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Abstract14

Cuticles have been a key part of palaeobotanical research since the mid-19th Century.15

Recently, cuticular research has moved beyond morphological traits to incorporate the16

chemical signature of modern and fossil cuticles, with the aim of using this as a taxonomic17

and classification tool. For this approach to work, cuticle chemistry would have to maintain a18

strong taxonomic signal, with a limited input from the ambient environment in which the19

plant grew. Here, we use attenuated total reflectance Fourier Transform infrared (ATR-FTIR)20

spectroscopy to analyse leaf cuticles from Ginkgo biloba plants grown in experimentally21

enhanced CO2 conditions, to test for the impact of changing CO2 regimes on cuticle22

chemistry. We find limited evidence for an impact of CO2 on the chemical signature of23

Ginkgo cuticles, with more pronounced differences demonstrated between the abaxial (lower24

leaf surface) and adaxial (upper leaf surface) cuticles. These findings support the use of25

chemotaxonomy for plant cuticular remains across geological timescales, and the26

concomitant large-scale variations in CO2 concentrations.27
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Introduction31

The plant cuticle is a key evolutionary innovation that enabled plants to colonise32

subaerial environments in the early Palaeozoic (Domínguez et al. 2011; Renault et al. 2017;33

Salminen et al. 2018). It is a waxy and waterproof membrane that covers the outer surface of34

the green parts of plants, preventing desiccation and providing structural support, as well as35

protection from ultraviolet (UV) irradiance, herbivory, and infection (Kerp 1990; Domínguez36

et al. 2011; Heredia-Guerrero et al. 2014; Dominguez et al. 2017). Cuticles consist of an37

insoluble aliphatic matrix comprising cutin (a long chain polymer composed of esterified38

fatty acids), cutan (an ether-linked hydrocarbon polymer), or a mixture of the two.39

Distributed through the matrix are soluble waxes and phenolic compounds; waxes also occur40

on the outer surface of the matrix. The inner part of the matrix, which connects with the41

epidermal cells, contains a high concentration of polysaccharides (Domínguez et al. 2011;42

Heredia-Guerrero et al. 2014; Dominguez et al. 2017).43

44

Plant cuticles have been investigated and utilised by palaeobotanists for over 17045

years (Kerp 1990). Cuticles have a high preservation potential, retaining anatomical details46

such as epidermal cell morphologies and stomata distributions (Kerp 1990), and have47

therefore been used in a variety of applications, including fossil plant taxonomy and48

determining the botanical affinities of disparate plant organs (Kerp 1990; Kerp et al. 2006;49

Abu Hamad et al. 2008; Bomfleur et al. 2013; Abu Hamad et al. 2017), reconstructing50

atmospheric pCO2 from stomatal densities or associated indices (Woodward 1987;51

McElwain and Chaloner 1995; Lomax and Fraser 2015; McElwain and Steinthorsdottir 2017;52

Steinhorsdottir et al. 2018), and reconstructing genome size based on guard cell length53

(Lomax et al. 2014). Recently, Steinthorsdottir et al. (2018) suggested that morphological54
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changes in the cuticle surface, such as stomatal complex distortion and disorganised cell55

arrangements, could be a potential proxy for volcanic SO2 emissions.56

57

In addition to morphology-based analyses of cuticles, other studies have focused on58

utilising cuticle chemistry. One area of interest has been generating carbon isotope data from59

dispersed cuticles and thereby reconstructing carbon cycle dynamics (e.g. Peters-Kottig et al.60

2006; Richey et al. 2018), and by combining with isotopic estimates of the 13C of the61

atmosphere it may be possible to determine changes in water use efficiency (Diefendorf et al.62

2010). Molecular analysis (e.g. by pyrolysis-gas chromatography-mass spectrometry) of63

cuticle has also provided a wealth of information, including the chemical composition of64

cuticles, the distribution of cutin and cutan among plant taxa, and the fate of these65

biopolymers in the geological record (Tegelaar et al. 1993; Mösle et al. 1997; Mösle et al.66

