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ABSTRACT
With a recently defined AutoGCOP framework, the design of local

search algorithms can be defined as the composition of the basic

elementary algorithmic components. These compositions into the

best algorithms thus retain useful knowledge of effective algorithm

design. This paper investigates effective algorithmic compositions

with sequential rule mining techniques to discover valuable knowl-

edge in algorithm design. With the collected effective algorithmic

compositions, sequential rules of basic algorithmic components are

extracted and further analysed to automatically compose basic algo-

rithmic components within the general AutoGCOP framework to

develop new effective meta-heuristics. The sequential rules present

superior performance in composing the basic algorithmic compo-

nents for solving the benchmark vehicle routing problems with time

window constraints, demonstrating its effectiveness in designing

new algorithms automatically.
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1 INTRODUCTION
In solving complex combinatorial optimisation problems (COPs),

the design and development of effective meta-heuristics present a

challenge for researchers due to the time-consuming experiments

and experience required in decision-making [21]. The automated

design of search algorithms for solving COPs removes the heavy

burden on researchers and allows the exploration of a larger scope

of unseen effective algorithms [19].
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Recently, the problem of algorithm design is formally defined as

a COP with a new model named the General Combinatorial Opti-

misation Problem (GCOP) [22]. A general AutoGCOP framework is

built in [19] to support the automated design of local search algo-

rithms by combining basic elementary algorithmic components in

GCOP, supporting more flexible exploration of a larger space of new

unseen local search algorithms. Effective patterns from different

algorithmic compositions can be discovered within AutoGCOP to

design new effective algorithms [19].

A large amount of data on the components selected and com-

posed during the search process can be collected and further anal-

ysed to learn useful knowledge for algorithm design [17]. Many

machine learning methods have been used, for example, for pre-

dicting basic algorithmic components with a Markov Chain model

within AutoGCOP [19], and predicting low-level heuristics in hyper-

heuristics with linear regression [2], decision tree [2], k-means

classification [3], neural networks [31], [30], and associative classi-

fication [29]. The effectiveness of the Markov Chain model and the

associative classification method indicates the importance of captur-

ing the sequential relationships between algorithmic components

in algorithm design.

However, the knowledge captured and embedded in the learning

models is implicit, thus hard to further analyse and interpret. Hav-

ing a good understanding of this hidden knowledge captured in the

learning models can further enhance effective algorithm designs

for developing new algorithms.

This paper investigates the data generated in the search process

as a new data mining application, aiming to explore the poten-

tially useful knowledge hidden in the algorithmic compositions

and interpret the knowledge to support effective automated algo-

rithm design. The widely investigated Vehicle Routing Problems

with Time Window constraints (VRPTW) are used as the domain

problem. In particular, we employ sequential rule mining to extract

sequential rules of basic operators from effective algorithmic com-

positions for solving benchmark VRPTW. To obtain insights from

the sequential rules, a systematic analysis has been conducted to

reveal the sequential relationships between basic operators and the

influence of the problem instance types. A novel Sequential Rule-

based GCOP method (denoted as SeqRuleGCOP) is proposed to

automatically compose algorithmic components within AutoGCOP.

The extracted sequential rules of basic operators are evaluated with

SeqRuleGCOP for solving VRPTW instances. In comparison with

other GCOP methods and the Variable Neighbourhood Descent

(VND), SeqRuleGCOP shows superior performance, demonstrating

the effectiveness of the sequential rules for automated algorithm

design.

In the rest of the paper, Section 2 presents related work on the

GCOP framework and sequential rule mining. Section 3 describes
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the algorithmic composition data investigated in this study. Section

4 presents the applied sequential rule mining technique and the pro-

posed SeqRuleGCOP method. Section 5 discusses the experimental

setup and result analysis, followed by conclusions in Section 6.

2 RELATEDWORKS
2.1 An overview of the general automated

composition framework
In the newly defined GCOP model in [22], various search algo-

rithms are seen as the compositions of a finite set 𝐴 of elementary

algorithmic components 𝑎 ∈ 𝐴 during the search. Algorithm design

can thus be defined as a COP with decision variables taking values

𝑎 from domain 𝐴. The solution space of GCOP consists of algorith-

mic compositions 𝑐 upon 𝑎. Each 𝑐 represents a new algorithm for

solving optimisation problems 𝑝 , i.e., a solution 𝑠 for 𝑝 is obtained

by a corresponding algorithmic composition 𝑐 , 𝑐 → 𝑠 . The objective

of GCOP is to search for the optimal 𝑐∗ which produces the optimal

𝑠∗ for 𝑝 , i.e., 𝑐∗ → 𝑠∗.
A general framework named AutoGCOP [19] (Algorithm 1) has

been built to support the automated composition of the elementary

algorithmic components 𝑎. In AutoGCOP, the common procedures

of various local search meta-heuristics are encapsulated as the

most basic processes to compose the following three categories of

algorithmic components in an extended GCOP model:

• Operators 𝑜𝑖 ∈ 𝐴𝑜 : modify values of the decision variables

in solution 𝑠1 to generate a new solution 𝑠2 in the search

space of 𝑝 .

• Acceptance criteria 𝑎 𝑗 ∈ 𝐴𝑎 : determine if and how 𝑠2 is

accepted in the search.

• Termination criteria 𝑡𝑘 ∈ 𝐴𝑡 : control when to terminate a

loop.

With the general AutoGCOP framework, various local search

algorithms in the literature [4] can be defined in a unified template

by composing specific algorithmic components [19]. In other words,

the existing algorithms can be seen as specific GCOP solutions

composed manually into local search algorithms.

In the optimisation process for solving GCOP, compositions 𝑐

of 𝑎 for solving 𝑝 , i.e., the design of various search algorithms,

can be then obtained automatically within AutoGCOP. This large

number of new algorithms generated from AutoGCOP presents a

considerable amount of data on algorithm design. Further analysis

of the optimal or most effective algorithmic compositions may lead

to new knowledge and a deeper understanding of algorithm design

[22], some of which may be difficult to identify by human experts.

2.2 Sequential rule mining
Sequential data consists of sequences of items that are associated

with time-related attributes [34], thus is of high complexity. One

of the great interests of research on sequential data concerns the

specific order of the occurrences of the items [34]. Initiated by [1],

sequential pattern mining is proposed as the problem of mining

interesting sub-sequences in a set of sequences [11]. Numerous

sequential patternmining algorithms have been developed to search

for sequential patterns efficiently with different strategies and data

structures [11].

