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    Abstract- Sensorless machine drives in vehicle traction 
frequently experience rapidly-changing load disturbance and 
demand fast speed dynamics. Without gain-scheduling or 
compensation, conventional Quadrature Phase-Locked-Loop (Q-
PLL) is unable to accurately estimate the rotor position and speed 
for these systems. In this paper, a Third-Order Nonlinear 
Extended State Observer (TNESO) is proposed for position and 
speed estimation for sensorless Interior Permanent Magnet 
Synchronous Motor (IPMSM) drives. TNESO has the power of 
nonlinear feedback and takes the advantages of fast convergence 
and disturbance rejection. An optimized parameter configuration 
method is deployed to extend the disturbance observation 
bandwidth of the TNESO. Both steady state and transient 
performance of TNESO are verified through the experimental 
tests. In comparison with the performance of conventional Q-PLL 
scheme, the proposed observer is proved to be capable of 
delivering higher precision of position and speed estimation 
against rapidly varying disturbance in wide operating range. 
 

I.  INTRODUCTION 
 

   Permanent Magnet Synchronous Motors (PMSMs) are 
widely used in the applications where require high precision 
and high dynamic performance. In vehicle traction, the 
mechanical sensor, which is a weak link in drive systems, can 
be eliminated in sensorless operations since such sensor brings 
disadvantages and limitations in terms of cost and reliability. 
IPMSMs have been commercialized as the main traction motors 
for hybrid electric vehicles (HEVs) and electric vehicles (EVs). 
Although numerous sensorless techniques [1-6] have been 
developed for automotive applications, due to the restrict 
requirements of extremely high safety, the rotor position sensor 
cannot be replaced entirely. 

The overview of the techniques of sensorless control can be 
classified into two main categories based on operating 
principles: fundamental-model based methods [4-11] and signal 
injection techniques [12-14] depending on rotor anisotropy. 
The first category consists of the methods of using either EMF 
estimation or estimated stator flux linkage. At present, there are 
mainly five closed-loop observer techniques: Extended Kalman 
Filters (EKF) [8], Model Reference Adaptive Systems (MRAS) 
[9], Sliding Mode Observers (SMO) [10, 16], Extended State 
Observers (ESO) [17-22] and Adaptive Filters [23-24]. 
However, the fundamental-frequency observers reach their  
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1limits at zero stator frequency where the back emf gets to zero 
and the IPMSM is rendered unobservable. The methods in the 
second category [12-14] deals with the situation where 
fundamental-model methods lose performance. Anisotropic 
properties can be exploited to retrieve rotor position 
information. Either voltage or current signals at the frequencies 
other than the fundamental ones can be injected to transiently 
excite IPMSM and detect the spatial orientations of existing 
anisotropies. Nevertheless, high-frequency signal injection 
results in undesirable torque ripples, vibrations and acoustic 
noises. Apart from closed-loop sensorless schemes, open-loop 
methods that do not need sensorless observers such as V/f or I/f 
[25] have been proposed. But they might not be able to deal 
with the controlled drive system that requires high-quality 
transient profile. 

In relatively low, medium or high speed region, sensorless 
control using fundamental-frequency signals has been widely 
consolidated. Regardless of what signal is chosen, it is essential 
to estimate the rotor position and speed at the last stage in 
sensorless operation. A direct approach [6-8] to the position 
estimation of IPMSM rotor utilizes the inverse trigonometric 
function based on estimated back-EMF space vector. However, 
the estimation quality highly relies on the waveforms of the 
back-EMF that may be distorted by inverter nonlinearity, 
parameter detuning and measurement offsets. The distortion 
will result in deviation of the phase and frequency. A common 
technique to solve this problem is to track the phase and 
frequency of the estimated back-EMF by means of Q-PLL [15-
16].  

Normally, the structure of Q-PLL contains a linear PI 
regulator as error correction mechanism. The regulator can be 
easily configured and tuned to minimize input error. 
Nevertheless, there are four fundamental drawbacks [17] to be 
addressed: 1) unexpected overshoots; 2) limited control 
capability; 3) Inefficiency of the linear weighted sum of the P 
and I terms; 4) Less capability of dealing with time-varying 
perturbation. Although phase compensators can be adopted to 
adjust the control bandwidth and phase margin. However, Q-
PLL bandwidth varies as the speed and load torque changes if 
the speed-dependent loop gains are kept constant.  