1998; Collinson et al. 1999; Zodrow and Mastalerz 2001; Mösle et al. 2002; Zodrow and67

Mastalerz 2002; Gupta et al. 2007a; Gupta et al. 2007b; Zodrow et al. 2012a; Zodrow et al.68

2012b; see also Gupta 2014 for review).69

70

Vibrational spectroscopic techniques such as Fourier transform infrared (FTIR) and71

Raman spectroscopy have also been used to analyse cuticle chemistry, because they have the72

advantages of being non-destructive, efficient and able to analyse very small sample73

quantities (Heredia-Guerrero et al. 2014; Olcott Marshall and Marshall 2014). These74

approaches have been employed in both modern and fossil settings, with the aims of75

understanding cuticle chemistry and its response to environmental change and ontogenetic76

development (Villena et al. 2000; Ribeiro da Luz 2006; Dominguez et al. 2012; Littlejohn et77

al. 2015; Innes et al. 2019; Liu et al. 2019), diagenesis/fossilisation processes and the78

characterisation of organic matter in the geological record (Lyons et al. 1995; Collinson et al.79
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1999; Zodrow et al. 2000; Zodrow and Mastalerz 2002; D’Angelo 2006; Zodrow et al. 2009;80

Zodrow and Mastalerz 2009; D’Angelo et al. 2010; D’Angelo et al. 2011; Zodrow et al.81

2012a; Zodrow et al. 2012b; D’Angelo and Zodrow 2015; Zodrow et al. 2016), and the82

taxonomic identification of plants using their chemical signature (termed chemotaxonomy)83

(Zodrow and Mastalerz 2001, 2002; D’Angelo 2006; D’Angelo et al. 2010; D’Angelo and84

Zodrow 2015; Vajda et al. 2017). Cuticle chemistry has been shown to contain a85

phylogenetic signal that is preserved in fossil material, leading to the possibility of86

classifying fragmentary or otherwise problematic cuticular remains (Vajda et al. 2017).87

Parallel developments have been made in pollen and spore research (Pappas et al. 2003;88

Dell'Anna et al. 2009; Steemans et al. 2010; Zimmermann and Kohler 2014; Julier et al.89

2016; Zimmermann et al. 2016), suggesting that FTIR or Raman based chemotaxonomy may90

have much to offer for palaeobotanical and palynological investigations.91

92

For cuticle chemistry to be successfully used for chemotaxonomy, it is critical to93

understand the other possible controls on the chemical signature that may bias or obscure any94

taxonomic or phylogenetic signal. Changing ambient UV-B levels are expected to drive95

variations in the concentrations of phenolic compounds, for example, since these form the96

UV-B absorbing compounds (UACs) in the plant cuticle (Blokker et al. 2006; Rozema et al.97

2009). Such a relationship has been demonstrated in Polylepis tarapacana in the Bolivian98

Andes (Gonzalez et al. 2007) and Fagus sylvatica from the Hunsrück region of Germany99

(Neitzke and Therburg 2003), where leaf UAC concentrations increased with increased UV-100

B at higher altitudes (although it should be noted that these findings relate to bulk leaf tissue,101

rather than isolated cuticles). Over longer geological timescales, atmospheric CO2102

concentration may be a more important parameter, because it has varied from ~200 to ~2000103

ppm since the appearance of the earliest plant cuticles >400 Ma (McElwain and104
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Steinthorsdottir 2017) (Fig. 1); however, the impacts of changes in atmospheric CO2105

concentrations on cuticle chemistry are currently not well understood. From a carbon106

economic perspective, in a high CO2 world such as the early Mesozoic biomolecules with a107

high carbon content and thus metabolite cost would be cheaper to construct due to an increase108

in substrate, suggesting a response to changes in CO2 is expected. While a strong cuticular109

chemical response to CO2 would possibly limit the use of chemotaxomony across long110

timescales, it could open up the possibility of new indicators of palaeo-CO2 concentrations.111

