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Abstract 
The rate and extent of drug dissolution and absorption from a solid oral dosage form depend largely 

on the fluid volume along the gastrointestinal tract. Hence a model built upon the gastric fluid 

volume profiles can help to predict drug dissolution and subsequent absorption. To capture the 

great inter- and intra-individual variability (IAV) of the gastric fluid volume in fasted human, a 

stochastic differential equation (SDE)-based mixed effects model was developed and compared 

with the ordinary differential equation (ODE)-based model. Twelve fasted healthy adult subjects 

were enrolled and had their gastric fluid volume measured before and after consumption of 240 

mL of water at pre-determined intervals for up to 2 hours post ingestion. The SDE- and ODE-

based mixed effects models were implemented and compared using Extended Kalman Filter 

algorithm via NONMEM. The SDE approach greatly improved the goodness of fit compared with 

the ODE counterpart. The proportional and additive measurement error of the final SDE model 

decreased from 14.4% to 4.10% and from 17.6 mL to 4.74 mL, respectively. The SDE-based mixed 

effects model successfully characterized the gastric volume profiles in the fasted healthy subjects, 

and provided a robust approximation of the physiological parameters in the very dynamic system. 

The remarkable IAV could be further separated into system dynamics terms and measurement 

error terms in the SDE model instead of only empirically attributing IAV to measurement errors 

in the traditional ODE method. The system dynamics were best captured by the random 

fluctuations of gastric emptying coefficient Kge. 

 

Introduction 
The hydrodynamics in the gut is one of the determining factors for oral drug absorption. Firstly, 

the transit rate of drugs carried by luminal fluid flow directly affects the rate of drug systemic 

appearance. Specifically, for the Biopharmaceutics Classification System (BCS) Class 1 drugs, 

transit with the fluid flow driven by gastrointestinal (GI) motility is the only physiological source 

of intra-individual variability (IAV) in the systemic appearance profiles. Secondly, the impact of 

dissolution in GI fluid on oral absorption is prominent for drug substances with low aqueous 

solubility. As we know, being dissolved in gut fluid is a prerequisite for solid drug oral absorption, 

so the impact of dissolution is greatly amplified in the case of poorly aqueous soluble drugs 

exposed to variable gut luminal fluid volume, potentially as well as fluctuating fluid pH if they are 
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ionizable. In other words, the fluid dynamics plus the varying luminal pH in the gut may regulate 

the rate and the extent of oral absorption for these drugs. 

 

As the starting point of diving into the fluid dynamics of the gut, the fluid volume profiles in the 

fasted stomach among healthy adult subjects is essential yet difficult to fully characterize. Since 

the change in the volume of the fasted stomach is a function of saliva and gastric secretion, gastric 

emptying (GE), and oral intake of water, a model built upon the observed gastric fluid volume at 

given sampling times can be used to describe these important GI physiological process under 

interdigestive conditions. This is the basis for a more mechanistic approach to predicting drug 

disintegration, dissolution, and subsequent systemic appearance profiles. The predictive results are 

particularly important for the monitoring of highly variable drugs with narrow therapeutic 

windows and the design of bioequivalence (BE) studies. Conventionally, GE was described as a 

first-order process with time-invariant parameters and the gastric fluid volume was not considered 

explicitly, but a growing amount of research has demonstrated that GI events are very dynamic[1]. 

The half-time of GE varied from 8 to 18 minutes and relied heavily on the phases of the fasting 

conditions divided by cyclical migrating motor complex (MMC) [2-6]. It was also reported by 

Mudie et al that 25% of the subjects displayed non-first order GE pattern[7]. In addition, gastric 

secretion increases to its peak at early Phase 3 of MMC from the nadir at Phase 1[8, 9]. 