To overcome the drawbacks of conventional Q-PLL, state 
observers [6] were introduced in cascade with EMF observer to 
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enhance the estimation accuracy and transient performance. 
Among them, ESO is a competitive candidate. Original 
Nonlinear ESO (NESO) was developed by Han [17], along with 
the theory on the active disturbance rejection control (ADRC). 
Later, Gao [18] linearized and parameterized the nonlinear form. 
Linear ESO (LESO) is superior to NESO in parameter tuning 
and theoretical analysis. Gao also proposed optimal observer 
bandwidth for fast tracking of disturbance and uncertainty. 
However, the observation efficiency of NESO is higher than 
that of LESO [19]. The control performance of NESO is 
obvious but the parameter tuning method is very different from 
the counterpart linear observer [19].   

This paper proposes a Third Order NESO (TNESO) with a 
non-linear feedback structure. This enables rapid convergence 
and very fast dynamic response. One of the current issues with 
ESOs is that the task of adjusting parameters is more 
complicated. There are two key points with regards to good 
observation performance [17-18]. Firstly, it is necessary to 
ensure operation stability. Secondly, it is essential to guarantee 
the tracking performance and the accuracy of the disturbance 
observation. The stability analysis for high order ESO is more 
difficult due to its strong nonlinearity. This paper presents the 
stability analysis for the proposed TNESO. At present, there are 
few researches exploiting on ESO parameter tuning. The paper 
[17] reveals the close relationship between ESO parameter 
selection and famous Fibonacci sequence through a large 
number of simulations. Nevertheless, the relationship between 
parameter tuning and the disturbance observation performance 
has not been analyzed theoretically. For NESO [19], it is 
proposed that the parameters can be dynamically determined by 
setting the poles of compensation matrix. But this method is 
only suitable for the ESO with smooth differentiable nonlinear 
functions and cannot be applied to the ESO having non-smooth 
function. In addition, there are some parameter optimization 
methods using genetic algorithm and Lyapunov function 
method. But quite a lot of simulation calculations are needed. 
Some are only applicable to the second order. In general, the 
relationship between performance index and parameters of 
disturbance observation needs to be further investigated. The 
current issues to be solved are how to analyze control 
performance, find out the relationship between parameters and 
performance and put forward the optimization method. 

 
II. CONVENTIONAL EXTRACTION OF THE POSITION AND 

SPEED BY PLLS 

The conventional system structure for estimating position 
and speed is illustrated in Fig. 1. The front-end observer [2-8] 
estimates the Extended EMF (EEMF) based on the 
fundamental-model of IPMSMs. The diverse structures it takes 
can be summarized into the extended Kalman filter, model 
reference adaptive system, variable structure and adaptive 
observers. If the estimated EEMF is extracted from high 
switching signals or contains high frequency noises or dc 
components, some types of filtering may be required to remove 
those additional signals. 

The estimated EEMF 𝐸෠ఈఉ have position information. The 
extensively-adopted technique is to trace the phase and 

 
Fig. 1. The overall structure of conventional Position and speed estimation. 

 
Fig. 2. The structure of Q-PLL. 
frequency by means of PLLs. The fundamental operation of Q-
PLL [15,16] is to obtain the phase error of the input and output 
signals by phase detector. The error signal ∆𝜃 of the rotor 
position can be constructed by heterodyne method from 𝐸෠ఈఉ 
and the estimated rotor angle 𝜃෠௥௘ in (1) and (2). 

2 2ˆ ˆ ˆˆ ˆ ˆ ˆ( ) cos sin sin( )re re re reE E E E               (1) 

When the tracking error gets sufficiently smaller, the 
displacement can be expressed as: 
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ˆ ˆre re

E E 

    
   


         (2) 

Based on the operating principal, a Q-PLL for the rotor speed 
and position estimation is sketched in Fig. 2. 

The basic operating principle of PI-based PLL follows error-
based feedback control with little or no knowledge about the 
plant dynamics. Although the gains can be configured and 
tuned to fulfil tasks, due to the fundamental limitations, the PI 
controller is unable to deal with the controlled system that 
requires high-quality transient profile. It is still challenging to 
find a time-optimal solution that guarantees the fastest 
convergence without any overshoot. The linear combination of 
the present and accumulative forms of the tracking error has less 
capability of reducing steady state error significantly [17].  