112

Here we investigate the effect of different CO2 regimes on Ginkgo biloba leaf cuticle113

chemistry. Ginkgo is a particularly relevant taxon for addressing this uncertainty because of114

its longevity: Ginkgo first appeared in the early Mesozoic, and Ginkgoales in the late115

Palaeozoic (Zhiyan and Xiangwu 2006), and this group has therefore existed across a wide116

range of CO2 regimes (Fig. 1). Modern and fossil Ginkgo cuticles have also been the subject117

of past chemical research, meaning that the overall chemistry and diagenetic changes are118

broadly understood (Mösle et al. 1997, 1998; Collinson et al. 1999).119

120

Methods121

The leaf cuticles analysed in this study were taken from Ginkgo biloba plants122

experimentally grown under elevated CO2 conditions, the full details of which can be found123

in Gill et al. (2018). Briefly, Ginkgo biloba seedlings were grown for 6 months in walk-in124

growth room chambers (UNIGRO, UK) at CO2 concentrations of 400, 1200 and 2000 ppm.125

Levington M3 was used as a potting medium, and the plants were kept well-watered during126

the growth period. The plants were grown in a simulated day/night program with 10 hours of127

light (300 µmol/m2/s) per day, a night high temperature of 17°C and a daytime peak128

temperature of 22°C. Relative humidity was held at 70%. After 6 months, leaves were129
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harvested from the plants and dried at 60°C. For our FTIR analyses we generated data for 2130

plants per CO2 treatment, using pre-cut leaf discs from 3 leaves per plant, resulting in a total131

of 18 leaves analysed.132

133

IR spectra were generated using a Cary 670 FTIR spectrometer integrated with a Cary134

620 FTIR microscope (Agilent, Santa Clara, CA, USA). The FTIR microscope was fitted135

with a 64x64 pixel focal plane array (FPA) detector, and a 15x Vis/IR objective at high136

magnification to which a Germanium crystal micro-attenuated total reflectance (ATR) was137

fitted, achieving a resolution of 1.1 µm per pixel (each pixel results in one IR spectrum, so138

that each measurement yields an array of 64 x 64 = 4096 spectra). Three replicate139

measurements per leaf disc (abaxial side) were collected at 64 scans per measurement and a140

resolution of 8, except for one of the 2000 ppm leaf discs where only two high quality141

measurements were obtained. Background spectra were collected prior to each set of142

replicates and automatically removed from the sample spectra. While we focused on the143

abaxial surface, the adaxial surface from one leaf disc per CO2 treatment was also analysed,144

again with three replicate measurements, to compare chemical signals between the leaf sides.145

146

The Cary 620 FTIR microscope allows a live view of the FPA detector which147

maximises the potential of good contact between the ATR crystal and the sample. At a micro-148

scale, the leaf surface was irregular and contact between the ATR Germanium crystal and the149

leaf was not uniform, resulting in variable quality of spectra across the measurement array.150

For each measurement, spectra were therefore extracted from those pixels where the height151

(=absorbance value) of the 1167 cm-1 peak exceeded 15% of the maximum 1167 cm-1 peak152

height within the array. The 1167 cm-1 peak was chosen because it is clearly present in all153

spectra (Figs. 2 and 3), and 15% of the maximum peak height was used as a threshold154
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because it provides a reasonable trade-off between obtaining high quality spectra and155

incorporating a sufficient number of spectra in each measurement. The mean of the extracted156

spectra was then calculated to provide one spectrum per replicate measurement.157

158

Some spectra showed strong distortion in the higher wavenumbers, and so all were159

limited to <3100 cm-1 prior to analysis. Baseline curvature was removed with a 4th order160

polynomial baseline, and the corrected spectra z-score standardised (i.e. the mean was161

subtracted and the spectra divided by the standard deviation, resulting with each spectrum162

having a mean of zero and a standard deviation of one). Peak assignment was carried out with163

reference to the published literature (Ramirez et al. 1992; Heredia-Guerrero et al. 2014).164

165

Spectral changes across the CO2 treatments were analysed in two ways: with Principal166

Components Analysis (PCA) and by measuring the heights of selected peaks. PCA is an167

exploratory multivariate technique that partitions data into axes of maximal variation168

