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Photon emission by tunneling electrons can be encouraged by locating a resonator close to the tun-
nel junction and applying an appropriate voltage-bias. However, studies of normal metals show that
the resonator also affects how the charges flow, facilitating processes in which correlated tunneling of
two charges produces one photon. We develop a theory to analyze this kind of behavior in Josephson
junctions by deriving an effective Hamiltonian describing processes where two Cooper-pairs generate
a single photon. We determine the conditions under which the transport is dominated by incoher-
ent tunneling of two Cooper-pairs, whilst also uncovering a regime of coherent double Cooper-pair
tunneling. We show that the system can also display an unusual form of photon-blockade and hence
could serve as a single-photon source.

I. INTRODUCTION

The tunneling of electrons in mesoscopic conductors or
scanning tunneling microscopy (STM) is often accompa-
nied by the generation of photons. Photon emission at
a particular frequency can be enhanced, and its detec-
tion facilitated, by coupling to a resonator 1–6. However,
the resonator is not simply passive and it can exert a
dramatic influence on the charge dynamics, leading even
to a change in the effective charge that tunnels. Recent
studies 5,7–10 have shown that the presence of an elec-
tromagnetic resonator mediates the correlated tunneling
of two electrons through a barrier to generate a photon
with an energy larger than either electron could individ-
ually have provided, a phenomenon known as overbias
emission.

In this paper we present a theoretical analysis of over-
bias emission in superconducting circuits, considering a
model circuit consisting of a Josephson junction (JJ) in
series with an electrical resonator. When the voltage-bias
applied is such that individual tunneling Cooper-pairs
provide half the energy required to generate a photon,
charge transport and photon production are dominated
by correlated tunneling of two Cooper-pairs (see Fig. 1).
Superconducting circuits are ideally suited to studying
higher-order charge tunneling effects. In contrast to a
normal conductor, all of the voltage-bias energy of tun-
neling Cooper-pairs has to be transferred to the electro-
magnetic environment 3,6,11 and a high-Q resonator can
be used to resonantly enhance a wide range of transport
processes 12. Furthermore, the photons produced and the
charge current flowing are both readily measured 6,12.

Whilst photon emission due to tunneling of individual
Cooper-pairs has been studied extensively, both exper-
imentally 6,12–17 and theoretically 18–30 in JJ-resonator
systems, higher-order tunneling remains almost com-
pletely unexplored. Here we derive an effective Hamil-
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FIG. 1: (a) Cartoon of photon emission accompanying cor-
related tunneling of two Cooper-pairs through a Josephson
junction (JJ). Each Cooper-pair releases energy ~ωJ = 2eV
so two are required to excite a photon with energy ~ω0 when
ωJ = ω0/2. (b) Circuit model: A bias voltage V is applied
to a JJ in series with a damped LC-resonator with frequency
ω0. (c) Level diagram for the number of resonator photons (n)
and the number of Cooper-pairs passing through the junction
(N) which illustrates some of the processes which contribute
at the resonance. (d) Time-averaged resonator occupation
number, 〈n〉, and Cooper-pair tunneling rate (scaled by the
resonator damping rate), ΓCP /γ, calculated using (1) and
(2) with parameters ∆0 = 0.15, Q = 1500, EJ/~ω0 = 0.5
and γφ = 0. The ratio ΓCP /γ〈n〉 ' 2, signifying that two
Cooper-pairs tunnel for each photon generated as discussed
below. Nonlinearities shift the peak above ωJ = ω0/2.

tonian describing tunneling of two Cooper-pairs and use
it to investigate the charge transport and photon emis-
sion. As the Josephson energy of the junction is in-
creased, nonlinearity up-converts the junction Joseph-
son frequency to that of the resonator and the trans-
port evolves from a regime involving tunneling of both
one and two Cooper-pairs to one where incoherent double
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Cooper-pair tunneling dominates. At still larger Joseph-
son energies, the double Cooper-pair tunneling becomes
coherent. Although this resonance has been discussed
within a classical analysis of the resonator dynamics 31,
a quantum description of the coupled charge-photon dy-
namics has not been provided until now.