The most difficult part of the PLL design is that the drive 
system frequently experiences external load disturbance and 
demands fast-changing speed profile. To achieve a fast 
extraction of the position and speed in wide operating range, the 
input to the Q-PLL can be normalized first before it goes 
directly to phase locking stage. This can be implemented by 
taking the EEMF vector magnitude as scaling factor. A 
modified scheme is illustrated in Fig. 3. The advantage of this 
improvement is that the fundamental component can be 
preserved while high order harmonics will be eliminated to 
reduce noise propagation. 

To further increase the estimation bandwidth, a linear 
extended Luenberger observer has been proposed [26]. As 
shown in Fig. 4, the bandwidth can be expanded by inserting a 
torque feedforward term into PLL structure. The estimated 
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Fig. 3. EEMF normalization for constant bandwidth PLL. 

 

 
Fig. 4. Position and speed estimations by a linear ESO Luenberger estimator 
[27]. 

 
speed was modified to be the output of an integrator that filters 
the noises on the theta error given by the emf estimation. In [27], 
the position and speed errors were extracted by splitting the 
actual speed into the estimated and error terms. In addition, the 
position and speed estimator attempted to nullify the speed error 
in the steady state. However, the estimator still resulted in 
unexpected steady-state speed error in certain speed region. 
Moreover, the gain setting lacks analytical guidance and 
becomes more difficult since the position estimation error is 
influenced by parameter detuning and external disturbances. 
The disadvantages discussed above provoke more advanced 
scheme that is expected to provide high precision and 
robustness of the estimations. 

  
III. PROPOSED 3RD ORDER ESO FOR POSITION AND SPEED 

ESTIMATION 

To acquire more accurate position and speed estimation 
under fast loading conditions, Q- PLL schemes can be replaced 
by removing the PI regulator and eliminating the linear gains. 
The method to be considered is a nonlinear form of extended 
state observer. The construction of the observer is demonstrated 
as follows. 

The mechanical equation of the IPMSMs with machine 
parameter uncertainties is expressed as: 

( ) ( ) ( ) ( )r q d q r La a i b b i i c c d d T             (3) 

where a=1.5Pnλf /J; b=1.5Pn(𝐿ௗ െ 𝐿௤ሻ/𝐽; c=B/J; d = 1/J. Pn is 
the number of pole pairs. B is the friction coefficient and J is 
the moment of inertia of the machine. 𝑖ௗ  and 𝑖௤ are the currents 
on d-q axis.  𝑇௅ is the load torque. ∆𝑎, ∆𝑏, ∆𝑐 and Δd represent 
perturbation values due to the parameter variations. Let  

*( ) ( ) ( ) ( )q q q d q r Lg a i i a i b b i i c c d d T               . 

*
qi is the reference for q-axis current. Equation (3) can be 

rearranged to be *
r qa i g    . g represents uncertainties and 

can be considered to be the disturbance to the speed dynamics. 
In the case that the unknown disturbance varies suddenly and 
machine parameters detune, the disturbance magnitude also 
increases. Thanks to the strong estimation capability of the 3rd 
order ESO, g can be observed and compensated.  𝑔 is defined 
to be an extended state and 𝑔ሶ ൌ 𝑤ሺ𝑡ሻ.  The mechanical 
dynamics of the anisotropic PMSM are extended to be:  

                          *
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A nonlinear feedback function [19] in (5)  is used to establish 
a non-smooth feedback to enhance the capability of rejecting 
disturbances and estimating uncertainties. 

 
1

( )

sgn( )

fal




  


   


  
 

           (5) 

Power α and linear range δ are important parameters to be 
predetermined. An effective value can be assigned to 𝛼[17]. 
Therefore, the extended state observer (Fig. 5) takes the 
following form:  
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        (6) 

where 𝑒ଵ is the displacement between the estimated and actual 
rotor position. 𝛽ଵ , 𝛽ଶ and 𝛽ଷ  are positive parameters to be 
determined. 𝑧 tracks g. The linear range 𝛿 is further considered. 
Define 𝐹 ൌ 𝑓𝑎𝑙ሺ𝑒ଵሻ/𝑒ଵ. Then 𝑓𝑎𝑙ሺ𝑒ଵሻ ൌ 𝐹𝑒ଵ. Thus, fal can be 
seen as a linear function 𝑒ଵ  with varying gain. To make the 
system states recover quickly during the transient period and 
reduce the effect of the measurement noise afterward, the 
steady-state error should be located in the nonlinear range of the 
function 𝐹, i.e. 𝛿 ൏ 𝑒ଵ. ESO has fast state reconstruction and 
good measurement noise attenuation. Therefore, due to the 
simple nonlinear function, NESO has the merits of the 
improved high-gain observers [17,19].  