(principal components), allowing complex multivariate data to be viewed in a limited number169

of dimensions. Some spectra showed distortion in the 2800 to 1800 cm-1 range, even after the170

4th order polynomial baseline correction, and this was found to swamp the PCA analysis such171

that it dominated the first axis (the principal component that explains most variation in the172

data). Prior to PCA the raw spectra were therefore limited to <1800 cm-1, baseline corrected173

with a linear baseline, and z-score transformed. We ran the PCA on leaf disc mean spectra174

rather than on the individual replicates, to help bring out any major differences among CO2175

treatments and leaf surfaces (abaxial versus adaxial), as opposed to random among-replicate176

variation. Processing the spectra with Savitzky-Golay smoothing and taking derivatives did177

not substantially alter the distribution of samples in ordination space, so we focused our178
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analyses on the unprocessed spectra to make interpretation of loadings plots more179

straightforward.180

181

Peak height measurements were similar when taken from both the <3100 cm-1 spectra182

with a 4th order polynomial baseline correction and <1800 cm-1 spectra with a linear baseline183

correction. We therefore used the <3100 cm-1 spectra, so as to include the aliphatic peaks at184

2920 and 2850 cm-1. Peaks were selected so that changes across the different components of185

the cuticle (i.e. cutin, waxes, phenolic compounds, and polysaccharides; previous research186

has shown that Ginkgo cuticles contain no cutan (Mösle et al. 1997)) could be detected, and187

peak height was measured as the maximum absorbance value within a predetermined range188

(see Table 1 for details). All data analysis was carried out in R v.3.4.2 (R Core Team 2017)189

using the packages baseline v.1.2-1 (Liland and Mevik 2015) and prospectr v.0.1.3 (Stevens190

and Ramirez-Lopez 2013). IR spectral data are provided in the supplementary information.191

192

Results193

ATR-FTIR spectra of the Gingko cuticles reveals many of the same peaks that have194

been previously identified in other studies (Fig. 2). Specifically, peaks relating to aliphatic195

compounds in cutin and waxes are located at 2920 cm-1 (CH2 asymmetric stretching), 2850196

cm-1 (CH2 symmetric stretching), 1460 cm-1 and 1370 cm-1 (both CH2 bending), peaks related197

to ester vibrations in cutin are located at 1710 cm-1 (with shoulders at 1730 cm-1 and 1685198

cm-1; C=O stretching), 1167 cm-1 and 1104 cm-1 (both C-O-C stretching), peaks related to199

phenolic compounds are located at 1605 cm-1 (C-C stretching) and 1515 cm-1 (C-C stretching200

conjugated with C=C), and peaks related to polysaccharides are located at 1245 cm-1 (OH201

bending; this peak may also represent cutin) and 1020 cm-1 (C-O stretching). Most of the202

same peaks are present in both the abaxial and adaxial cuticles, although the abaxial cuticles203
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have a relatively higher 1167 cm-1 ester peak and 1605 cm-1 aromatic peak, related to cutin204

and phenolic compounds, respectively, and the adaxial cuticles have a pronounced 1720 cm-1205

ester peak and a relatively higher 1245 cm-1 hydroxyl peak, related to cutin and206

polysaccharides or cutin, respectively (Fig. 3). The spectra do not show any obvious207

differences across CO2 treatments (Fig. 3).208

209

A PCA of the spectral data shows the major variability in the dataset is partitioned210

between the abaxial and adaxial cuticles, which are separated on axis 1 of the ordination, and211

to some extent on axis 4 (Fig. 4). There are no clear groupings associated with CO2 treatment212

on any of the first four PCA axes, which together account for >90% of the variation in the213

data. Loadings plots show that PCA axis 1 is driven by variations in the 1720 and 1245 cm-1214

peaks (positive relationship; these peaks are higher in the adaxial cuticles) and peaks between215