Our analysis also reveals that double-Cooper pair tun-
neling leads to a photon-blockade effect 32,33 which could
be exploited as a single-photon source 16. The effect is
similar to that seen at single-Cooper pair tunneling res-
onances 21,26, but the blockade we find occurs at a lower
value of the resonator impedance, only slightly higher
than that achieved in very recent experiments 17.

II. RESONATOR-JUNCTION SYSTEM

The model system we consider consists of a LC-
resonator with frequency ω0 = 1/

√
LC in series with

a Josephson junction. The resonator could be realised
either as the fundamental mode of a superconducting
cavity 6,12,13 or as lumped-element oscillator 17 (see Fig
1b). Taking into account the possibility of an additional
low-frequency impedance in series with the junction, and
assuming the resonator capacitance is much larger than
that of the junction20,31, the system can be described by
a Hamiltonian of the form 21,28

H(t) = ~ω0â
†â− EJ cos[ωJ t− ϕ+ ∆0(â+ â†)], (1)

where â is the lowering operator of the resonator,
ωJ = 2eV/~ is the Josephson frequency set by the ap-
plied voltage, EJ is the Josephson energy and ∆0 =
(2e2/~)1/2(L/C)1/4 gives the zero point flux fluctuations
of the resonator in units of the flux quantum. The phase
ϕ is conjugate to the number of Cooper pairs, N , that
have passed through the junction [ϕ,N ] = i, so that the
operator eipϕ =

∑
N |N + p〉〈N | (for integer p) describes

the transfer of p-pairs. The value of ∆0 is determined
by the resonator impedance and although it is much less
than unity in standard microwave cavities 6,12,13, very re-
cent experiments 17 utilised a JJ-resonator system with
∆0 ' 1.

We assume that the resonator is subject to losses at a
rate γ whilst voltage-fluctuations due to the presence of
low-frequency impedances in the circuit leads to dephas-
ing of the junction charge at a rate γϕ. In the limit of
low temperatures, the master equation is given by 21

ρ̇ = − i
~

[H, ρ] +
γ

2
D[â](ρ) +

γϕ
2
D[N ](ρ), (2)

where D[x](ρ) = 2xρx† − x†xρ − ρx†x. The dephasing
term is equivalent to fluctuations in the bias voltage 34

and the value of γϕ is proportional to the zero-frequency
voltage noise spectral density. Since typically γϕ/γ � 1,
in many cases the dephasing can be neglected 21,26,34,35

and ϕ simply treated as a constant 20,34.

III. EFFECTIVE HAMILTONIAN
DESCRIPTION

We focus on the regime where 2ωJ ' ω0 and processes
in which two Cooper-pairs produce a single photon are
expected to dominate. Moving to a frame rotating at
frequency 2ωJ , the corresponding Hamiltonian can be
written as

H̃ = ~δâ†â− ẼJ
2

∞∑
q=0

[
Ôqe

i(2q+1)ωJ t + h.c.
]
, (3)

with δ = ω0 − 2ωJ and

Ôq = : iq(â†)qe−iϕ
Jq(2∆0

√
n̂)

n̂q/2

+(−i)q+1(â†)q+1eiϕ
Jq+1(2∆0

√
n̂)

n̂(q+1)/2
:, (4)

where Jq(z) is a Bessel function of order q, ẼJ =

EJe−∆2
0/2, n̂ = â†â is the photon number-operator and

: · · · : implies normal ordering.
We obtain an effective (time-independent) Hamilto-

nian for the system by averaging over short time-scales 36

(of order∼ 1/ωJ), making what is in effect a second-order
rotating wave approximation 37,

Heff = ~δâ†â+
Ẽ2
J

4~ωJ

∞∑
q=0

[
Ôq, Ô

†
q

]
(2q + 1)

(5)

=

(
~δ +

Ẽ2
J Ĝ

4~ωJ

)
n̂− i Ẽ

2
J

4~ωJ

[
F̂ â†e2iϕ − h.c.