Defining 2
ˆ

r re    and 𝑒ଷ ൌ 𝑧 െ 𝑔 and subtracting (4) 

from (6) yield a 3rd order error dynamics: 
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The problem formulation is that for the bounded and 
uncertain function w(t), how to set fal function’s coefficients, 
gains 𝛽ଵ, 𝛽ଶand 𝛽ଷ  to force the errors 𝑒ଵ, 𝑒ଶ and 𝑒ଷ to converge 
as small as possible at a fast rate. 
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Fig. 5. Position and speed extraction by TNESO. 

It is seen that the error signal of the rotor position is 
constructed by the heterodyne method from the estimated 
EEMF and the angle produced by (1) and (2). Therefore, 
TNESO does the retrieval of the rotor position and speed at the 
last stage. The estimation process does not rely on anisotropic 
rotor structure. This method can be generalized for both 
IPMSMs and Surface Mounted Permanent Magnet 
synchronous motors (SPMSM). 

A. Stability Analysis of ESO Error Dynamics 

It can be proven below by means of Lyapunov's direct 
method that the error system (7) is asymptotically stable at the 
equilibrium point. The state equation can be expressed as: 

  ( )e A e e               (8) 

where  1 2 3, ,
T

e e e e   
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          (9) 

In (9), apparently 𝐹 ൐ 0 and has a boundary. If the following 
condition can be satisfied, 

1 2 3 0F F             (10) 

Then a matrix D with positive main diagonal elements can be 
designated: 
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where γ, δ1 and δ2 are all positive infinitesimal. DA(e) can be 
enabled to be positive definite symmetric matrices with: 
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be a Lyapunov function candidate. C is chosen to be sufficiently 
large positive constant. 𝑉 ൐ 0 is guaranteed. Therefore V is a 
Lyapunov function. The derivative of V is calculated as: 

2 2 2
1 1 2 2 1 3 3 1( ) [ ( ) ] [ ( ) ( )] 0V e e fal e e fal e w t            (14) 

By Lyapunov stability theorem, only if (7) has zero solutions, 
the system are asymptotically stable at the equilibrium point. 
As 𝐹 ൐ 0 , (10) leads to  𝛽ଵ𝛽ଶ െ 𝛽ଷ ൐ 0 . Only if ESO (6) 
satisfies this condition, it can be proven that the error system (7) 
are asymptotically stable.  

B. Analysis of Disturbance Observation Capability and 
Parameter Optimization. 

1) Capability of observing disturbance  
To analyze the capability of the ESO’s disturbance 

observation, by applying Laplace transformation to (6) , the 
state space equations in continuous-time is written as below: 
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The transfer function between the extended state z and the 
estimated state 𝜃෠ together with control input 𝑖௤

∗  can be derived. 

3
3 2

1 2 3

( )f

F
z f G s f

s s Fs F


  

 
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        (16) 

where 𝑓 ൌ 𝜃𝑠ଶ െ 𝑎𝑖௤
∗  is the total disturbance to be observed by 

the ESO. The input 𝑎𝑖௤
∗  is known. From (16), the observation 

performance for f through z entirely depends on the 
characteristics of Gf(s) . To achieve better estimation accuracy, 
the gain response is expected to be ห𝐺௙ሺ𝑠ሻห ൌ 1  within the 
disturbance bandwidth. Assuming the active band of f  is [0, 𝜔௖] 
in which ห𝐺௙ሺ𝑠ሻห ൌ 1, i.e. 𝑧 ൌ െ𝛽ଷ𝐹𝑓. At this stage, the key to 
the ESO design for the purpose of better immunity to 
disturbance is how to configure the parameters 𝛽ଵ , 𝛽ଶ  and 
𝛽ଷ such that ห𝐺௙ሺ𝑠ሻห  always approximates to 1 in the specific 
frequency band. A natural thought is to extend Gf(s) bandwidth 
by assigning optimal poles based on the analysis of the 
influence on poles due to F variation. 