 

Stochastic differential equation (SDE)-based mixed effects model is preferred in the intrinsically 

non-deterministic system to provide robust parameter estimation, and to serve as a diagnostic tool 

for structural model misspecification or parameter fluctuations. In contrast to the classical ordinary 

differential equation (ODE)-based population approach, where IAV is only assigned to 

measurement errors, the employment of SDE method allows for separation of the IAV into a 

system noise term arising from time-dependent or serial correlated errors like unknown or 

incorrectly specified dynamics, and a measurement noise term accounting for uncorrelated errors 

such as assay error[10]. 

 

This study is aimed: (1) to capture the great inter-individual variability (IIV) and IAV of the fluid 

dynamics in the fasted stomach among healthy adult subjects; (2) to determine the physiological 

parameter(s) representing the dynamics in the stomach by implementing the SDE method and 

comparing the results with ODE. 

 

Materials and Methods 
Study design 

Twelve fasted healthy adult subjects were enrolled and had their gastric and small intestinal water 

volume measured by magnetic resonance imaging scans before and after consumption of 240 mL 

of water at pre-determined intervals for up to 2 hours post ingestion[7].  

 

Model assumption 

The fluid volume in the stomach compartment was basically modeled with a bolus input of 240 

mL water defined by the input function D, zero-order saliva and gastric secretion with the 

coefficient Kse, and first-order GE with the coefficient Kge. This structural model was shared 

across all the tested models in this study and the corresponding equation was included in Equation 

(1). 

 



The IAV of gastric fluid volume was assumed as a combination of system dynamics arising from 

the fluctuations of pharmacokinetic (PK) parameter(s) and measurement errors. The possible 

fluctuations of PK parameters were checked in the scenario of: (1) time-invariant Kse and time-

invariant Kge, (2) time-varying Kse and time-invariant Kge, (3) time-invariant Kse and time-

varying Kge (shown as an example in Equation (1) and depicted in Fig. 1), and (4) time-varying 

Kse and time-varying Kge, by Ornstein-Uhlenbeck process, respectively. Both the 

homoscedasticity and heteroscedasticity of the measurement errors were considered in Equation 

(2).  

For subject i at jth sampling time: 

Continuous time state space stochastic differential equations: 

d (
Xstomachi

logKgei
) =  (

−Kgei × Xstomachi + Ksei + D(t)

−𝛼Kge(logKgei − logKgei
∗)

) dt + (
0 0
0 𝜎wKge

) dWi(t),              

Wit − Wis ∈ N(0, |t − s|I), D(t) =  {
240 mL, t = 0
0, otherwise

    ( 1 )  

Discrete time measurement equations: 

Ystomachij = Xstomachij × (1 + σpropε1ij) + σaddε2ij, (ε1ij
ε2ij

) ~N ((0
0
) , (

1 0
0 1

)) ( 2 ) 

where Xstomachi is the gastric fluid volume state variable, Ystomachij is the gastric fluid volume 

observation variable, D is the input function of water, Ksei is the constant saliva and gastric 

secretion coefficient, Kgei is the time-varying GE coefficient, logKgei is the logarithm of Kgei, 

logKgei
* is the constant typical individual mean of logKgei, Kge denotes the mean reversion speed 

of Kge, wKge is the scaling diffusion term, I is the identity matrix, W(t) is a standard Weiner 

process also referred to as Brownian motion. The standard Weiner process is a stochastic process 

with mutually independent increments (Wt - Ws) from time t to s which are Gaussian distributed 

with mean zero and variance |t – s|I. 1 and 2 are two mutually independent standard normal 

distributions with mean 0 and variance 1. prop and add are the scaling term of the proportional 

and additive measurement errors, respectively. 

 

The fluctuation of Kgei refers to the deviation of the time-varying Kge of subject i at certain time 

t (Kgei(t)) from its constant typical individual mean value Kgei
*. The nonnegativity of Kgei(t) is 

ensured by using the logarithm form in this Ornstein-Uhlenbeck diffusion process. σwKgedWi(t) 

drives the fluctuations of logKgei, which follows a Weiner process. The component -αKge(logKgei 

- logKgei
*) acts like a negative feedback mechanism, and keeps the fluctuations of logKgei at a 

proper range away from logKgei
*. If the diffusion term σwKge is zero, the SDE model reduces to 

the ODE model. The physiological interpretation of the dynamic parameters is thereby preserved 

in the SDE model formulation.[11] 

 

The IIV of PK parameters were described in the same way for SDE models as for the ODE model 

in Equation (3) and Equation (4). The typical individual parameters were modeled as a function of 

the fixed-effects population parameters and random-effects parameters. 