]
,(6)

where F̂(∆0, n̂) and Ĝ(∆0, n̂) are higher-order functions
of the number operator and ∆0 (see Appendix A for ex-
plicit expressions and a representation in the Fock-state
basis). The overall factor of a†e2iϕ tells us that the effec-
tive Hamiltonian describes coherent processes in which
a photon is created in the resonator and two Cooper-
pairs pass through the junction. In terms of the original
Hamiltonian, this is a second order-process 36 which can
be seen as occuring via a range of intermediate (virtual)
states as indicated by the sum arising in (5) (see Fig. 1c).

Equation 6 also describes a nonlinear shift in the res-
onator frequency 31 which accounts for the shifted res-
onance seen in Fig. 1d. The origin of the frequency
shift is rather like the ac-Stark effect, whereby an off-
resonant field gives rise to shifts in atomic level spacings
without inducing transitions 36. In our case a strong off-
resonant drive is present, but it also leads to up conver-
sion (through the nonlinearity) which in turn drives reso-
nant processes. Effective Hamiltonians which are similar
in form (though significantly simpler) have been used to
describe circuit-QED systems driven by external fields to
engineer higher-order photon processes 37,38. In contrast,
our effective Hamiltonian describes a higher-order charge
transport process.
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Although the full expressions for F̂(∆0, n̂) and

Ĝ(∆0, n̂) are rather cumbersome (see Appendix A for de-
tails), if photon numbers are low and ∆0 � 1 an ex-
pansion in which only the lowest-order terms in ∆0 are
retained is sufficient, leading to

H
(0)
eff = ~δ′n̂+ i

Ẽ2
J∆3

0

3~ωJ
[
âe−2iϕ − â†e2iϕ

]
, (7)

with δ′ = δ + 8Ẽ2
J∆4

0/(15~2ωJ).

IV. AVERAGE PHOTON NUMBERS AND
CHARGE CURRENT

The photonic properties of the system in the low
photon-number regime are readily obtained using (7) and
(2). Using standard methods 39, we find that the first or-
der coherence function, G(1) = 〈a†(t)a(t+ τ)〉, decays at
a rate ' 2γϕ (details are provided in Appendix B). This
implies that the linewidth of the resonator spectrum will
be a factor of 4 larger than for the resonance at ωJ ∼ ω0

where a single Cooper-pair produces a photon 21; this is
important because it means a signature of the double
Cooper-pair tunneling can be found by measuring just
the resonator spectrum. The corresponding steady-state
occupation number of the resonator

〈n̂〉 =

(
Ẽ2
J∆3

0

3~2ωJ

)2
1 + 4γϕ/γ

(γ/2)
2

(1 + 4γϕ/γ)
2

+ (δ′)2
, (8)

grows as E4
J (to lowest order). In contrast to the spectral

linewidth, the occupation number is only very weakly
dependent on low-frequency voltage fluctuations (since
γϕ/γ � 1 in typical experimental set-ups 6,21,34). In the
following we set γϕ → 0 for simplicity.

Comparisons with numerical calculations 40 using the
full Hamiltonian [Eq. 1] in Fig. 2a show that 〈n〉 does
indeed scale as E4

J , but only for intermediate values. For
larger EJ values, the contributions at higher order in EJ
which are described by (6) are required and the photon-
number dependent nonlinearities lead to a saturation in
photon numbers. However, the behavior at very low EJ
is not captured by the effective Hamiltonian (6). This
is inevitable because the system is bound to have a pe-
riod 2π/ωJ matching that of the underlying Hamiltonian
(7) in the limit of very weak EJ , whereas the effective
Hamiltonian only describes oscillations at 2ωJ ' ω0.

The low-EJ behavior can be obtained through a phys-
ically transparent semiclassical analysis (details of which
are given in Appendix C), utilising the fact that for
γϕ → 0 the system can be mapped onto a nonlinearly
driven oscillator 20,31,35. This reveals that there is a
competition between oscillations with periods 2π/ωJ and
π/ωJ leading to contributions to (time-averaged) 〈n〉 that

grow as Ẽ2
J∆2

0 and Ẽ4
J∆6

0 respectively. The contributions

have the same weight when ẼJ∆2
0Q/~ω0 =

√
5/8 [see

Fig. 2a].
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FIG. 2: (a) Time-averaged steady-state photon occupation
number using the full Hamiltonian H(t), (1), compared with
the prediction of Heff , (6). Also shown are the O(E2