Algorithm 1 : The general AutoGCOP framework

Require: 𝑝 : an optimisation problem,

𝐴𝑡 : a set of termination criteria 𝑡𝑘 , including a subset for Construction

𝐴𝑡𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 , a subset for Improvement𝐴𝑡𝑖𝑚𝑝𝑟𝑜𝑣𝑒
and a subset for inner

loops of Improvement𝐴𝑡𝑖𝑛𝑛𝑒𝑟
.

𝐴𝑜 : a set of operators 𝑜𝑖 , including a subset for Construction𝐴𝑜𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡
and a subset for Improvement𝐴𝑜𝑖𝑚𝑝𝑟𝑜𝑣𝑒

,

𝐴𝑎 : a set of acceptance criteria 𝑎 𝑗 ,

Ensure: 𝑠𝑏𝑒𝑠𝑡 : the best-recorded solution,

1: procedure Construction
2: 𝑠 ← An empty solution for 𝑝 ;

3: 𝑡𝑘𝑐𝑜𝑛 ← 𝑆𝑒𝑙𝑒𝑐𝑡 (𝐴𝑡𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 ) ;
4: while 𝑡𝑘𝑐𝑜𝑛 is not met do
5: 𝑜𝑖 ← 𝑆𝑒𝑙𝑒𝑐𝑡 (𝐴𝑜𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 ) ;
6: 𝑠 ← 𝐴𝑝𝑝𝑙𝑦𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟 (𝑜𝑖 , 𝑠 ) ;
7: end while
8: end procedure
9:

10: procedure Improvement
11: 𝑡𝑘𝑚𝑎𝑖𝑛

← 𝑆𝑒𝑙𝑒𝑐𝑡 (𝐴𝑡𝑖𝑚𝑝𝑟𝑜𝑣𝑒
) ;

12: while 𝑡𝑘𝑚𝑎𝑖𝑛
is not met do

13: 𝑡𝑘𝑖𝑛𝑛𝑒𝑟 ← 𝑆𝑒𝑙𝑒𝑐𝑡 (𝐴𝑡𝑖𝑛𝑛𝑒𝑟
) ;

14: while 𝑡𝑘𝑖𝑛𝑛𝑒𝑟 is not met do
15: 𝑜𝑖 ← 𝑆𝑒𝑙𝑒𝑐𝑡 (𝐴𝑜𝑖𝑚𝑝𝑟𝑜𝑣𝑒

) ;
16: 𝑎 𝑗 ← 𝑆𝑒𝑙𝑒𝑐𝑡 (𝐴𝑎 ) ;
17: 𝑠𝑛𝑒𝑤 ← 𝐴𝑝𝑝𝑙𝑦𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟 (𝑜𝑖 , 𝑠 ) ;
18: 𝑠 ← 𝐴𝑝𝑝𝑙𝑦𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒 (𝑎 𝑗 , 𝑠𝑛𝑒𝑤 , 𝑠 ) ;
19: 𝑠𝑏𝑒𝑠𝑡 ← Update the best-recorded solution;

20: end while
21: end while
22: end procedure

For sequential patterns, although a sub-sequence occurs fre-

quently (e.g., {X, Y}), one of the items ({X}) might not have a high

possibility to be followed by the other items ({Y}) among all the

sequences. Therefore, one of the important limitations of sequential

pattern mining is that sequential patterns might be worthless for

decision-making or prediction [11].

Sequential rule mining is a variation of sequential pattern min-

ing to address the above-mentioned limitation with more accu-

rate sequence prediction. According to the definition of sequen-

tial rule mining [12], a sequence database is a set of sequences

𝑆 = 𝑠1, 𝑠2, . . . , 𝑠𝑥 with a set of items 𝐼 = 𝑖1, 𝑖2, . . . , 𝑖𝑦 occurring

in 𝑆 . Each sequence is an ordered list of itemsets (sets of 𝐼 ), i.e.,

𝑠 = 𝐼1, 𝐼2, . . . , 𝐼𝑧 . A sequential rule 𝑋 ⇒ 𝑌 is a relationship between

two itemsets 𝑋,𝑌 ⊆ 𝐼 , suggesting if items in 𝑋 occur in a sequence,

the items in 𝑌 are likely to occur afterwards in the same sequence

[12].

Two measures have been defined for a sequential rule [12] as

follows:

• Support of a rule 𝑋 ⇒ 𝑌 : 𝑠𝑢𝑝 (𝑋 ⇒ 𝑌 ) = 𝑠𝑢𝑝 (𝑋■𝑌 )/|𝑆 |.
𝑠𝑢𝑝 (𝑋■𝑌 ) represents the number of sequences where all the

items of 𝑋 appear before all the items of 𝑌 .

• Confidence of a rule 𝑋 ⇒ 𝑌 : 𝑐𝑜𝑛𝑓 (𝑋 ⇒ 𝑌 ) = 𝑠𝑢𝑝 (𝑋■𝑌 )/
𝑠𝑢𝑝 (𝑋 ). 𝑠𝑢𝑝 (𝑋 ) denotes the number of sequences that con-

tains the items of 𝑋 .

The sequential rule mining problem is given certain user-defined

thresholds𝑚𝑖𝑛𝑆𝑢𝑝 and𝑚𝑖𝑛𝐶𝑜𝑛𝑓 as the lower bounds of the support

and confidence of all sequential rules from a sequence database.

A variety of algorithms have been proposed for sequential rule

mining, including the apriori-based algorithm CMRules [8], rule
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growth-based algorithm RuleGrowth [12], and equivalence class-

based algorithm ERMiner [9], etc. All these sequential rule mining

algorithms take as input a sequence database and the user-defined

thresholds and output the set of frequent sequential rules. Since

they utilise different strategies and data structures to search for the

sequential rules efficiently, some algorithms are more efficient than

the others [13]. Considering the efforts of tuning the parameters

for rule mining, there is an interest in discovering a certain amount

of sequential rules, such as TopSeqRules [13] for mining the top-𝑘

sequential rules and TNS [14] for mining the non-redundant top-𝑘

sequential rules.