1000 and 1100 cm-1 (negative relationship). Axes 2 and 3 are primarily driven by variations216

around 1700 cm-1, while the distribution of samples on axis 4 is underpinned by variations in217

the height of the 1167 cm-1 peak, which again differs between the abaxial and adaxial218

cuticles. This lack of a chemical change with increasing CO2 is also shown in the 2nd219

derivative of Savitzky-Golay smoothed spectra, and when only the abaxial cuticles are220

ordinated (Fig. S1).221

222

Analysis of peak heights suggests that there are limited consistent changes with CO2223

level (Fig. 5). One possible exception is the 1460 cm-1 aliphatic peak, and in the adaxial224

cuticles the 2920 and 2850 cm-1 aliphatic peaks as well, which decline in height with225

increasing CO2. However, the change in the height of the 1460 cm-1 peak is less obvious in226

the <1800 cm-1 spectra (Fig. S2), so this may be an artefact of the baseline correction in the227

<3100 cm-1 spectra.228
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229

Discussion and conclusions230

Our results suggest that, at least in terms of broad scale chemical signals, changes in231

atmospheric CO2 concentrations only have a limited impact upon Ginkgo cuticle chemistry.232

While this is not an encouraging outcome for developing new CO2 proxies from FTIR233

analysis of cuticles, it does suggest that any taxonomic signature present in fossil cuticles will234

be robust to the ambient CO2 concentration that the plant was growing in. Chemotaxonomic235

approaches should therefore be applicable across varying CO2 regimes. There is some236

evidence for a decrease in the aliphatic peaks, which may relate to decreases in the237

epicuticular or intracuticular waxes with increasing CO2, although these are most obvious238

with the adaxial spectra where the quantity of data is limited. A more obvious driver of239

differences in chemistry was the difference between abaxial and adaxial cuticles, related to240

differences in the cutin matrix and intracuticular phenolic compounds. These findings require241

investigation with a larger dataset, incorporating more taxa and increased replication of both242

abaxial and adaxial surfaces.243

244

It will also be necessary to confirm the generality of these results using processed and245

isolated cuticles where non-fossilisable components have been removed (e.g. Mösle et al.246

1998). This will allow for a better comparison with fossil material, including building247

chemical libraries of modern taxa that can be used to classify fossil specimens. However, the248

recognition of peaks from previous studies of chemically and mechanically isolated cuticles249

(e.g. Heredia-Guerrero et al. 2014) in our IR spectra demonstrates that working with the outer250

surfaces of intact leaves can provide generally applicable information on the drivers of cuticle251

chemical variability. ATR analysis of unprocessed leaf surfaces provides a rapid means of252
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assessing cuticle chemistry, with field measurements a possibility if a handheld ATR is used253

(Ribeiro da Luz 2006).254

255

Our small-scale study does not rule out a possible influence of CO2 on cuticle256

chemistry, but it does suggest that the effects are likely to be subtle. In addition to increasing257

the number of taxa, plants and leaves analysed, spectral deconvolution and curve fitting258

approaches (e.g. Zodrow and Mastalerz 2001; Depciuch et al. 2018) may help to reveal small259

differences across CO2 treatments that might not be detected with the broad scale methods260

used here. In particular, changes in the carbon isotope composition of the cuticle with261

increasing CO2 concentrations may cause small shifts in IR peak positions (Esler et al. 2000),262

which if consistent across individuals and taxa may be detectable with careful analysis.263

264

In addition to CO2, other possible influencing factors will need to be tested for before265

cuticle chemistry can be confidently used as a taxonomic tool across palaeoenvironments and266

time periods. Of critical importance will be determining how well chemical signals from267

external environmental conditions preserve in fossil cuticles. As already noted, one likely268

driver of cuticle chemical change will be variations in UV-B irradiance, which are known to269

control concentrations of UV-B absorbing compounds (UACs) in plant tissues (Rozema et al.270

1999; Neitzke and Therburg 2003; Gonzalez et al. 2007; Rozema et al. 2009). The271

concentration of UACs in pollen and spore walls has been shown to covary with ambient272