J) and
O(E4

J) contributions to 〈n〉 obtained from a semiclassical

analysis, with a dashed vertical line at ẼJ∆2
0Q/~ω0 =

√
5/8

indicating the crossover. (b) Onset of double Cooper-pair
transport seen through the ratio ΓCP /γ〈n̂〉. The time-
averaged calculation using (9) and H(t) (black line) increases
slowly and then saturates whereas (11) predicts a value of pre-
cisely 2 (red dashes). The parameter values are: ωJ = ω0/2,
Q = 1500, ∆0 = 0.15 and γϕ = 0.

The instantaneous expectation value of the current
flowing through the junction is given by 〈ÎCP 〉 = 2e〈Ṅ〉.
Since the dissipative terms in the master equation trans-
fer no charge, the current operator is defined by the op-
erator 21,35

ÎCP (t) = (2eEJ/~) sin[ωJ t− ϕ+ ∆0(â+ â†)]. (9)

The expectation value of the current is not stationary,
but averaging over a time T � 1/ωJ leads to a corre-
sponding expression for the average, or dc, current:

ICP =
1

T

∫ t0+T

t0

dtÎCP (t). (10)

We can also use the effective Hamiltonian to write
down an expression for a time-averaged current opera-
tor directly,

ICP = i
2e

~
[Heff , N ]. (11)

In terms of the Cooper-pair tunneling rate, ΓCP =
〈ICP 〉/2e, this expression taken together with (2) leads
to a straightforward relationship in the steady-state:
ΓCP /γ〈n̂〉 = 2. The ratio has this simple integer value
because the effective Hamiltonian describes a resonator
oscillating at a single frequency (it is stationary in the
frame rotating at 2ωJ) in which individual photons are
always generated (or destroyed) in association with the
tunneling of two Cooper-pairs [see (6)]. As Fig. 2b shows,
when ΓCP /γ〈n̂〉 is calculated using (9) there is excellent
agreement with the prediction of the effective Hamilto-
nian approach at sufficiently large EJ values, but it drops
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below 2 when EJ is very small and oscillations at the
Josephson frequency can no longer be neglected. In this
regime the charge transport is a mixture of processes in-
volving either two or one Cooper-pair(s).

V. FROM INCOHERENT TO COHERENT
DOUBLE COOPER-PAIR TUNNELING

To gain an understanding of how the charge transport
takes place, we define a time-averaged current noise 41 for
the system through the relation

SCP = 2Re

∫ ∞
0

dτ

∫ t0+T

t0

dt

T

[
〈ÎCP (t+ τ)ÎCP (t)〉

−〈ÎCP (t+ τ)〉〈ÎCP (t)〉
]
. (12)

When the effective Hamiltonian holds, an equivalent ex-
pression for the current noise can be written in terms
of the time-averaged current operator, (11). The corre-
sponding Fano factor, FCP = SCP /(2e〈ICP 〉), compares
the noise to that of a Poissonian process involving a single
Cooper-pair 35, providing a convenient way of character-
ising the behavior.

As Fig. 3 shows, using the effective Hamiltonian leads
to a value of FCP which tends to 2 in the limit of small
EJ ; this signifies incoherent tunneling of two Cooper
pairs 42 (i.e. charge 4e). For larger EJ values, FCP
drops. We know that in this regime on average two
Cooper-pairs tunnel for each photon entering the res-
onator so this implies that the transport of pairs of
Cooper-pairs becomes coherent 43. This is accompanied
by sub-Poissonian photon statistics within the resonator
(i.e. Fn = (〈n̂2〉 − 〈n̂〉2)/〈n̂〉 < 1, see the inset of Fig.
3), and is similar to the transition from incoherent to co-
herent tunneling of single Cooper pairs 21,35 that occurs
for ωJ ' ω0. For low values of EJ the effective Hamil-
tonian approach fails and numerical calculations using
(12) and the full time-dependent Hamiltonian show that
FCP drops below 2, but in this case it is because single
Cooper-pair tunneling processes have become important.