In this study, a large amount of data on effective compositions of

basic algorithmic components is collected consistently within Auto-

GCOP, supporting systematic analysis to identify new knowledge

towards automated algorithm design. Those effective algorithmic

compositions can be seen as a sequential database for sequential

rule mining. To the best of our knowledge, this is the first study

on sequential rule mining techniques in the investigation of the

automated design of search algorithms.

3 DATA OF ALGORITHM DESIGN FOR DATA
MINING

To investigate the sequential rules of effective algorithmic compo-

sitions within AutoGCOP, a simple random GCOP method (RN-

GCOP) [19] is used to randomly compose the basic algorithmic

components for solving VRPTW, producing a large database of

algorithmic compositions. An elite set of algorithmic compositions

of the basic operators are retained for data mining.

3.1 The VRPTW problem
In operation research, VRP is one of the most investigated COPs

[33]. The basic VRP [7] concerns the routing of a set of vehicles

to serve customer delivery demands while minimising the total

travel costs serving all the customers. The VRPTW, one of the most

widely studied variants, concerns the constraints that customers

must be served within specified time intervals [5].

The VRPTW investigated in this study considers the dual objec-

tives of minimising the number of vehicles (NV) and minimising

the total travel distance (TD), as shown in Equation (1), where 𝑐 is

set to 1000 empirically and widely used in the literature [32].

𝑐 × 𝑁𝑉 +𝑇𝐷 (1)

The data collection has been conducted on the benchmark Solomon

100 data set as shown in Table 1, covering different instance fea-

tures. The customer distribution types and scheduling horizons are

of the most interest in many studies, and thus are the main focus

of this study. The Solomon benchmark covers different customer

distribution types (i.e., R, C and RC) and scheduling horizons (i.e.,

short and long). In Type-C instances, customers are located in a

number of clusters. Customers of Type-R instances are randomly

distributed geographically, while Type-RC instances are a mix of

them. The scheduling horizons in Type-1 instances are short, and

their vehicle capacities are relatively low (200). Type-2 instances

have longer scheduling horizons with larger vehicle capacities (700

or 1000).

Table 1: Features of the benchmarkVRPTW instances, includ-
ing vehicle capacity (VC), scheduling horizon (SH), customer
distribution type (DT), service time (ST), time window den-
sity (TWD) and width (TWW).

Name VC SH DT ST TWD TWW

C102 200 Short C 90 75% 61.27

C202 700 Long C 90 75% 160.00

R102 200 Short R 10 75% 10.00

R202 1000 Long R 10 75% 115.23

RC102 200 Short RC 10 75% 30.00

RC202 1000 Long RC 10 75% 120.00

3.2 Data collection within the general
AutoGCOP framework

To explore insights on effective algorithm compositions, this study

focuses on themost basic operators𝑜𝑖 as shown in Table 2within the

general AutoGCOP framework. These basic operators are different

in terms of the operation, leading to different performances for

solving VRPTW [19].

Table 2: Features of the basic operators for solving VRPTW,
including relative neighbourhood size (NS), involved routes
of operation (IR) and operation type (OT).

Operator NS IR OT

𝑜𝑖𝑛
𝑥𝑐ℎ𝑔

Small 1-route Exchange

𝑜𝑏𝑤
𝑥𝑐ℎ𝑔

Small 2-route Exchange

𝑜𝑖𝑛
𝑖𝑛𝑠

Small 1-route Insert

𝑜𝑏𝑤
𝑖𝑛𝑠

Small 2-route Insert

𝑜𝑟𝑟 Large n-route Ruin-recreate

To collect algorithmic compositions with AutoGCOP, this study

utilises a random GCOP method (i.e., RN-GCOP) [19] to flexibly

compose the basic operators in Table 2 for solving the selected

VRPTW instances in Table 1. The information in each search itera-

tion is recorded, including the current index of iteration, the index

of the applied 𝑜𝑖 , and the best-found solution after using 𝑜𝑖 .

The best 1% algorithm compositions according to the best solu-

tion’s quality found at the end of each run are first collected for

each problem instance. The operator sequences within these elite

algorithm compositions which lead to improvements to the best-

found solution quality are then retained in a collection of short

operator sequences with the length of 𝑙 .

In the extracted data set, each operator sequence consists of a

number of operators. Each operator in the operator sequence is

described by its index. The operator sequence data sets of each

instance are composed for extracting the general sequential rules

of operators. For instances of the same type, the corresponding

operator sequence data sets are also composed for investigating

the impacts of instance types on the behaviour of operators.
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4 AUTOMATED ALGORITHM DESIGNWITH
SEQUENTIAL RULE MINING

With the data collected, the sequential rule mining technique is

applied to acquire knowledge hidden in the collected algorithmic

compositions to support algorithm design. A sequential rule-based

GCOP method (SeqRuleGCOP) is proposed to utilise the extracted

rules in the automated composition of basic operators for problem-

solving.

4.1 Sequential rule mining on algorithmic
compositions

As described in Section 3.2, a large number of algorithmic compo-

sitions are processed into a collection of operator sequences that

obtains elite performance improvement in problem-solving. This

collection can be seen as a sequence database, where each operator

sequence 𝑠𝑜 is an ordered list of operator sets (sets of operators

𝑜𝑖 ∈ 𝐴𝑜 ). This study aims at investigating the sequential rules of

common basic operators in elite operator sequences.

A sequential rule of operators can be represented in the form of

𝑋𝑜 ⇒ 𝑌𝑜 , describing a relationship between two sets of operators

𝑋𝑜 , 𝑌𝑜 ⊆ 𝐴𝑜 . The interpretation of 𝑋𝑜 ⇒ 𝑌𝑜 is that if operators

in 𝑋𝑜 occur in a sequence, the operators in 𝑌𝑜 are likely to occur

afterwards (at any position after 𝑋𝑜 ) in the same sequence within a

certain length of 𝑙 . Each rule can be measured by sequential support

and confidence values (denoted by 𝑠𝑢𝑝 and 𝑐𝑜𝑛𝑓 , respectively).

The TNS sequential rule mining algorithm [14] is applied to the

operator sequence collection to search for the top-𝑘 non-redundant

frequent sequential rules. The implementation of the TNS algo-

rithm adapted a widely used open-source pattern mining platform

SPMF [10]. The extracted sequential rules are further investigated

to explore the behaviour of basic operators and the effectiveness in

algorithm design.