2)  Optimal gain selection considering the influence of F 
variation  

Apparently, the operating point of the nonlinear fal function 
varies against e1. The variation of F leads to the change of 
Gf(s)’s pole location and affects the observation bandwidth of 
disturbance. According to the pole placement method for linear 
ESOs [18], three poles are configured to the same value 𝜌 at 
certain operating point. 

 3 2 3
1 2 3 ( )s s Fs F s                 (17)

If e1 gets close to zero, then F=1. Accordingly, 𝛽ଵ ൌ 3𝜌, 𝛽ଶ ൌ
3𝜌ଶ  and 𝛽ଷ ൌ 𝜌ଷ . Nevertheless, F is a function of the fal 
function and e1 and will cause the poles’ position to move. 
Substituting the calculated gains into (17) gives 

 3 2 2 33 3 0s s Fs F               (18) 

The solutions to (18) can be resolved. The characteristics 
equation (18) has one real root s1 and two complex roots s2 and 
s3. The system bandwidth is determined by the root that sits 
nearest to the imaginary axis. So the observation bandwidth of 
the ESO can be represented by the following formula. 
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1 2min( , )dr r r          (19) 

where  

  3 33
1 1 1 1 1 1r s F F F           

     (20) 

 3 33
2 2,3( ) 1 0.5 1 1 1r real s F F F            

  (21) 

Based on the analysis and derivation, it can be found that the 
change of F affects the roots of the characteristic equation. If 
the poles assignment follows (17), the real parts of the roots s1, 
s2 and s3 will vary with F value. r2 has the minimum value of  
െ𝜌 when F equals 1 at which r1 reaches its peak value at -ρ. 
Therefore, r = |𝑟ଶ|. The real part of the complex roots is closer 
to the imaginary axis. 

Set 𝜌 ൌ 1000, the real parts of the three roots of (18) will 
move as F changes. The trajectories are plotted in Fig. 6 against 
the F value. It can be seen that only if F=1, the real parts are 
equal and reach the peak of 𝑟ௗ ൌ 𝜌. Elsewhere 𝑟ௗ ൏ 𝜌. This 
indicates that wherever the poles are placed, the change of F 
will cause the observer bandwidth to decrease.  

 
Fig. 6. r1 and r2 against F variation. 

Under the most operating conditions, 𝐹 ് 1. There will be a 
maximum distance from the root representing the observer 
bandwidth to the imaginary axis. Assuming that the maximum 

bandwidth appears at 𝐹 ൌ 𝐹଴, F can be defined as 𝐹 ൌ ிᇲ

ிబ
. The 

variation of 𝐹ᇱ is equivalent to that of F. The conclusion is that 
if the poles are placed at F0 or other values, the ESO bandwidth 
will change with respect to 𝐹ᇱ. If 𝐹ᇱ ൐ 𝐹଴, when 𝐹 → ∞, 𝑟ௗ ൌ
𝑟ଶ. The bandwidth will be lower than 𝜌. Else if 𝐹ᇱ ൏ 𝐹଴, when 
𝐹 → 0,  𝑟ௗ gets infinitely to the imaginary axis. The bandwidth 
goes to zero. Eventually, 𝑟ௗ lies in between ሾ0, 𝜌ሿ when F goes 
from zero to infinity. This implies that wherever the poles are 
placed, the bandwidth is more likely to reduce to zero due to the 
variation of F. That is not expected to take place. But it is worth 
noting that in practice, F value is bounded. Based on the 
definition of F, the variation range can be verified. 

Initially, according to the function definition of fal, nonlinear 
parameter F will be calculated as below: 

1

1 11
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1 1
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e efal e
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               (22) 

From (22), it is known that F varies monotonically with respect 
to e1 and lies in between [0, 𝛿ఈିଵሿ. As e1 goes to infinity, F gets 
to zero. But this is impractical since only if the observer 
becomes unstable, there will exist this situation. However, the 
stability of the closed-loop system can be guaranteed by the 
controller design. The stability of the observer can be 

guaranteed by the selection of the parameters. Therefore, for the 
actual system, it can be assumed that the observer error e1 is 
always less than a certain threshold. Therefore, the range of F 
is ൣ𝑒௠௔௫,

ఈିଵ  𝛿ఈିଵ൧. In order to minimize the poles in the specified 
range, the ESO parameter configuration method is considered. 
The following conditions must be met: 

(1) Based on the dynamics of the total disturbance g, set the 
disturbance observation bandwidth 𝜔௖. 

