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Abstract—This paper provides new application-independent 

perspectives about the performance potential of an intuitionistic 
(I-) fuzzy system over a (classical) TSK fuzzy system. It does this 
by extending sculpting the state space works from a TSK fuzzy 
system to an I-fuzzy system. It demonstrates that, for piecewise-
linear membership functions (trapezoids and triangles), an I-
fuzzy system always has significantly more first-order rule 
partitions of the state space—the coarse sculpting of the state 
space—than does a TSK fuzzy system, and that some I-fuzzy 
systems also have more second-order rule partitions of the state 
space—the fine sculpting of the state space—than does a TSK 
fuzzy system. It is the author’s conjecture that, for piecewise-
linear membership functions (trapezoids and triangles): It is the 
always-significantly greater coarse (and possibly fine) sculpting of 
the state space that provides an I-fuzzy system with the potential 
to outperform a TSK fuzzy system; and, that a type-1 I-fuzzy 
system has the potential to outperform an interval type-2 fuzzy 
system. 
 

Index Terms—intuitionistic fuzzy sets, intuitionistic fuzzy 
systems, TSK fuzzy systems, rule partitions, sculpting the state 
space.  

I. INTRODUCTION 
ECENTLY, Mendel [1], [2] explained the performance 
potential1 of type-1 (T1), interval type-2 (IT2) and 

general type-2 (GT2) rule-based fuzzy systems (fuzzy 
systems, for short) that use a singleton fuzzifier and 
piecewise-linear membership functions (trapezoids and 
triangles) as a greater sculpting of the state space. Mendel, et 
al [3], extended [1] to T1 and IT2 fuzzy systems that use a 
non-singleton fuzzifier. This paper extends [1] to T1 
intuitionistic (I-) fuzzy systems.  

In a nutshell (more formal discussions are given in Section 
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II), a T1 intuitionistic fuzzy set (I-FS), introduced by 
Atanassov [4], is described by two functions, a membership 
function (MF) and a non-membership function (NMF), where 
the constraint MF + NMF ≤ 1 must always be satisfied. A T1 
I-fuzzy system is described by two subsets of rules, one for the 
MFs and the other for the NMFs; its output can be obtained in 
either of two ways [5], [6]: (1) the MF and NMF sub-systems 
are coupled by taking a linear combination of their outputs, or 
(2) the two subsets of rules are viewed as one larger set of 
rules, and then their outputs are aggregated in the usual way 
by means of some defuzzification method. 

I-FSs have found usefulness in diverse application domains, 
e.g., aiding human decision-making [7]–[12], medical 
diagnosis [13]–[15], image segmentation [16]–[18] and time 
series forecasting [19]–[21]. There are many references for T1 
(and even IT2) I-FSs and applications for them. We refer the 
readers to [22]–[24] for very comprehensive discussions as 
well as many references about them. Due to page limitations, 
we do not include any of that material herein. 

It was recently shown [5, 6, 29, 30] that an I-fuzzy system 
can outperform a (classical) T1 fuzzy system2. We want to be 
able to understand and explain: Why does this occur? 

Those readers who are already familiar with a T1 I-fuzzy 
system may answer this question by explaining that a T1 I-
fuzzy system has more rules and design parameters than a T1 
fuzzy system, and using both the MF and NMF permits more 
flexibility than only using the MF, and so these are reasons for 
a T1 I-fuzzy system outperforming a T1 fuzzy system.  

The goal of this paper is to provide further understanding of 
the performance3 improvement potential of a T1 I-fuzzy 
system over a T1 fuzzy system, because it is only if such 
performance improvement potential exists should one even 
consider using a T1 I-fuzzy system. This goal is accomplished 
herein by providing new additional explanations for the 
improved performance in terms of sculpting the state space 
due to using I-FSs. The author’s conjecture is that, for 
piecewise-linear MFs (trapezoids and triangles): It is the 
always significantly greater coarse (and possibly finer) 
sculpting of the state space accomplished by using I-FSs that 
 

2 [5] is for classification (it uses classification accuracy as the metric) 
whereas [6, 29, 30] are for regression (they use RMSE as the metric).  