4.2 SeqRuleGCOP: automated composition with
sequential rules

This study proposes a novel method named SeqRuleGCOP to sup-

port the automated composition of algorithmic components using

sequential rules within AutoGCOP. SeqRuleGCOP takes an addi-

tional input with AutoGCOP, i.e., a set of sequential rules of basic

operators 𝑆𝑜 . Each 𝑠𝑜 ∈ 𝑆𝑜 is an ordered list of operator sets (sets

of operators 𝑜𝑖 ∈ 𝐴𝑜𝑖𝑚𝑝𝑟𝑜𝑣𝑒
) and associated with a support value

𝑠𝑢𝑝 and a confidence value 𝑐𝑜𝑛𝑓 .

Within AutoGCOP (Algorithm 1), various methods can utilise the

procedure 𝑆𝑒𝑙𝑒𝑐𝑡 (𝐴𝑜𝑖𝑚𝑝𝑟𝑜𝑣𝑒
) (line 15, Algorithm 1) to compose 𝑜𝑖 ∈

𝐴𝑜𝑖𝑚𝑝𝑟𝑜𝑣𝑒
during the search process. The SeqRuleGCOP method

first adds a rule selection procedure in 𝑆𝑒𝑙𝑒𝑐𝑡 (𝐴𝑜𝑖𝑚𝑝𝑟𝑜𝑣𝑒
) to select

one of the sequential rules 𝑠′𝑜 ∈ 𝑆𝑜 with the roulette wheel selection

strategy according to 𝑐𝑜𝑛𝑓 . Then, the 𝑆𝑒𝑙𝑒𝑐𝑡 (𝐴𝑜𝑖𝑚𝑝𝑟𝑜𝑣𝑒
) procedure

takes each 𝑜𝑖 ∈ 𝑠′𝑜 as the output 𝑜𝑖 .

The proposed SeqRuleGCOP method supports the automated

design of new and unseen algorithms by using the sequential rules

of basic operators. It utilises offline learned knowledge in automated

algorithm design, allowing the investigation of the effectiveness of

the extracted knowledge in the form of sequential rules.

5 EXPERIMENTAL STUDIES
The experimental studies aim to address the following two research

issues, 1) analysing the extracted sequential rules of 𝑜𝑖 , and 2) as-

sessing the extracted sequential rules in the automated composition

of 𝑜𝑖 with the proposed SeqRuleGCOP method.

In Section 5.1, the systematic analysis of the extracted sequential

rules focuses on the general hidden patterns of operator sequences

and the impact of instance features, i.e., the customer distribution

types and scheduling horizons, on the behaviour of the operators.

The analysis presents the hidden patterns of composing operators

for coping with different types of instances.

Section 5.2 investigates the performance of the proposed Se-

qRuleGCOPmethod for solving different types of VRPTW instances.

In comparison, a simple baseline RN-GCOP method and a Variable

Neighbourhood Descent (VND) algorithm are tested. RNGCOP and

VND do not learn from the operator sequences. The comparison

aims to show the effectiveness of the sequential rules acquired from

offline data mining in the automated composition of basic 𝑜𝑖 for

problem-solving.

5.1 Findings of sequential rules for algorithm
design

5.1.1 General sequential rules of basic operators. Table 3 presents
the top 10 sequential rules of operators in the operator sequence

database of all selected instances. The highlighted sequential rules

are the top 8 rules that frequently occurred in each type of instance.

These commonly occurring frequent sequences can be defined as

rules representing general knowledge extracted by data mining in

effective algorithmic compositions. However, their reusability and

generality need to be investigated.

Table 3: Top 10 sequential rules for the datasets of all selected
instances. Commonly occurred sequential rules in the three
sets are in bold.

Rules sup: conf:

𝑜𝑏𝑤
𝑥𝑐ℎ𝑔
→ 𝑜𝑟𝑟 1132 0.60

𝑜𝑖𝑛
𝑖𝑛𝑠
→ 𝑜𝑟𝑟 1134 0.59

𝑜𝑖𝑛
𝑥𝑐ℎ𝑔
→ 𝑜𝑟𝑟 1111 0.57

𝑜𝑏𝑤
𝑥𝑐ℎ𝑔
→ 𝑜𝑏𝑤

𝑖𝑛𝑠
1018 0.54

𝑜𝑖𝑛
𝑥𝑐ℎ𝑔
→ 𝑜𝑏𝑤

𝑖𝑛𝑠
1050 0.53

𝑜𝑖𝑛
𝑖𝑛𝑠
→ 𝑜𝑏𝑤

𝑖𝑛𝑠
990 0.51

𝑜𝑏𝑤
𝑖𝑛𝑠
→ 𝑜𝑟𝑟 1198 0.51

𝑜𝑟𝑟 → 𝑜𝑏𝑤
𝑖𝑛𝑠

1005 0.41
𝑜𝑏𝑤
𝑖𝑛𝑠
→ 𝑜𝑖𝑛

𝑥𝑐ℎ𝑔
735 0.31

𝑜𝑏𝑤
𝑖𝑛𝑠
→ 𝑜𝑖𝑛

𝑖𝑛𝑠
715 0.30

An interesting finding from these extracted rules is they are in the

form of 𝑋𝑜 → 𝑌𝑜 , while 𝑋𝑜 mainly takes 𝑜𝑖 ∈ {𝑜𝑖𝑛𝑥𝑐ℎ𝑔, 𝑜
𝑏𝑤
𝑥𝑐ℎ𝑔

, 𝑜𝑖𝑛
𝑖𝑛𝑠
}

and 𝑌𝑜 takes 𝑜𝑖 ∈ {𝑜𝑏𝑤𝑖𝑛𝑠 , 𝑜𝑟𝑟 }. This indicates the different behaviour
of the group of operators 𝑜𝑖𝑛

𝑥𝑐ℎ𝑔
, 𝑜𝑏𝑤

𝑥𝑐ℎ𝑔
, 𝑜𝑖𝑛

𝑖𝑛𝑠
compared with that of

𝑜𝑏𝑤
𝑖𝑛𝑠

and 𝑜𝑟𝑟 .
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Considering the different operations of each basic 𝑜𝑖 , they have

different impacts on the optimization objectives of VRPTW. For

example, the operations of 𝑜𝑖𝑛
𝑥𝑐ℎ𝑔

and 𝑜𝑖𝑛
𝑖𝑛𝑠

are in-route operations,

thus making small changes to the value of TD but no impact on NV.