(2) Given the maximum value of the tracking error e1, 
determine the high and low points for the nonlinear 
parameter F according to the characteristics of the fal 
function and obtain the variation range. 

(3) Ensure that the observer bandwidth covers that of the 
disturbance with respect to the range of F. 

From (21), r2 represents the minimum distance to the 
imaginary axis which is also the bandwidth of the observer. 

' ' '3 33
2 / 2 1 / 1 / 1 /op op opr F F F F F F           

 
 (23) 

To remedy the influence of F, the second term of (23) must be 
zero such that r2 reaches its peak value. The following three 
optimal gains that will produce better performance are given as 
below. 

𝛽ଵ ൌ 3𝜌, 𝛽ଶ ൌ 3𝜌ଶ/𝐹 and 𝛽ଷ ൌ 𝜌ଷ/𝐹         (24) 

Using the above method, the maximum bandwidth keeps 
consistent with 𝜌  no matter how F changes after the pole 
assignment. Also the bandwidth will maintain within the range 
specified by the two boundary points. It is proved that this 
method can ensure that 𝜌 covers 𝜔௖, that is, the bandwidth of 
ESO will not vary with F. From (24), this also means that the 
observer gains must be set larger. Therefore, the proposed 
observer parameter configuration method is optimal. 

IV. EXPERIMENTAL RESULTS 

The sensorless capability of the proposed observer TNESO 
is experimentally verified. The test rig consists of a dSPACE 
based AC motor hardware platform, a SEMICUBE inverter and 
a machine bench as illustrated in Fig. 7. The dSPACE control 
system includes PPC Processor board (dual-core PowerPC, 2 
GHz). The AC Motor Control Solution is based on the DS5202 
FPGA Board (14 bit ADC, 12 bit DAC and digital IO). The 
switching frequency of the SEMICUBE inverter was set to 
8kHz. The deadband was 2μs. The basic specifications for the 
prototype machine are listed in Table 1. Table II gives the 
observer gains. 
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(b) 

Fig. 7. Sensorless drive system (a), dSPACE desktop control system, Semikron 
inverter and its interfacing boards (b). 

TABLE I. RATED PARAMETERS OF THE IPMSM USED IN THE EXPERIMENTS 

Parameters  Value  Unit 
Pole pairs 4 - 
Rated speed 1500 Rpm 
Rated torque 14.7 N.m  
Rated phase current 9.8 A 
Rated power 2.3 kW 
Rotor pole flux 0.14 V.s 
d-axis inductance 2.54 mH 
q-axis inductance 4.08 mH 
Stator resistance 0.46 Ω 

TABLE II. OBSERVER PARAMETERS IN THE EXPERIMENTS 

Parameters  Value  
𝛽ଵ 320 
𝛽ଶ 3800 
𝛽ଷ 12500 

ρ 100 

𝛼 0.5 
𝛿 0.01 

 
The speed feedback loop in sensorless drive system (Fig. 7 (a)) 
was closed by the estimated speeds to verify the effectiveness 
of the sensorless control algorithms.  The estimated rotor angle 
is used to do the transformations among the different reference 
frames. The Q-PLL is only utilized for comparison. The 
experiments have been carried out in both the steady-state and 
transient operations in wide speed range. 

A. Steady-state Comparison between TNESO and Q-PLL  

In comparison with the conventional Q-PLL scheme, the 
steady state response of TNESO is demonstrated in this 
scenario. The IPM motor was operated at 300 rpm with full load. 
Initially, the speed feedback loop was closed by the speed 
estimated by TNESO. Then the feedback was switched to the 
speed produced by Q-PLL for comparison. 

In Fig. 8, it can be seen that TNESO exhibits much less ripples 
on the real speed than the Q-PLL when the motor ran at  

 

 

 
(a) 

 

 

 

(b) 

Fig. 8. Steady-state performance comparison of the proposed TNESO (a) and 
Q-PLL (b) at 300 rpm with full load. Upper subplots: estimated speed. Middle 
subplots: actual and estimated positions. Lower subplots: position estimation 
error. 

