b) detail of the damaged area 
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Figure 12 Load–displacement diagrams for the system of specimens Rc-, Rg-, RmLN36Db_b 
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Figure 13 Specimens (a) RmFN_a; (b) RmFN_b at failure 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 14 Load–displacement diagrams for the system of specimens RmFN_a and RmFN_b 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15 Load–displacement diagrams for the system of specimens (a) Rc-, Rg-, 
RmLN36Db_b; (b) RmFN_a and RmFN_b 
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