In comparison, the operator 𝑜𝑟𝑟 leads to a relatively bigger impact

on both NV and TD.

According to the impact on the VRPTW optimisation objectives,

this study categorises the basic 𝑜𝑖 ∈ 𝐴𝑜 into three sets, as shown in

Table 4.

With these new sets in Table 4, a general sequential rule of basic

operators can be induced, i.e.,𝑋𝑜 ⇒ 𝑌𝑜 , where𝑋𝑜 takes 𝑜𝑖 ∈ 𝐴1

𝑜 and

𝑌𝑜 takes 𝑜𝑖 ∈ 𝐴2

𝑜 ∪𝐴3

𝑜 . It can be interpreted as the use of the Type-1

operators should be followed by the Type-2 or Type-3 operators.

To be more specific, the search in a smaller-impact neighbourhood

should be followed by exploration in a larger-impact neighbour-

hood.

When discussing the features of operators, the literature usually

focuses on the neighbourhood size (cardinality) [16] and operation

types, e.g., either they are intensifiers or diversifiers [18], or the

type of mutation, local search or evolutionary operators [32]. The

commonly occurring frequent sequential rules identify and high-

light the impact of operators on the optimisation objectives as an

important feature of operators in algorithm design and provide

new insights for algorithm design by using data mining within the

general AutoGCOP framework.

5.1.2 Impact of instance features to sequential rules. For the in-

stances of the same customer distribution type and the same sched-

uling horizon, the corresponding operator sequence collections are

composed for sequential rule mining. Table 5 and Table 6 present

the top 10 sequential rules of operator sequences with the differ-

ent customer distribution types and different scheduling horizon

types, respectively. It can be observed that the top 8 rules occurred

commonly for the selected instances of different types, however,

with different 𝑠𝑢𝑝 and 𝑐𝑜𝑛𝑓 . The impact of instance features can

be observed from the two uncommon sequential rules.

As shown in Table 5, the uncommon two rules of Type-C in-

stances consist of Type-1 operators (i.e., 𝑜𝑖𝑛
𝑥𝑐ℎ𝑔

, 𝑜𝑏𝑤
𝑥𝑐ℎ𝑔

, and 𝑜𝑖𝑛
𝑖𝑛𝑠

),

indicating the frequent use of the Type-1 operators. For Type-R and

Type-RC instances, the two rules suggest more usage of Type-2

operators (i.e., 𝑜𝑏𝑤
𝑖𝑛𝑠

). Considering the customer distribution impacts,

solving Type-R and Type-RC instances requires exploration in a far-

ther neighbourhood to achieve an improvement in solution quality,

compared to solving Type-C instances.

In Table 6, the remaining two uncommon sequential rules (not in

bold) are also related to the impact of instance scheduling horizon

types. It can be observed that the Type-1 instances (shorter sched-

uling horizon) call more rules consisting of Type-1 operators (i.e.,

𝑜𝑖𝑛
𝑥𝑐ℎ𝑔

, 𝑜𝑏𝑤
𝑥𝑐ℎ𝑔

, and 𝑜𝑖𝑛
𝑖𝑛𝑠

). For instances of a shorter scheduling hori-

zon, each route consists of fewer customers than those of a longer

scheduling horizon. Thus, for the former cases, smaller operators

can lead to a big solution quality improvement. For solving Type-2

instances (longer scheduling horizon), larger operations are needed

to improve the solution, thus requiring more Type-2 operators (i.e.,

𝑜𝑏𝑤
𝑖𝑛𝑠

).

5.2 Effectiveness of sequential rules for
automated composition

5.2.1 Experiment settings. The experiment studies evaluate the

performance of the extracted sequential rules on the VRPTW in-

stances, covering different instance characteristics. The Solomon

100 customer datasets in Table 1 are used to validate the effective-

ness of the extracted rules, while another collection of the Solomon

100 customer datasets [27] in Table 7 is used to test their generality

for solving new instances.

The study mainly focuses on the investigations on the basic

𝑜𝑖 ∈ 𝐴𝑜𝑖𝑚𝑝𝑟𝑜𝑣𝑒
in Table 2 which are shown to be crucial in auto-

mated algorithm design, the other algorithmic components within

AutoGCOP are thus fixed.

The investigated methods are compared based on four perfor-

mance indicators, i.e., the average fitness value (AVG), the standard

deviation of fitness value (SD), the best fitness value within 10 runs

(BEST), and the gap between BEST and the best-known solution in

the literature (GAP). In each run, the algorithm terminates after the

same number of evaluations, i.e., 𝑡𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 (𝑛) is adopted as 𝑡𝑘𝑚𝑎𝑖𝑛

in Algorithm 1, for all methods.

5.2.2 Performance comparison against RN-GCOP. The benchmark

RN-GCOP method uses a random selection strategy in the proce-

dure 𝑆𝑒𝑙𝑒𝑐𝑡 (𝐴𝑜𝑖𝑚𝑝𝑟𝑜𝑣𝑒
) in Improvement within AutoGCOP. It al-

lows a flexible composition of 𝑜𝑖 ∈ 𝐴𝑜𝑖𝑚𝑝𝑟𝑜𝑣𝑒
for problem-solving

without utilising any knowledge or mechanism. In comparison,

both RN-GCOP and SeqRuleGCOP apply the selected 𝑜𝑖 for one

search iteration and accept all resulting moves, i.e., 𝑎𝑎𝑙𝑙 as 𝑎 𝑗 and

𝑡𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 (1) as 𝑡𝑘𝑖𝑛𝑛𝑒𝑟 in the Improvement procedure within Auto-

GCOP (lines 10-22 in Algorithm 1).

Table 7 shows the overall better performance of SeqRuleGCOP

against RN-GCOP on the selected VRPTW instances except in two

instances, where RN-GCOP achieves better AVG and BEST values.

This supports the extracted frequent sequential rules contain useful

patterns for automatically designing a search algorithm within Au-

toGCOP, particularly for solving Type-R and Type-C instances with

statistical significance (measured by Mann–Whitney–Wilcoxon test

with p < 0.05 and indicated by * in all the tables of results).