300 rpm with full load. The maximum ripple of Q-PLL speed 
reaches 6 rpm while TNESO’s real speed is bounded within 1 

rpm. The rotor angles estimated by Q-PLL and TNESO are 
illustrated on the subplots in the middle of Fig. 8. All of them 
have satisfactory performance. The estimated and actual angles 
appear to be overlapped. It is still obvious that the estimation 
error of TNESO is less than 0.023 rad. Apparenly, the 
estimation error of Q-PLL spans from -0.02 to +0.02 rad.  It is 
concluded that TNESO is able to reduce the error significantly 
compared to Q-PLL. 
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B. Transient Performance in Closed-Loop Sensorless 
Operations 
 

1) Speed Control Dynamics 

This scenario intends to exploit the minimum speeds that 
both TNESO and Q-PLL control schemes are able to extend 
downwards the low speed range where the sensorless drive 
works without any signal injection. The low speed range 
operations are investigated by feeding back the estimated speed 
from TNESO and Q-PLL respectively. Firstly, a decreasing 
speed ramp reference was applied to the speed controller at 
constant full load. Since the instability threshold is a function 
of the speed, it is expected that at full torque, there is a 
minimum speed below which Q-PLL becomes unstable. This is 
proved by the curve in Fig. 9 (b), which shows an instability 
arising at 13% the rated speed. Under the same test conditions, 
the proposed TNESO was stable down to 5.3% of the nominal 
speed. 

 
(a) 

 
(b) 

Fig. 9. Slow speed ramp with full load. (a) Proposed TNESO and (b) 
conventional Q-PLL. 

 

 

 
(a)   

   

   

                       
(b) 

Fig. 10. Closed-loop sensorless control results at start-up with full load. (a) 
TNESO (b) Q-PLL. 

In speed dynamic operations, a comparison of TNESO and 
Q-PLL was also made and the results are reported in Fig. 10. 
Since at zero speed, both observers cannot work alone, the IPM 
motor was started with measured position. At 80rpm, the 
observers were activated and the feedbacks were commutated 
to the estimated position and speed. This drawback can be 
compensated by detecting spatial orientations of the rotor 
anisotropy below the critical speed. The maximum estimation 
error of 5 electrical degree occurs at the kick-start. Full loads 
were applied to test two sensorless control scheme. The 
proposed TNESO exhibits smooth operations with full load 
except small torque ripples during the speed transition. The 
maximum estimated errors appeared at start-off around zero 
speed where TNESO is not effective. It is found that Q-PLL had 
difficulty during the speed switching. The torque component 𝑖௤ 
experienced aa large turbulence when the feedback switched to 
the speed produced by Q-PLL. The position estimation by Q-
PLL is obvious. During the transients, it almost reaches 1 rad 
and pushes the system into instability. 

2） Load disturbance 

Fig. 11 shows the transient speed performance for TNESO 
with sudden load application and removal of 8N.m. It should be 
highlighted that the real speed is able to recover in a very short 
period, which demonstrates the drive’s capability of rejecting 
the load disturbances effectively. The TNESO’s estimated 
angle has much less estimation error and oscillation in both 
steady-state and transient period. Hence, TNESO has a 
significant advantage in load disturbance rejection in closed-
loop sensorless operations. Comparison could not be made 
since Q-PLL was unstable at 100 rpm. 

3） Speed Reversal 
Fig. 12 is a plot of speed reversal between +500 rpm and -

500 rpm with 4N.m load for two schemes. The speed reference 
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(a) 

 
(b) 

 
(c) 

Fig. 11. Transient performance of TNESO with sudden load variations of 8N.m. 
(a) Real speed of TNESO (b) Position estimation errors (c) The stator currents 
in d-q reference frame. 

 
is a trapezoidal signal with an amplitude of 500 rpm. It is seen 
that the real speed of TNESO is accurate and the ripples are 
minimized. The speed response tracked the reference very well. 
At very low speed, TNESO responded in a very short time and 
generated very little spike in overcoming the effect of the 
instability caused by the very low speed and massive load. The 
potential reluctance torque of the IPMSM had been fully 
exploited. Maximum Torque Per Ampere (MTPA) control has 
been adopted to increase the torque production in the constant 
torque region for the IPMSMs. In Fig. 12 (b), the measured 
currents tracked MTPA trajectory below the rated speed. The 
robustness of TNESO and the performance of the drive system 
on heavy load torque at low and medium speed have been 
verified by the results. 