3 As used here, “performance” is application dependent (e.g., in forecasting 
it could be a small RMSE, in control it could be low overshoot, in 
classification it could be low misclassification, etc.; however, the results in 
this paper [1] “provide a common component to all performance analyses, 
after which the rest of the performance analyses is application dependent.” 
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provides a T1 I-fuzzy system with the potential to outperform a 
T1 fuzzy system.  

II. BACKGROUND 

A. I-FS (and Notations) 
An I-FS   A* , proposed by Atanassov [4], is a generalization 

of a FS,  A ; it consists of a MF   µA*(x)∈[0,1]  and a NMF 

  ν A*(x)∈[0,1] , where,   0 ≤ µA*(x)+ν A*(x) ≤1 , i.e.  

     A* ={(x,µA*(x),ν A*(x)) | x ∈X ,  0 ≤ µA*(x)+ν A*(x) ≤1}  (1) 

Atanassov [4] also defined the hesitancy,   π A*(x) , of 
whether x is in   A*  or not, , as: 

                        π A*(x) ≡ 1− [µA*(x)+ν A*(x)]  (2) 

When   π A*(x) = 0    ν A*(x) = 1− µA*(x) , so that   A*→ A .  
When one creates   A*  by starting with  A , as we shall do, 

then the star notation in (1) can be simplified, i.e., in this 
paper, we use the following notations interchangeably:  

                

  

µA*(x) ↔ µA(x) ≡ AMF (x) or Aµ (x)

ν A*(x) ↔ν A(x) ≡ ANMF (x) or Aν (x)

⎧
⎨
⎪

⎩⎪
  (3) 

We focus only on piecewise-linear MFs, namely trapezoids 
and triangles, because they are very widely used, and state 
space sculpting theory [1] has (so far) only been developed for 
them.  

A NMF is said to be valid if and only if 

  0 ≤ µA*(x)+ν A*(x) ≤1 , which can be satisfied in different 
ways, i.e., there are different ways to define a NMF for a 
given MF, e.g., [5] and [25]. One approach is to specify 

  π A*(x)  and to then compute   ν A*(x) , whereas another 

approach is to choose   ν A*(x)  so that the above constraint is 
satisfied, and (if desired) to then examine the resulting 

  π A*(x) . We take the latter approach in this paper because it 
leads to NMFs that are also piecewise linear and are easy to 
define. More specifically, we adopt Mahapatra and Roy’s 

  AMF / ANMF  pair (the   AMF / ANMF
1  pair in Fig. 1b) [25]: 

    

AMF (x) =

x − b
c − b

for b ≤ x ≤ c

1 for c ≤ x ≤ d
e− x
e− d

for d ≤ x ≤ e

0 otherwise

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

  ANMF
1 (x) =

c − x
c − a

for a ≤ x ≤ c

0 for c ≤ x ≤ d
x − d
f − d

for d ≤ x ≤ f

1 otherwise

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

  (4) 

Note that the trapezoid MF in (4) reduces to a triangle MF 
when   c = d ∈[b,e] . 

Theorem 1: (a)   ANMF = ANMF
1  in (4) is a valid NMF, and (b) 

The sloping legs of   ANMF
1  and AMF intersect below the grade of 

0.5.  
Proofs of these results do not appear in [25] and are 

included in our Appendix A. The second part of Theorem 1 
provides a simple way to quickly “see” if   ANMF

1  is valid. 

Observe that  AMF  in (4) is described by four parameters {b, c,  

 
(a) 

 
(b) 

Fig. 1. (a)   AMF / ~ AMF  and (b)   AMF / ANMF
ν  in which  AMF  (blue) is 

the same for all   AMF / ANMF
ν  pairs.  

 

d, e} and that   ANMF
1

 is described by only two new parameters 
{a, f}. 