For subject i: 

Inter-individual variability: 

Kgei
∗ = Kge∗ × exp(ηKgei

∗ ) , ηKgei
∗ ~N(0, ωKge

2 )     ( 3 ) 

Ksei = Kse × exp(ηKsei) , ηKsei~N(0, ωKse
2 )      ( 4 ) 



where Kgei
* and Ksei are the constant typical individual mean of GE coefficient and saliva and 

gastric secretion coefficient, respectively. Accordingly, Kge* and Kse are the population means. 

The corresponding random-effects parameters ηKgei
* and ηKsei are mutually independent normally 

distributed with zero mean and standard deviation ωKge and ωKse. The three levels of random 

effects, IIV, parameter fluctuations and measurement errors were mutually independent for all t, j, 

and i. 

 

The SDE- and ODE-based mixed effects models were implemented and compared using Extended 

Kalman Filter (EKF) algorithm and first-order conditional estimation (FOCE) method in 

NONMEM.  

 

Algorithm 

The recursive EKF consists of the prediction equations and the update equations. The prediction 

equations predict the state and output variables one step ahead, that is, from the previous measuring 

time until the current measuring time. The update equations update the state predictions with the 

observed data collected at the current measuring time. The updated state predictions are then used 

as the initial conditions for the prediction equations starting from the current measuring time until 

the next measuring time.[11] The Extended Kalman Filter (EKF) is implemented to estimate state 

variables on individual level. In the case of the SDE with time-varying Kge model, for subject i at 

jth measurement, the state variables were Xstomachi and logKgei, and the output variable was 

Ystomachij. The corresponding equations are written out as follows. 

 

Step 1: one-step state prediction 

The optimal (minimum variance) prediction of the means and covariances of the state variables 

for subject i at jth measurement, can be calculated by solving the state ( X̂i(t|j−1) ) and state 

covariance (P̂i(t|j−1)) equations from measuring time tj-1 until tj, that is, 
dX̂i(t|j−1)

dt
= g(X̂i(t|j−1), D(t)i, ϕi)       ( 5 ) 

dP̂i(t|j−1)

dt
= AitPi(t|j−1) + Pi(t|j−1)Ait

T + σwσw
T ,     Ait =

∂g

∂x
|x=x̂i(t|j−1)

,     t ∈ [tj−1, tj] ( 6 ) 

where i is the individual parameter vector. 

 

Step 2: one-step output prediction 

Ŷi(j|j−1) = E[Yij|Yi(j−1), … , Yi1] = f(X̂i(j|j−1))                     ( 7 ) 

Ri(j|j−1) = Var[Yij|Yi(j−1), … , Yi1] = CijPi(j|j−1)Cij
T + Σ,      Cij =

∂f

∂x
|x=x̂i(j|j−1)

 ( 8 ) 

The one-step output prediction Ŷi(j|j−1) is the optimal prediction of the jth measurement before that 

measurement is taken (X̂stomachi(j|j−1) in this case), while Ri(j|j−1) is the expected covariance for 

that prediction. Ri(j|j−1) is thus the sum of the state covariance associated with the observed states 

(CijPi(j|j−1)Cij
T) and measurement covariance (). 