The regime where charge transport is almost entirely
due to incoherent double Cooper-pair tunneling (ID-
CPT), and hence FCP ∼ 2, maps onto the domain of va-
lidity of (7): set below by the crossover to (off-resonant)

single-Cooper pair tunneling events (ẼJ∆2
0Q/~ω0 ∼√

5/8) and above by the onset of strong effective non-
linearities (4∆2

0〈n̂〉 ∼ 1). Hence, we expect IDCPT to

dominate when
√

5/8� ẼJ∆2
0Q/~ω0 �

√
3Q/8, which

means that it will only be well-separated from other
transport regimes for weak damping, Q� 1.

VI. SINGLE PHOTON NONLINEARITY AND
PHOTON BLOCKADE

We now turn to the strongly non-classical behavior of
the system which emerges when ∆0 ∼ 1. Of particular
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interest is the behavior of the matrix element 〈1|Heff |2〉,
for which a closed form expression can be derived analyti-
cally (see Appendix A). If this is zero the system becomes
trapped within the two-state basis of the n = 0, 1 Fock
states 21,24,26,44. As a consequence, the corresponding
correlation function g(2)(0) = 〈â†â†ââ〉/〈â†â〉2 vanishes
indicating photon-blockade and the system can function
as a single photon source 17.

Despite their apparent complexity the matrix elements
of the effective Hamiltonian (6) do have zeros, imply-
ing destructive interference of the many processes which
contribute (Fig. 1c), and hence there is a strong photon
blockade effect as Fig. 4 illustrates. The zero of 〈1|Heff |2〉
with lowest ∆0 occurs at ∆0 ' 1.07. Surprisingly, this is
a significantly lower value than the corresponding matrix-
element zero that occurs for the single photon resonance
where Cooper-pairs tunnel individually (ωJ ' ω0) which

occurs at ∆0 =
√

2 17,21.
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VII. CONCLUSIONS

In conclusion, we have analysed charge transport and
photon emission in a JJ-resonator system biased so that
the Josephson frequency is just half the resonator fre-
quency. As the Josephson energy is increased, the un-
derlying dynamics of the system crosses over from os-
cillations at the Josephson frequency to the resonator
frequency, accompanied by a corresponding crossover in
charge transport from single to double Cooper-pair tun-
neling. By deriving an effective Hamiltonian description,
we found that whilst double Cooper-pair transport is in-
coherent when it first begins to dominate, a regime of
coherent double-Cooper pair tunneling emerges at larger
Josephson energies. For large resonator impedances the
system displays a photon blockade which could be ex-
ploited as a single photon source.

Whilst double Cooper-pair processes are higher-order
in both the Josephson energy and resonator impedance
than their single Cooper-pair counterparts, the values of
both these quantities can be tuned in experiments within
broad ranges (e.g. ∆0 up to∼ 1 17 and EJ beyond ~ω0

12),
making the novel charge transport and photon-emission
regimes we describe readily accessible with current device

architectures 12–17. Our work opens the way for future
work exploring how charge transport might be controlled
via microwave cavities and could also stimulate interest
in overbias emission in superconducting STM 45, a poten-
tially very fruitful direction given the rich behavior seen
in normal state STM 5,7–9.

Note Added : In the final stages of preparing our pa-
per another study appeared which also involves double
Cooper-pair tunneling 46, albeit in a very different con-
text.
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APPENDIX A: EFFECTIVE HAMILTONIAN

The operators Ĝ(n̂,∆0)n̂ and âF̂(n̂,∆) that appear in the expression for the effective Hamiltonian [Eq. (6)] are
defined by the relations,

Ĝ(∆0, n̂)n̂ =

+∞∑
p=1

4p

4p2 − 1
[Âp, Â

†
p] (A1)

âF̂(∆0, n̂) =

+∞∑
p=0

(−1)p

2p+ 1
[Âp, Â

†
p+1] (A2)

with Âp = (â†)pK̂p, where the Hermitian operator K̂p is a function of the number operator only and is defined as

K̂p =:
Jp(2∆0

√
n̂)

n̂p/2
:=

+∞∑
m=0

(−1)m∆2m+p
0 (â†)mâm

m!(m+ p)!
. (A3)

The effective Hamiltonian [Eq. (6)] can also be expressed directly in terms of the Fock state basis,

Heff =

+∞∑
q=0

(q~δ + δEq)|q〉〈q|+ i

+∞∑
q=0

[
Mq,q+1|q〉〈q + 1|e−2iϕ − h.c.