  ANMF
1

 in (4) is normal; however (also, not in [25]) it can be 

easily generalized to non-normal NMFs  ANMF
ν , i.e.: 

Corollary 1: Let v be a scale factor, where   0 < v ≤1 ; then 

  vANMF
1 ≡ ANMF

v  (which is described by three new parameters, a, 

f and v; see Fig. 1b) is a valid NMF, where   ANMF
1  is in (4). 

Proof: Because   ANMF
1

 is a valid NMF (Theorem 1) and 

 0 <ν ≤1 ,   0 < AMF +νANMF
1 ≤ AMF + ANMF

1 ≤1 . Consequently 

  νANMF
1 ≡ ANMF

ν  is also a valid NMF. 

Corollary 2: When  a = b ,  e = f  and  ν = 1  then 

  ANMF
1 =~ AMF , i.e., the NMF is the complement of the MF. 

Proof: This is obvious from Figs. 1b and 1a. 
Much of this paper focuses on this case because the 

parameters that define  AMF  also define   ~ AMF . 
Definition 1: Points at which a MF or a NMF change its 

slope are called MF or NMF kinks. In this paper, to keep 
things relatively simple, it is assumed that such kinks only 
occur when a (membership) grade is ν  or zero. 

Observe, from Figs. 1a,b, that: (a) when   ANMF =~ AMF , the  

kinks of   ~ AMF  at zero (unity) grade are located at x-values 

where the kinks of  AMF  at unity (zero) grades are located; 

and, for all   0 < v ≤1 , (b) the two kinks of  ANMF
v  and   ~ AMF  at 

grade zero occur at the same points,   x = c,d ; and, (c) the two 
kinks of  ANMF

v  at grade v occur at the same points,   x = a, f , 
and these locations are different from the comparable two kink 
locations for   ~ AMF , which occur at   x = b,e .  

B. Rule-Based Intuitionistic Fuzzy Systems 
This paper focuses for the most part only on type-1 I-fuzzy 

systems; hence, we omit “type-1” in our further descriptions.  

x
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Fig. 2. I-fuzzy system [22]. 
 

A rule-based I-fuzzy system contains four components—I-
rules, I-fuzzifier, I-inference (engine), and I-defuzzifier—that 
are interconnected as shown in Fig. 2. Once the I-rules have 
been established, the I-fuzzy system can be viewed as a 
mapping from inputs to outputs, and this mapping can be 
expressed quantitatively as    y = f (x).   

C. I-Rules 
An I-fuzzy system uses two subsets of rules, M MF rules 

and M NMF rules [5], which collectively are its I-rules and are 
stated in (5) for an I-TSK fuzzy system [since sculpting the 
state space focuses only on the antecedents, the results in the 
rest of this paper are also valid for an I-Mamdani fuzzy system 
for which  yk

µ = bk
µ  and  yk

v = bk
v ]. In (5),   k = 1,..., M , 

   xi ∈Xi ∈! (i = 1,..., p) , and the MFs (NMFs) in  Rk
µ  ( Rk

ν ) are 

all given by (4) in which x is replaced by  xi . A TSK fuzzy 

system only uses the  Rk
µ rules. 

               

   

Rk
µ :  IF x1  is A1k

µ  and ! and xp  is Apk
µ ,  

        THEN yk
µ = wik

µ
i=1

p∑ xi + bk
µ

Rk
ν :  IF x1  is A1k

ν  and ! and xp  is Apk
ν ,  

       THEN yk
ν = wik

ν
i=1

p∑ xi + bk
ν

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

 

(5) 

D. I-Firing Levels in I-Fuzzy Systems 
For an I-fuzzy system, T1 fuzzy logic principles are used to 

map I-fuzzy input sets in  X1 ×!× Xp  that flow through a set 
of I-rules into a crisp output, y. We assume singleton 
fuzzification, although the approach that is taken herein is 
conceptually the same regardless of the nature of the fuzzifier. 