 

Step 3: state update 



The one-step state and state covariance predictions are updated by conditioning on the jth 

measurement using the EKF state update equations, that is, 
Kij = Pi|j−1Cij

TRi(j|j−1)
−1          ( 9 ) 

X̂i(j|j) = X̂i(j|j−1) + Kij(Yij − Ŷi(j|j−1))                  ( 10 ) 

Pi(j|j) = Pi(j|j−1) − KijRi(j|j−1)Kij
T       ( 11 ) 

where X̂i(j|j) is the updated state estimate, Pi(j|j) is the updated state covariance, and Kij is called the 

Kalman gain. The optimal state estimate X̂i(j|j) is equal to the best state prediction before the 

measurement is taken X̂i(j|j−1) plus a correction term consisting of an optimal weighting value 

times the difference between the measurement Yij and the one-step prediction of its value.[11] 

 

Results 
Raw data visualization 

There exists great IIV and IAV in the observed gastric volume data in Fig. 2, indicating it is very 

necessary to develop a hierarchical and SDE-based model to capture the variabilities, respectively. 

 

Model Selection 

The three SDE models in Table 1 showed significant improvement in goodness of fit compared 

with the traditional ODE model. The parsimonious model with the lowest objective function value, 

that is SDE with time-varying Kge model, was considered to best characterize the gastric fluid 

volume profiles and was chosen for further analysis. This finding implied that the fluctuations of 

gastric emptying coefficient Kge might be the driving factor for the system dynamics of gastric 

fluid volume. 

 
Table 1 A brief description of the tested models 

Models Objective function value Diffusion process 

ODE 1406.405 α = 0 and w = 0 

SDE with time-varying Kse  1284.873 dlogKsei = -αKse(logKsei – logKsei
*)dt + wKsedWi(t) 

SDE with time-varying Kge 1214.567 dlogKgei = -αKge(logKgei – logKgei
*)dt + wKgedWi(t) 

SDE with time-varying Kse and 

Kge 

 

1214.567 dlogKsei = -αKse(logKsei – logKsei
*)dt + wKsedWi(t) 

and  

dlogKgei = -αKge(logKgei – logKgei
*)dt + wKgedWi(t) 

ODE: ordinary differential equation; SDE: stochastic differential equation 

 

Final model results 

The estimates of the typical population mean of Kge and Kse all fell into the physiological ranges 

reported in the literatures in both the SDE with time-varying Kge model and the ODE model. The 

proportional and additive measurement error were decreased from 14.4% to 4.10% and from 17.6 

mL to 4.74 mL for the fluid volume in the stomach compartment by SDE compared with ODE, 

respectively. This indicated that a large part of IAV arose from the system dynamics especially the 

fluctuations of Kge. These serial correlated errors would be ignored and empirically assigned to 

the measurement errors if we adopted the traditional ODE method. The relative standard errors 

(RSE) were similar in the SDE and ODE models. 

 



The time-varying nature of Kge was numerically and graphically shown in Table 2 and Fig. 3 

compared with the constant estimates in ODE for each individual in this study, and was considered 

as the major source of the dynamics in the gastric fluid volume system. 

 

The one-step individual SDE predictions, updates, and prediction interval were shown together 

with the individual ODE predictions in Fig. 4. The observed discrepancy between the SDE and 

ODE predictions could be explained by the SDE predictions being conditioned on all previous 

observations and updated at each sampling time, which was visualized as the vertical lines in the 

SDE predictions. 

 
Table 2 Parameter Estimation of the SDE with time-varying Kge model and the ODE model 

Model SDE ODE 

Parameters Estimates RSE(%) Estimates RSE(%) 

Physiological 
Kge (/min) 0.0514 17.6 0.0714 9.02 

Kse (mL/min) 1.52 13.4 1.59 13.9 

Intra-individual variability 

 

σwkge(min-1/2) 0.251 9.42 0 na 

αkge(/min) 0.0204 24.8 0 na 

σprop (%) 3.57 20.8 14.4 20.1 

σadd (mL/min) 4.83 12.1 17.7 8.57 

Inter-individual variability 
ωKge (%) 60.6 25.0 27.5 23.1 

ωKse (%) 18.6 0 21.6 0 

RSE: relative standard error, standard error of estimate/estimate*100(%); na: not available 

 

Final model evaluation 

The individual predictions (IPRED) are generated by assuming new observations based on the 

individual parameter estimates of chosen individuals in the population, while the population 

predictions (PRED) are targeted to predict new observations of new individuals based on the 

estimated population means and residual error distributions. As shown in the A and B plots of Fig. 