 
(a) 

 
(b) 

Fig. 12. Speed reversal of TNESO and PLL under MTPA control between +500 
rpm and -500 rpm with 4N.m load. (a) Real speed. (b) Stator currents in d-q 
reference frame. 

4)  Accurate and Fast Estimation of Total Disturbance 
 

 
Fig. 13.  Illustrations of the estimated disturbance g, under the step load 
variations under the testing condition of Fig. 11. 

In Fig. 13, the estimated total disturbance g is plotted. Under 
the sudden full load application and removal, the total 
disturbance is estimated accurately at a fast rate. 
Correspondingly, the position and speed estimation are 
compensated. As the value of the observer bandwidth is set 
sufficiently high, the radius of convergence gets close to zero. 
To reduce the effects of the uncertainty, the selection of 
observer bandwidth must be sufficiently extended. The optimal 
fast tracking observer bandwidth is dependent of F and the 
inverse of sampling time. 

C.  Sensitivity Analysis 

The estimation errors due to the influence of parameter 
detuning and dynamics mismatch are analyzed experimentally. 
The perturbations to the parameter ∆𝑎, ∆𝑏 and ∆𝑐  are strong 
functions of the moment of inertia 𝐽.  Therefore, the effect of 
the variation of 𝐽  is most influential. The real value of 𝐽 is 
varied by േ20% of the nominal value due to the identification 
error. Experimental tests were carried out at three meaningful 
load points, i.e., at 0%, 50% and 100% the nominal load. From 
Fig. 14, it is seen that in high speed region, the TNESO delivers 
the most accurate speed estimation under no-load condition and 
without mismatches. At low speed, the maximum error is 7rpm 
at 100rpm with 20% mismatch. With the load torque increases, 
the maximum estimation error slightly decreases. At 50% the 
rated load, the peak error drops to around 5.5 rpm. When full 
load was applied. 20% detuning of inertia affects the observer 
performance more than for a 50% the nominal load. The peak 
error of 5rpm occurs for the case of 20% mismatch at 100rpm 
at full load.  

Lq falls as the operating current increases. The effects caused 
by Ld and Lq detuning have been investigated in this paper. The 
experimental tests were carried out when the machine was 
operated at 500 rpm with various loads up to full load. Fig. 15(a) 
is a plot of the peak position estimation errors that are subjected 
to various load changes, nominal Ld and Lq versus 60% nominal 
Ld and Lq. In Fig. 15 (b), the blue line is the reference without 
mismatch. To verify the effect of flux changing, only 𝜆௙ was 
varied and the rest was unchanged. The parameter variation was 
60% of the nominal values separately. From the comparison, it 
has been verified that the estimation errors due to Ld, Lq and 𝜆௙ 
increase under light load condition. At no load, the estimation 
errors reached above 0.01 rad.. As the load goes up towards 
rated value, the errors slightly changes. 
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(a) 

 
(b) 

 
(c) 

Fig. 14. Speed estimation errors due to 𝐽 mismatches at 0% nominal load (a), 
50% rated load (b) and 100% the nominal load torque (c). 

 

 
(a) 

 
(b) 

Fig. 15. Maximum speed estimation errors due to mismatches of 𝐿ௗand 𝐿௤ (a) 
and 𝜆௙(b) with various loads up to full load. 

CONCLUSION 

In this paper, a third order extended state observer has been 
proposed to estimate the rotor position and speed of IPMSM 
drives. Stability analysis and a procedure to design the ESO 
optimal gains have been provided. Extensive experimental 
results validate the theoretical contributions in comparison with 
Q-PLL. In the closed–loop sensorless operation, the proposed 
ESO has enhanced the estimation performance even in the case 
that the speed reference or the load torque varies rapidly. The 
estimation errors have been found to be smaller than 
commonly-used Q-PLL both in steady state and dynamic 
operations. It has been proven that the proposed sensorless 
control strategy is more effective for sensorless IPMSM drives. 
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