It is well known that, for T1 singleton fuzzification, when 
x = ′x  the firing levels for each subset of I-rules, are (e.g., 
[26], [27])   (k = 1,..., M ) : 

               

   

MF firing levels:    fk
µ ( ′x ) = Ti=1

p Aik
µ ( ′xi )

NMF firing levels: fk
ν ( ′x ) = Ti=1

p Aik
ν ( ′xi )

⎧
⎨
⎪

⎩⎪
  (6) 

In (6), T denotes a t-norm, usually the minimum or product. 
Observe that in (6), ′x  is processed twice nonlinearly, 
whereas for a TSK fuzzy system ( Rk

µ rules)  ′x  is only 
processed once non-linearly. 

Definition 2: An I-firing level    [ fk
µ ( ′x )  or    fk

ν ( ′x )]  
contributes to its output only if it is non-zero. This occurs in 

   
X1 ×!× X p  when the MFs of all  Rk

µ - or  Rk
ν - antecedents are 

simultaneously non-zero (i.e., active and firing). 

E. I-Defuzzification 
In an I-fuzzy system, after the I-firing levels have been 

computed there can be different ways to use them to obtain its 
final output by means of I-defuzzification (e.g., [5], [28]). One 
approach obtains    y( ′x )  by aggregating the M MF and M 
NMF firing levels simultaneously, as one would do in a TSK 
fuzzy system. Another approach obtains    y

µ ( ′x )  for the MF 

subsystem and    y
ν ( ′x )  for the NMF subsystem, and then 

computes    y( ′x ) = (1− β )yµ ( ′x )    + β yν ( ′x ) . The results that 
are presented below apply to both approaches. 

F. Rule Partitions for TI and I-Fuzzy Systems 
One of the important things learned from [1, Section III] is 

that first- and second-order rule partitions of 
   
X1 ×!× X p  are 

completely determined by the respective rule partitions of 
each (i =1,..., p)  Xi  separately, because, when minimum or 
product t-norms are used, if even one component of a rule’s 
firing level is zero then that rule does not contribute to the 
output of the fuzzy system [e.g.,   min(any Aik

µ = 0,  all other  

  Aik
µ ) = 0  and   product (any Aik

µ = 0,  all other Aik
µ ) = 0 ]. This 

carries over as well from fuzzy systems to I-fuzzy systems 
[see (6)].  

Definition 3: [1] In a T1 or I-fuzzy system, a first-order rule 
partition of  Xi  is a collection of non-overlapping intervals in 

 Xi , in each of which the same number of same rules is fired 
whose firing levels contribute to the output of that system. 

Definition 4: [1] In a T1 or I-fuzzy system, a second-order 
rule partition line of  Xi  occurs where the slope of the MF of 

a FS that is associated with  xi  changes its formula within a T1 

first-order rule partition of  Xi . 
Rule partitions sculpt the state space into hyper-rectangles 

within each of which resides a different nonlinear function. 
First-order rule partitions provide a coarse sculpting whereas 
second-order rule partitions provide a fine sculpting.  

Many examples of first- and second-order rule partitions for 
fuzzy systems are in [1] and its Supplementary Material (SM). 
For the convenience of the reader, Section I of the SM to the 
present paper contains six tables from [1] that provide 
notations used in first- and second-order rule partitions as well 
as procedures for establishing them.  

III. FIRST-ORDER RULE PARTITIONS FOR I-FUZZY SYSTEMS 
Because an I-fuzzy system is comprised of MF and NMF 

subsystems, we begin by explaining how first-order (MF and 
NMF) rule partitions are obtained for them, after which we 
explain how those two kinds of partitions are combined to 
obtain first-order rule partitions for the I-fuzzy system.  