5, the dots scatter evenly along the two sides of the red line y=x when comparing the predicted and 

observed fluid volume in the stomach, indicating a good prediction quality. We also investigated 

on pattern of the weighted residual errors (WRES) and found it almost did not change much as 

PRED and time. This means that the WRES could be approximated with white noise. Therefore, 

the final model was demonstrated to be well developed. 

 

Virtual predictive check (VPC) plots of gastric fluid volume profiles were shown in Fig. 6. Both 

95% prediction intervals of the 500 simulated profiles based on ODE and SDE models with the 

incorporation of measurement errors covered most of the observations, with slightly more 

coverage provided by SDE. The greater interval areas in the SDE plot indicated the SDE model 

was a better fit for high variability than the ODE model. In the ODE plot, many observations lied 

outside of the 95% prediction interval in the absence of measurement error components, while 

those were well captured in the presence of measurement errors. This aligned with the previous 

statement about the limitation of ODE that all the IAV would be assigned to the measurement 

errors. When comparing simulations with and without the incorporation of measurement errors in 

the SDE group, a large overlap was observed, implying most of the IAV could be explained by the 

fluctuations of Kge. 

 

Discussion 



The transit in the upper GI tract of human is typically regarded as a continuous first-order process. 

However, an increasing amount of research demonstrated this process to be far from that simple. 

For liquid volumes of 240 to 800 mL, experimental measurements of GE half-time varied from 8 

to 18 minutes[2-6]. In the fasted state, GE rate of liquid was shown to heavily rely on MMC phases 

and the larger volume of 200 mL phenol red solution was reported to leave the stomach with a 

half-life of 11.8 min, being less dependent on gastric motility than the smaller volume of 50 ml 

solution[6]. In the study of Mudie et al., 75% of the subjects displayed first-order emptying patterns 

while 25% had non-first order, biphasic emptying after drinking 240 mL water[7]. There is very 

limited published experimental evidence pertaining to intestinal transit rate in the fasted state. But 

according to the results of mass transport analysis of phenol red, a first-order process is obviously 

inadequate to characterize duodenal and jejunal transit[12]. Considering the high frequency of 

MMC in this region, MMC presumably plays a critical role in the complex hydrodynamics pattern 

in proximal small intestine. 

 

GE and intestinal transit are more likely to occur in a discontinuous fashion inferred from 

experimental evidence and GI physiology theory. After Schiller et al. reported that that fluid in the 

fasted small intestine is not a continuous watery compartment but instead in discrete pockets of 

varying volumes, Mudie et al. further quantified the volume and number of water pockets in the 

small intestine of fasted healthy humans.[7, 13] The resting small bowel water was distributed in 

8 ± 1 pockets of 4 ± 1 mL on average each, rose to 15 ± 1 pockets of 6 ± 2 mL each at peak time, 

and 16 ± 3 pockets of 5 ± 1 mL each at 45 min before gradually returning to the baseline level. 

Regardless of water intake, the number of liquid pockets in the smaller 0.5-2.5 mL size bin was 

markedly higher than all the larger bin sizes and that there was no significant difference between 

the remaining larger bin sizes, but most of the total volume of liquid was found in the larger 

pockets. At the time point of 45 min after water administration, the smallest pockets (0.5-2.5 mL) 

accounted for less than 5% of the total liquid volume, the smaller pockets (2.5-20 mL) claimed 

about 40% of the total volume, and the largest amount of liquid (∼60% of the volume) was 

contained in a small number of large pockets (> 20 mL)[7]. To our knowledge of GI physiology, 

it is natural to relate the discrete fluid pockets with time-varying volumes phenomena 1) to the 

varying onset, frequency, amplitude, duration, direction and distance of antral contraction and 

small intestinal peristalsis, 2) to the phasic secretion of the stomach, pancreas, biliary system and 

intestinal mucosal, 3) and to the different frequency and extent of opening of pylorus and Sphicter 

of Oddi during MMC cycle. The above factors altogether make any attempts at building detailed 

mechanistic model of this process extremely difficult. 