Similar observations can be reached regarding the comparison

between SeqRuleGCOP against RN-GCOP on the new VRPTW

instances in Table 8, i.e., SeqRuleGCOP achieves overall better

performance compared to RN-GCOP. This verifies that the extracted

frequent sequential rules contain general and useful knowledge

which can be used to automatically design a search algorithmwithin

AutoGCOP.

5.2.3 Performance comparison against VND. The proposed SeqRule-
GCOP is further compared against the widely studied VND method.

VND is the simplest and effective variant in the family of Vari-

able Neighborhood Search (VNS) [15]. It is based on the systematic

change in a set of neighbourhood structures during the search

process. The change of neighbourhoods is performed in a determin-

istic way (usually manually specified from smaller to larger ones),

aiming to escape from local optimum [16].

Within AutoGCOP, various well-known local search-based meta-

heuristics, such as VNS, can be modelled in a unified template by

composing specific algorithmic components in the Improvement
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Table 4: Categorisation of the basic 𝑜𝑖 ∈ 𝐴𝑜 based on their impact on VRPTW optimisation objectives, i.e., number of vehicles
(NV) and total travel distance (TD).

Operator groups Operators Impact on NV Impact on TD

Type-1 𝐴1

𝑜 {𝑜𝑖𝑛
𝑥𝑐ℎ𝑔

, 𝑜𝑏𝑤
𝑥𝑐ℎ𝑔

, 𝑜𝑖𝑛
𝑖𝑛𝑠
} No Small

Type-2 𝐴2

𝑜 {𝑜𝑏𝑤
𝑖𝑛𝑠
} Small Small

Type-3 𝐴3

𝑜 {𝑜𝑟𝑟 } Large Large

Table 5: Top 10 sequential rules for the datasets of different customer distribution types (i.e., Type-C, Type-R and Type-RC).
Commonly occurred sequential rules in the three sets are in bold.

Type-C instances Type-R instances Type-RC instances

Rules sup: conf: Rules sup: conf: Rules sup: conf:

𝑜𝑖𝑛
𝑖𝑛𝑠
→ 𝑜𝑟𝑟 411 0.66 𝑜𝑏𝑤

𝑥𝑐ℎ𝑔
→ 𝑜𝑏𝑤

𝑖𝑛𝑠
333 0.58 𝑜𝑏𝑤

𝑥𝑐ℎ𝑔
→ 𝑜𝑟𝑟 416 0.59

𝑜𝑏𝑤
𝑥𝑐ℎ𝑔
→ 𝑜𝑟𝑟 395 0.64 𝑜𝑏𝑤

𝑥𝑐ℎ𝑔
→ 𝑜𝑟𝑟 321 0.56 𝑜𝑖𝑛

𝑖𝑛𝑠
→ 𝑜𝑟𝑟 409 0.56

𝑜𝑖𝑛
𝑥𝑐ℎ𝑔
→ 𝑜𝑟𝑟 390 0.63 𝑜𝑖𝑛

𝑥𝑐ℎ𝑔
→ 𝑜𝑏𝑤

𝑖𝑛𝑠
335 0.55 𝑜𝑖𝑛

𝑥𝑐ℎ𝑔
→ 𝑜𝑟𝑟 395 0.54

𝑜𝑏𝑤
𝑖𝑛𝑠
→ 𝑜𝑟𝑟 413 0.56 𝑜𝑖𝑛

𝑖𝑛𝑠
→ 𝑜𝑟𝑟 314 0.54 𝑜𝑖𝑛

𝑥𝑐ℎ𝑔
→ 𝑜𝑏𝑤

𝑖𝑛𝑠
385 0.53

𝑜𝑖𝑛
𝑥𝑐ℎ𝑔
→ 𝑜𝑏𝑤

𝑖𝑛𝑠
330 0.53 𝑜𝑖𝑛

𝑥𝑐ℎ𝑔
→ 𝑜𝑟𝑟 326 0.53 𝑜𝑏𝑤

𝑥𝑐ℎ𝑔
→ 𝑜𝑏𝑤

𝑖𝑛𝑠
364 0.52

𝑜𝑏𝑤
𝑥𝑐ℎ𝑔
→ 𝑜𝑏𝑤

𝑖𝑛𝑠
321 0.52 𝑜𝑖𝑛

𝑖𝑛𝑠
→ 𝑜𝑏𝑤

𝑖𝑛𝑠
307 0.52 𝑜𝑏𝑤

𝑖𝑛𝑠
→ 𝑜𝑟𝑟 426 0.50

𝑜𝑖𝑛
𝑖𝑛𝑠
→ 𝑜𝑏𝑤

𝑖𝑛𝑠
323 0.52 𝑜𝑏𝑤

𝑖𝑛𝑠
→ 𝑜𝑟𝑟 359 0.48 𝑜𝑖𝑛

𝑖𝑛𝑠
→ 𝑜𝑏𝑤

𝑖𝑛𝑠
360 0.50

𝑜𝑟𝑟 → 𝑜𝑏𝑤
𝑖𝑛𝑠

314 0.39 𝑜𝑟𝑟 → 𝑜𝑏𝑤
𝑖𝑛𝑠

311 0.44 𝑜𝑟𝑟 → 𝑜𝑏𝑤
𝑖𝑛𝑠

380 0.42
𝑜𝑏𝑤
𝑥𝑐ℎ𝑔
→ 𝑜𝑖𝑛

𝑥𝑐ℎ𝑔
209 0.34 𝑜𝑏𝑤

𝑖𝑛𝑠
→ 𝑜𝑖𝑛

𝑖𝑛𝑠
241 0.32 𝑜𝑏𝑤

𝑖𝑛𝑠
→ 𝑜𝑖𝑛

𝑥𝑐ℎ𝑔
292 0.34

𝑜𝑖𝑛
𝑥𝑐ℎ𝑔
→ 𝑜𝑖𝑛𝑠

𝑖𝑛𝑠
209 0.34 𝑜𝑏𝑤

𝑖𝑛𝑠
→ 𝑜𝑖𝑛

𝑥𝑐ℎ𝑔
239 0.32 𝑜𝑏𝑤

𝑖𝑛𝑠
→ 𝑜𝑖𝑛

𝑖𝑛𝑠
265 0.31

Table 6: Top 10 sequential rules for the datasets of different scheduling horizon types (i.e., Type-1 and Type-2). Commonly
occurred sequential rules in the two sets are in bold.