UV-B flux, and this relationship has been consistently demonstrated across a range of taxa273

and time periods (Rozema et al. 1999; Rozema et al. 2001a; Rozema et al. 2001b; Blokker et274

al. 2005; Blokker et al. 2006; Watson et al. 2007; Lomax et al. 2008; Rozema et al. 2009;275

Fraser et al. 2011; Willis et al. 2011; Lomax et al. 2012; Fraser et al. 2014; Lomax and Fraser276

2015; Jardine et al. 2016; Jardine et al. 2017). As in pollen and spores, phenolic compounds277
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take on the role of UACs in cuticles, and these have shown to be preserved in Paleocene278

Ginkgo cuticle (Blokker et al. 2006). Aromatic peaks are also present in FTIR spectra from a279

range of fossil taxa analysed by Vajda et al. (2017), including specimens dating from the280

latest Triassic. The relative importance of UV-B flux and taxonomy/phylogeny for281

controlling cuticle chemistry will therefore need to be investigated, but there is scope for282

cuticle chemistry to be developed as a palaeo-UV-B proxy, as has been the case with pollen283

and spores (Blokker et al. 2006; de Leeuw et al. 2006; Rozema et al. 2009).284
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Table 1 IR absorbance peaks measured from the Ginkgo cuticles, shown in Figs. 5 and S2.570

Peak heights were measured as the maximum absorbance value within the given571

measurement range. Peak assignments and cuticle component interpretations are from572

Heredia-Guerrero et al. (2014). v = stretching, δ = bending, a = asymmetric, s = symmetric573

Assignment Peak position
(cm-1)

Measurement range
(cm-1)

Cuticle component

va(CH2) 2920 2900 - 2940 Cutin, waxes
vs(CH2) 2850 2830 - 2870 Cutin, waxes
v(C=O) ester 1710 1695 - 1720 Cutin
v(C-C) aromatic 1600 1595 - 1615 Phenolic

compounds
v(C-C) aromatic
(conjugated with C=C)

1515 1505 - 1525 Phenolic
compounds

δ(CH2) 1460 1450 - 1470 Cutin, waxes
va(C-O-C) ester 1167 1155 - 1180 Cutin
v(C-O) 1020 1010 - 1030 Polysaccharides

574
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Figures575

576

Fig 1 Atmospheric CO2 (ppm) and changes in ginkgoalean diversity through time. CO2 data577

are the Foster et al. (2017) LOESS compilation based on literature data assembled by578

integrating five independent proxies (stomata, pedogenic 13C, liverwort 13C, foraminiferal579

and alkenone13C). See SOM of Foster et al. (2017) for full details. Ginkgoalean580

diversity is taken from Figure 1 of Zhiyan and Xiangwu (2006) and refers to the number of581

genera/ morphogenera as recorded by the presence of vegetative organs582

583
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584

Fig 2 Mean ATR-FTIR spectrum for the 400 ppm abaxial (lower leaf surface) cuticles,585

showing the main peaks mentioned in the text586

587
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588

Fig 3 Mean ATR-FTIR spectrum for each CO2 treatment by leaf surface combination.589

Abaxial = lower leaf surface, adaxial = upper leaf surface590

591
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592

Fig 4 Principal Component Analysis (PCA) plots for Ginkgo leaf cuticle ATR-FTIR data,593

with data points representing leaf disc mean spectra. a and e PCA axes 1 versus 2, and 3594

versus 4, respectively. Values in parentheses are the percentage of variance in the data595

explained by each PCA axis. b, c, e and f Loadings plots for the PCA axes596

597
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598

Fig 5 Heights of selected IR absorbance peaks grouped by CO2 treatment, for the <3100 cm-1599

spectra. Abaxial (lower leaf surface) cuticle data are shown as boxplots, where the thick600

horizontal line denotes the median value, the edges of the box the upper and lower quartiles,601

and the whiskers the extremes of the data, up to a limit of 1.5 times the interquartile range602

(values beyond this are shown as individual circles). Adaxial (upper leaf surface) cuticle data603

are shown as grey diamonds. See Fig. S2 for peak heights measured from the <1800 cm-1604

data605