 

The identification of MMC-driven discontinuous, small volume of fluid pockets helps to explain 

the variability of oral drug absorption and consequently has significant implications for therapeutic 

drug monitoring, formulation selection and the design of clinical trials and BE studies. To begin 

with, the randomness of the dosing time relative to MMC phases undoubtably brings in the 

variation of the delivery of drug to the absorptive site. If the drug is administered at the beginning 

of MMC phase 1, then it will likely be kept in the stomach for a significant period of time by the 

pylorus; To the contrary, if the drug is dosed during phase 3, the strong contractile period, then it 

will pass the stomach through the fully open pylorus into the small intestine without residence. In 

this case, the absorption profiles would be quite variable due to distinct GI motility patterns. 

Relevant GI physiology, experimental observations, and pulished models with the assumption of 

random dosing time relative to MMC phases have been elaborated previously.[6, 8, 14-16] In 



addition, the presence of the small fluid pockets would contribute to the within-subject variability 

of drug Cmax and Tmax. If the volume of a fluid pocket is lower than the volume needed to 

completely dissolve the drug particles it encloses, the undissolved drug will not be transported 

across the GI mucosal cells and show up in the circulating system together with the dissolved 

counterpart. These drug particles are often held back in the GI lumen until they encounter 

appropriate fluid pockets. For instance, in a study of Schiller et al, only 50% of the ingested non-

disintegrating capsules were surrounded by fluid in the fasted small intestine[13]. Hence, the 

randomness of the timing and the size of fluid pockets drug particles exposed to may lead to the 

variation of the systemic appearance of low solubility drugs, especially in terms of Cmax and 

Tmax. Furthermore, the discontinuity of the fluid pocket would inevitably incur higher variability 

than a continuous fluid flow system. If a drug product is completely dissolved in the stomach, it 

will remain there until the arrival of the next antral contraction; If a drug product is emptied from 

the stomach as the undissolved particles, none of them will be dissolved in quiescent period before 

the next wave of intestinal peristalsis brings fluid pockets. So we speculate there are jumps in the 

cumulative plot of dissolved drug vs time. Collectively, huge IAV would be anticipated in the 

dissolution and systemic appearance profiles due to this super dynamic GI transit feature. 

 

To our knowledge, this is the first study focusing on characterizing oral absorption related process 

using SDE-based mixed effects models. There have been some published applications of SDE-

based mixed effects models in PK and PK/pharmacodynamics (PD)[11, 17, 18], but none of them 

centered on oral absorption. For stochastic oral absorption models, Talattof et al simulated the 

discontinuousness of fluid pockets in the fasted state with a nonhomogeneous Poisson process[19], 

but the discrete state space Poisson process compounded with a complex fluid pocket volume 

function is difficult to implement directly as a structural model of mixed effect models in any 

modeling software. Yokrattanasak et al developed a simple simulation model for GE in the fed 

state by Weiner process[20], but there is no corresponding SDE-based mixed effects model in the 

fed state reported to date. 

 

Compared with the traditional first-order approximation with constant coefficient, an extension of 

the mixed effects modeling approach to incorporate SDE adequately described the highly dynamic 

gastric fluid volume system in fasted healthy subjects. It supported estimation and understanding 

the variable GE process. The large volume of fluid pockets emptied from the stomach could be 

approximated by a large Kge relative to the typical individual mean level. On the contrary, a very 

small Kge relative to the typical individual mean was used to represent a very sparse distribution 

along the proximal small intestine of small fluid pockets emptied from the stomach. The absolute 

maximum of σwKgedWi(t), that is, the largest fluctuation of Kge was expected in the transition from 

Phase 3 to Phase 1 of MMC. The SDE-based mixed effects model described the gastric fluid 

volume system with time-varying Kge using a modeling approach, and was used mainly for a 

diagnostic purpose in this study, that is, to find out the main driver of the system dynamics. More 

validations based on different external data are required to make it qualified as a simulation model 

with reliable predictive capacity. 