Type-1 instances Type-2 instances

Rules sup: conf: Rules sup: conf:

𝑜𝑖𝑛
𝑥𝑐ℎ𝑔
→ 𝑜𝑏𝑤

𝑖𝑛𝑠
471 0.63 𝑜𝑏𝑤

𝑥𝑐ℎ𝑔
→ 𝑜𝑟𝑟 767 0.67

𝑜𝑏𝑤
𝑥𝑐ℎ𝑔
→ 𝑜𝑏𝑤

𝑖𝑛𝑠
466 0.62 𝑜𝑖𝑛

𝑖𝑛𝑠
→ 𝑜𝑟𝑟 770 0.66

𝑜𝑖𝑛
𝑖𝑛𝑠
→ 𝑜𝑏𝑤

𝑖𝑛𝑠
473 0.618 𝑜𝑖𝑛

𝑥𝑐ℎ𝑔
→ 𝑜𝑟𝑟 756 0.62

𝑜𝑟𝑟 → 𝑜𝑏𝑤
𝑖𝑛𝑠

444 0.52 𝑜𝑏𝑤
𝑖𝑛𝑠
→ 𝑜𝑟𝑟 798 0.59

𝑜𝑏𝑤
𝑥𝑐ℎ𝑔
→ 𝑜𝑟𝑟 365 0.49 𝑜𝑏𝑤

𝑥𝑐ℎ𝑔
→ 𝑜𝑏𝑤

𝑖𝑛𝑠
552 0.48

𝑜𝑖𝑛
𝑥𝑐ℎ𝑔
→ 𝑜𝑟𝑟 355 0.47 𝑜𝑖𝑛

𝑥𝑐ℎ𝑔
→ 𝑜𝑏𝑤

𝑖𝑛𝑠
579 0.48

𝑜𝑖𝑛
𝑖𝑛𝑠
→ 𝑜𝑟𝑟 364 0.47 𝑜𝑖𝑛

𝑖𝑛𝑠
→ 𝑜𝑏𝑤

𝑖𝑛𝑠
517 0.45

𝑜𝑏𝑤
𝑖𝑛𝑠
→ 𝑜𝑟𝑟 400 0.40 𝑜𝑏𝑤

𝑥𝑐ℎ𝑔
→ 𝑜𝑖𝑛

𝑥𝑐ℎ𝑔
433 0.38

𝑜𝑏𝑤
𝑥𝑐ℎ𝑔
→ 𝑜𝑖𝑛

𝑖𝑛𝑠
272 0.36 𝑜𝑟𝑟 → 𝑜𝑏𝑤

𝑖𝑛𝑠
561 0.36

𝑜𝑖𝑛
𝑥𝑐ℎ𝑔
→ 𝑜𝑖𝑛

𝑖𝑛𝑠
266 0.35= 𝑜𝑏𝑤

𝑖𝑛𝑠
→ 𝑜𝑖𝑛

𝑥𝑐ℎ𝑔
443 0.33

procedure [19]. With the basic 𝑜𝑖 ∈ 𝐴𝑜𝑖𝑚𝑝𝑟𝑜𝑣𝑒
ordered according

to their impact as [𝑜𝑖𝑛
𝑥𝑐ℎ𝑔

, 𝑜𝑏𝑤
𝑥𝑐ℎ𝑔

, 𝑜𝑖𝑛
𝑖𝑛𝑠

, 𝑜𝑏𝑤
𝑖𝑛𝑠

, 𝑜𝑟𝑟 ], the basic VND can

be instantiated in the unified AutoGCOP framework by specifying

𝑡𝑘 , 𝑜𝑖 and 𝑎 𝑗 in the Improvement procedure within AutoGCOP (in

Algorithm 1) as follows:

• 𝑡𝑘𝑖𝑛𝑛𝑒𝑟 ← 𝑡𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒 (ℎ) in line 13,

• 𝑜𝑖 ←Specific 𝑜𝑖 from 𝐴𝑜𝑖𝑚𝑝𝑟𝑜𝑣𝑒
based on a certain order in

line 15,

• 𝑎 𝑗 ← 𝑎𝑜𝑖 in line 17;
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Table 7: Comparison between SeqRuleGCOP against RN-GCOP for effectiveness validation.

Instances Best-known solutions RN-GCOP SeqRuleGCOP

in the literature AVG SD BEST GAP AVG SD BEST GAP

C102 10828.94[23] 13126.54 269.49 12875.06 0.189 12899.69* 165.65 12540.88 0.158
C202 3591.56[23] 3787.12 49.30 3727.07 0.038 3745.93* 27.48 3707.10 0.032
R102 18486.12[23] 21033.67 39.80 20976.51 0.135 20658.85* 464.99 20040.94 0.084
R202 4191.70[24] 5542.48 28.22 5502.88 0.313 5544.64 19.48 5509.80 0.314

RC102 13554.75[28] 17810.05 401.25 16925.97 0.249 17688.55 449.91 17070.83 0.259

RC202 4365.65[6] 5754.53 22.44 5723.58 0.311 5730.50 37.47 5684.91 0.302

Table 8: Comparison between SeqRuleGCOP against RN-GCOP for generality evaluation.

Instances Best-known solutions RN-GCOP SeqRuleGCOP

in the literature AVG SD BEST GAP AVG SD BEST GAP

C103 10,828.06[23] 12,364.31 416.60 11,738.51 0.084 12,042.12 229.02 11,745.85 0.085

C203 3,591.17[23] 4,502.51 514.51 3,881.98 0.081 4,296.84 512.80 3,849.52 0.072
R107 11,104.66[25] 14,564.69 27.27 14,520.74 0.308 14,544.92 23.53 14,518.62 0.307
R208 2,726.82[20] 4,087.51 16.36 4,055.09 0.487 4,074.72 21.87 4,017.37 0.473
RC103 12,261.67[26] 14,881.08 297.94 14,691.40 0.198 15,216.38 519.09 14,665.19 0.196
RC203 4,049.62[6] 4,784.47 355.59 4,539.13 0.121 4,595.81 45.08 4,523.08 0.117

where← denotes the assignment of 𝑎 in 𝐴 in Algorithm 1, 𝑎𝑜𝑖 indi-

cates the acceptance criteria of improvement only, and 𝑡𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒 (ℎ)
denotes termination upon the convergence ℎ.