]
, (A4)

with the matrix elements defined as

δEq =
Ẽ2
J

4~ωJ

{
q∑
p=1

4p

4p2 − 1

[
κ2
p(q − p)q!
(q − p)!

]
−

+∞∑
p=1

4p

4p2 − 1

[
κ2
p(q)(q + p)!

q!

]}
(A5)

Mq,q+1 =
Ẽ2
J

4~ωJ

{
q∑
p=0

(−1)p

2p+ 1

√
q!(q + 1)!

(q − p)!
κp(q − p)κp+1(q − p)−

+∞∑
p=0

(−1)p

2p+ 1

(q + p+ 1)!√
q!(q + 1)!

κp+1(q)κp(q + 1)

}
,(A6)
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where κp(q) is the q-th eigenvalue of K̂p (i.e. K̂p|q〉 = κp(q)|q〉), which is given by

κp(q) = q!

q∑
n=0

(−1)n∆2n+p
0

n!(n+ p)!(q − n)!
. (A7)

Using this matrix representation, one can then derive closed form expressions for specific matrix elements of the
Hamiltonian. In particular, we find

M1,2 =
Ẽ2
J

4
√

2~ωJ

[
∆0e−∆2

0

(
2

3
∆4

0 −
10

3
∆2

0 +
3

2

)
+
√
πerf(∆0)

(
2

3
∆6

0 − 3∆4
0 +

7

2
∆2

0 −
3

4

)]
(A8)

with erf(x) the (Gauss) error function. As discussed in the main text, this has its first zero at ∆0 ∼ 1.07 [see the
inset of Fig. 4].

APPENDIX B: FIRST-ORDER COHERENCE FUNCTION

In this section we outline the calculation of the first-order coherence function, a similar calculation for the single-
Cooper pair resonance (where ωJ ' ω0) is discussed in Ref. 21. Starting from Eqs. (2) and (7), we obtain the equations
of motion

d

dt
〈â〉 = −(iδ′ + γ/2)〈â〉 −X〈e2iϕ〉 (B1)

d

dt
〈e2iϕ〉 = −2γϕ〈e2iϕ〉. (B2)

where X = Ẽ2
J∆3

0/(3~2ωJ). Hence, using the regression formula 39 we find

〈â†(t)e2iϕ(t+ τ)〉 = 〈â†(t)e2iϕ(t)〉e−2γϕτ , (B3)

〈â†(t)a(t+ τ)〉 = 〈â†(t)â(t)〉e−(γ/2+iδ′)τ −X 〈â†(t)e2iϕ(t)〉
γ/2− 2γϕ + iδ′

(
e−2γϕτ − e−(γ/2+iδ′)τ

)
. (B4)

Using the steady-state values (t→∞)

〈n̂〉 = 〈â†â〉 =
X2(1 + 4γϕ/γ)

(γ/2 + 2γϕ)2 + (δ′)2
(B5)

〈â†e2iϕ〉 =
−X

γ/2 + 2γϕ − iδ′
, (B6)

leads to

〈â†â(τ)〉 = 〈n̂〉e−(iδ′+γ/2)τ +
X2
[
e−2γϕτ − e−(iδ′+γ/2)τ

]
[iδ′ + (γ/2− 2γϕ)] [−iδ′ + (γ/2 + 2γϕ)]

. (B7)

Finally, assuming γϕ/γ � 1, we can simplify this to

〈â†â(τ)〉 ' 〈n̂〉e−2γϕτ . (B8)

APPENDIX C: SEMICLASSICAL ANALYSIS

A simple semiclassical model for the system (similar in spirit to that discussed in Ref. 31) is obtained from Eqs.
(1) and (2) by making the ansatz that the resonator is in a coherent state |α〉. Taking the limit γϕ → 0 and setting
ϕ = 0 for convenience, we find