 

As the gastric fluid volume only reflects a part of the hydrodynamics of the GI tract, future studies 

could potentially further explore the quantification of the fluid volume in other parts of the gut. 

For instance, developing a model simultaneously characterizing the fluid volume profiles in the 

stomach, duodenum, and jejunum would be important. Moreover, modeling the whole highly 



variable oral drug absorption process in the SDE framework would be an interesting extension. 

For a deterministic (less dynamic) system, the trajectory can be adequately characterized using 

ODE. SDE has the advantage over ODE of modeling for a dynamic system because the stochastic 

component of SDE model can accommodate such dynamics to separate system dynamics from 

IAV. In this case, the dynamic GI transit and luminal pH fluctuations, etc., can be the main 

contributors to the GI dynamics. 

 

It should be noted that the application of the EKF algorithm in this study assumed the random 

deviations of logKge from its typical individual mean could be sufficiently captured by a Gaussian 

distribution, that is a standard Wiener Process. Nevertheless, EKF cannot adequately approximate 

skewed or multimodal distributions. When the dynamics become more complex along the gut, 

such as in the duodenum, one could consider nonlinear estimators like particle filters.[18, 21, 22] 

Another caveat is that the periodic non-homogeneous motility patterns with different time intervals 

of MMC phases in the fasted state makes the fluctuations of logKge beyond just a standard Weiner 

Process. Alternatively, the employment of time-varying covariates such as the GI motility data 

measured by GI multi-lumen catheter[23] or SmartPill[24] to assist with describing Kge can be a 

promising, GI physiologically realistic strategy for this complex dynamic system. 

 

Conclusion 
The SDE-based mixed effects model developed from our study successfully characterized the 

gastric fluid volume profiles among the healthy subjects and provided a robust approximation of 

the physiological parameters in the very dynamic system. The remarkable IAV could be further 

separated into system dynamics terms and measurement error terms in the SDE model rather than 

empirically assigning all the IAV to measurement error in the traditional ODE method. The system 

dynamics were best captured by the random fluctuations of the gastric emptying coefficient Kge, 

indicating a mechanistic model with GI motility as a time-varying covariate of Kge is preferred in 

the future. 
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Figure legends 
 

 
Fig. 1 Schematic illustration of the structural model for fluid volume in the stomach compartment. 

Kse and Kge are the coefficients for zero-order saliva and gastric secretion and first-order GE, 

respectively. D is the input function of water administration. 
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Fig. 2 Great IIV and IAV were shown in the overall observed gastric fluid volume profiles (A) and 

individual observed gastric fluid volume profiles (B), respectively. The blue curve in A is the 

locally weighted smoothing line among different subjects in the time course and the scattered 

numbers represent the identification number of each subject. 

 



 
Fig. 3 Logarithm of Kge at each measurement for each individual via ODE and SDE, respectively. 

 

 
Fig. 4 Individual plots of the one-step SDE predictions, updates, and prediction interval plotted 

together with the ODE predictions. The SDE prediction interval is calculated by 𝑦̂𝑗|𝑗−1 ± √𝑅𝑗|𝑗−1. 

 



 

 
Fig. 5 Goodness-of-fit plots (A-D) of the SDE with time-varying Kge mixed effects model of the 

gastric fluid volume profiles among healthy subjects with EKF estimation algorithm. DV: 

observed gastric fluid volume (mL). IPRED: individual predictions of gastric fluid volume (mL); 

PRED: population predictions of gastric fluid volume (mL); WRES: weighted residual errors. 

TIME: minutes relative to the time of administering 240 mL of water. 

 



 
Fig. 6 VPC plots of gastric fluid volume profiles based on the ODE (left panel) and SDE (right 

panel) models, respectively. The green and red areas represent the 95% prediction intervals with 

and without the incorporation of the measurement errors, respectively. The black points are the 

observations of this study. 

 