In VND, the local search procedure is conducted to achieve explo-

ration and exploitation in the neighbourhood. The SeqRuleGCOP

method adopts a similar mechanism by setting 𝑎𝑛𝑎𝑖𝑣𝑒 (to accept

all improvements; worse solutions are accepted with a probability

of 0.5) for 𝑎 𝑗 in the Improvement procedure, i.e., to conduct explo-

ration or exploitation randomly. Thus, the comparison focuses on

the analysis of 𝑜𝑖 ∈ 𝐴𝑜𝑖𝑚𝑝𝑟𝑜𝑣𝑒
.

Table 9 presents the overall better performance of SeqRuleGCOP

against VND, except for two instances where VND obtains better

BEST values. This further validates the effectiveness of the extracted

sequential rules.

Regarding the generality of the extracted sequential rules on new

VRPTW instances, Table 10 shows SeqRuleGCOP performs better

than VND in terms of AVG and SD. Particularly for Type-2 instances,

SeqRuleGCOP is statistically better than the VND. In terms of the

BEST values, SeqRuleGCOP achieves better results than VND in

two instances and obtains quite similar BEST to the current best-

known results in the literature (i.e., the GAP values are less than

5% in most instances), which further verifies the effectiveness and

generality of the extracted sequential rules.

The better performance of SeqRuleGCOP compared to the instan-

tiated VND indicates that the automatically designed algorithms

are better than the manually designed meta-heuristics within the

unified AutoGCOP framework. This analysis further supports the

effectiveness of the knowledge learned offline by sequential rule

mining.

6 CONCLUSIONS
Recently more machine learning techniques have been investigated

to automate the design of search algorithms. The rich and new

knowledge generated during the search can be collected as data

and captured in the machine learning models. This hidden knowl-

edge is, however, implicit to interpret. This paper investigated the

data of effective algorithm designs with data mining techniques to

gain insightful and interpretive knowledge from the effective algo-

rithmic compositions with a better understanding of the behaviour

of algorithmic components thus supporting automated algorithm

design.

With a newly defined problem model GCOP, the algorithm can

be seen as the composition of elementary algorithmic components.

This study treats the algorithmic compositions as sequential data

to explore the knowledge hidden in the most effective algorithmic

compositions. Within a unified AutoGCOP algorithm design frame-

work, a considerable number of effective algorithmic compositions

are collected for solving benchmark VRPTW instances and further

processed for investigations.

The elite algorithmic compositions are investigated with sequen-

tial rule mining to extract a set of sequential rules of basic operators.

The analysis of the common sequential behaviour of the basic op-

erators for solving different types of VRPTW instances reveals an

important feature of operators, i.e., their impact on optimisation ob-

jectives. The basic operators can thus be categorised into different

groups according to their impact. This newly introduced categori-

sation to the literature could be adapted as a useful indicator when

determining suitable algorithmic components in algorithm design.

In addition, the general sequential rules of basic operators are

applied in the automated composition of basic operators within

AutoGCOP. Experiment results show the effectiveness of the se-

quential rules for solving VRPTW instances in comparison with

different methods.

This study is good evidence showing the information collected

over the search run(s) can be useful for identifying hidden algorithm

design by offline analysis of the search process. Particularly, this
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Table 9: Comparison between SeqRuleGCOP against VND for effectiveness validation.

Instances Best-known solutions VND SeqRuleGCOP

in the literature AVG SD BEST GAP AVG SD BEST GAP

C102 10828.94[23] 12,613.48 475.57 12,157.42 0.123 12,550.22 62.37 12,447.53 0.149

C202 3591.56[23] 5,269.61 707.78 4,659.64 0.297 3,669.13* 9.12 3,652.54 0.017
R102 18486.12[23] 20,728.66 1,011.19 19,663.67 0.064 19,836.42 280.07 18,998.78 0.028
R202 4191.7[24] 8,257.50 1,108.62 6,338.63 0.512 5,459.83* 16.39 5,429.78 0.295
RC102 13554.75[28] 17,277.48 692.83 16,630.28 0.227 16,892.99 60.19 16,796.01 0.239

RC202 4365.65[6] 8,944.58 935.99 7,540.14 0.727 5,645.09* 31.94 5,583.99 0.279

Table 10: Comparison between SeqRuleGCOP against VND for generality evaluation.

Instances Best-known solutions VND SeqRuleGCOP

in the literature AVG SD BEST GAP AVG SD BEST GAP

C103 10,828.06[23] 12,215.85 744.04 11,069.86 0.022 11,602.83* 82.58 11,484.92 0.061

C203 3,591.17[23] 5,414.02 709.79 4,701.21 0.309 3,738.50* 31.10 3,708.68 0.033
R107 11,104.66[25] 14,784.25 736.35 13,223.33 0.191 14,358.96 289.68 13,488.79 0.215

R208 2,726.82[20] 5,834.27 999.93 3,877.13 0.422 4,022.69* 17.23 3,997.70 0.466

RC103 12,261.67[26] 15,467.41 550.61 14,530.65 0.185 14,634.14 19.42 14,603.39 0.191

RC203 4,049.62[6] 7,384.64 1,369.62 5,487.94 0.355 4,497.68* 20.72 4,465.26 0.103

paper highlights the importance of knowledge interpretability in

promoting research in automated algorithm design. The exploration

of sequential rule mining in automated algorithm design opens a

number of potential research directions for future research.

Firstly, it calls for the exploration of different knowledge repre-

sentations and knowledge discovery techniques which may lead

to interesting findings to support algorithm design. In this regard,

this work can be extended by investigating the effective algorithm

compositions with other rule-mining techniques, such as patterns

(episodes) that appear in a long single algorithm composition, and

patterns that periodically appear in many algorithm compositions.

In addition, in principle, the applied sequential rule mining could

be extended to handle other combinatorial problems. It will be

important to test the proposed SeqRuleGCOP method in real-world

applications and compare it against other learning-based methods

to further verify the effectiveness, re-usability and generality of

sequential rules in automated algorithm design. Moreover, while

this study focused on the behaviour of basic operators, it would

be interesting to learn the sequential rules of both operators and

acceptance criteria.
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