α̇ = −
(
iω0 +

γ

2

)
α− iẼJ∆0

~
sin[ωJ t+ ∆0(α+ α∗)]. (C1)
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For ωJ ' ω0/2 and the very smallest EJ values the system will behave like a linear oscillator subject to two off-
resonant drives with different phases so that in the limit of long times, α ' α−e−iωJ t + α+e+iωJ t with constants
α±. However, for slightly larger EJ values the nonlinearity will up-convert the oscillations (with amplitudes α±) at
frequency ωJ into an effective drive near the resonant frequency (ω0 ' 2ωJ), to take these into account we assume a
solution of the form α = α0e−2iωJ t +α−e−iωJ t +α+eiωJ t, substituting this into (C1) and assuming harmonic balance
leads to the relations

α0 = −i ẼJ∆2
0

2~
(α− + α∗+)

i(ω0 − 2ωJ) + γ/2
(C2)

α− =
ẼJ∆0

2~
1− i∆0α0

i(ω0 − ωJ) + γ/2
, (C3)

α+ = − ẼJ∆0

2~
1 + i∆0α

∗
0

i(ω0 + ωJ) + γ/2
. (C4)

Using the fact that ωJ ' ω0/2, assuming γ/2 � ωJ and working to 4th order in ẼJ (and 6th order in ∆0) leads to
the approximate expression

〈n〉 ' |α|
2

= |α0|2 + |α+|2 + |α−|2 (C5)

' Ẽ2
J∆2

0

2~2

[
ω2

0 + ω2
J

(ω2
0 − ω2

J)2

]{
1 +

Ẽ2
J∆4

0

2~2

ω2
0

[ω2
0 + ω2

J ][(ω0 − 2ωJ)2 + γ2/4]

}
(C6)

where the bar implies a time average. The oscillations at ±ωJ give rise to a contribution to 〈n〉 that grows as

∼ Ẽ2
J∆2

0, whilst the oscillations at frequency 2ωJ give rise to one that grows as ∼ Ẽ4
J∆6

0. The crossover between these
two components is obtained by equating the two terms in the braces. As (C2) and (C6) make clear, the amplitude
oscillating at 2ωJ is indeed an upconversion of the oscillations at ωJ . Furthermore, one cannot neglect the most

off-resonant component (α+), doing so leads to a value for |α|
2

which is very noticeably less accurate. Notice that the
O(E4

J) component of the average occupation number,

|α0|2 '

(
Ẽ2
J∆3

0

3~2ωJ

)2
1

δ2 + γ2/4
, (C7)

matches Eq. (8) in the limit γϕ → 0, up to higher-order corrections (in ∆0 and EJ) arising from the frequency shift
δ′ − δ. The frequency shift can also be obtained within the semiclassical approach, but through a calculation that
goes to higher order 31. In Fig. 2, Eq. C7 is the O(E4

J) expression plotted, whilst the O(E2
J) one is the corresponding

part of (C6),

|α+|2 + |α−|2 '
Ẽ2
J∆2

0

2~2

[
ω2

0 + ω2
J

(ω2
0 − ω2

J)2

]
. (C8)

In the semiclassical description, the time-averaged current is given by

ICP
2e

=
ẼJ
~

sin[ωJ t+ ∆0(α+ α∗)]. (C9)

Using the same ansatz for α as above, together with the assumptions ωJ ' ω0/2, γ/2� ωJ and again working to 4th

order in ẼJ (and 6th order in ∆0) leads to

ICP
2e

' γẼ2
J∆2

0ω0ωJ
~2(ω2

0 − ω2
J)2

+
γẼ4

J∆6
0

2~4

ω2
0

(ω2
0 − ω2

J)2[(ω0 − 2ωJ)2 + γ2/4]
. (C10)

Hence in the limit EJ → 0 the time-averaged current to photon number ratio will be

〈ICP 〉
2eγ〈n〉

=
2ω0ωJ
ω2

0 + ω2
J

. (C11)

This matches the drop below unity seen in the upper panel of Fig. 2. On the other hand, if just the Ẽ4
J contributions

are included then the ratio is simply 2.
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