Assumption A: All results and examples herein are for Q 
MFs: left and right shoulders and   Q − 2  interior trapezoidal 

I-Rules 

I-Defuzzifier 

I-Fuzzy 
input sets 

Intuitionistic Fuzzy System 

y = f (x)

 x
I-Fuzzifier 

I-Inference 
 y

Crisp 
output 

Crisp 
inputs 

I-Fuzzy 
output sets 
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MFs (not necessarily symmetrical), where each MF intersects 
only its neighboring left and right MFs once.  

Examples in which a MF intersects more than one of its 
immediate neighboring left or right MFs are given in the SM, 
(Section II, Examples SM-3 and SM-4). 

A. First-Order MF Rule Partitions for One Variable 
First-order MF rule partition lines occur where a MF first 

goes from zero to a non-zero value (when a MF becomes 
“active”), and are located at grade-zero MF kinks.  

Example 1: [1] Consider   xi ∈[0,10]  covered by the three T1 
FSs in Fig. 3a, for which there are three MF rules whose 
antecedents are   R1

MF : IF xi  is L ,   R2
MF : IF xi  is M ,  and,   R3

MF :  

  IF xi  is H .  The orange circles in Fig. 3a are located at grade-
zero MF kinks. The first-order MF rule partition lines are 
drawn below the orange circles, and extend through two rows. 
In the first row, in “ma” “m” is the number of fired rules, and 
“a” is short for “active.” In the second row, in “l\m” “l” is the 
numerical name for the first-order MF rule partition, and “m” 
is the number of active rules in that first-order MF rule 
partition, e.g., 4\2 is partition 4 in which 2 rules are active. 
Observe that there are five first-order MF rule partitions, 
named 1, 2, … and 5; 1 rule is fired in 1, 2 rules are fired in 2, 
… and 1 rule is fired in 5. 

Other examples of first-order MF (and NMF) rule partitions 
for one variable are given in Section II of the SM.  

The partition counts in Fig. 3a can be generalized to Q MFs. 
Theorem 2: Under Assumption A, if the Q MFs collectively 

have   K0  kinks at membership grade zero then there are 

  K0 +1= 2Q −1  first-order MF rule partitions. 
The proof of this theorem appears after the statement of 

Theorem 3, because the proofs of both theorems are so 
similar. 

Theorem 2 is very useful if one only wants to know the total 
number of first-order MF rule partitions.  

B. First-Order NMF Rule Partitions for One Variable  
To construct first-order NMF rule partition lines, it is 

expedient to first draw each NMF (e.g., ~L, the complement of 
L) directly above one another, putting the NMF for the left-
(right-) most MF at the top (bottom) of the stack. They are not 
all put on the same plot because they overlap a lot at 
membership grade unity. 

First-order NMF rule partition lines occur where a NMF 
first goes from zero to a non-zero value (which is when a 
NMF becomes “active”). These lines are located at grade-zero 
NMF kinks. 

Example 2: This is a continuation of Example 1. The orange 
circles in Fig. 3b are located at grade-zero NMF kinks. The 
first-order NMF rule partition lines are drawn below the 
orange circles, and extend through two rows. Observe that in 
Fig. 3b there are five first-order NMF rule partitions, named 1, 
2, … and 5, where 2 rules are fired in 1, 3 rules are fired in 2, 
… and 2 rules are fired in 5. Comparing Figs. 3a and 3b, 
observe that more rules are fired in each of the first-order 
NMF rule partitions than are fired in the first-order MF rule 
partitions. 

The partition counts in Fig. 3b can be generalized to Q MFs. 

 
(a) 

 
(b) 

Fig. 3. First-order (a) Example 1 MF and (b) Example 2 NMF rule 
partitions for one variable, Q = 3.  

 

 
Fig. 4. Example 3 total number of first-order rule partitions in a one-
variable I-fuzzy system,   Q = 3 . 

 
Theorem 3: Under Assumption A, if the Q MFs collectively 

have   K1  kinks at membership grade unity then there are 

  K1 +1= 2Q −1  first-order NMF rule partitions. 
Theorem 3 is very useful if one only wants to know the total 

number of first-order NMF rule partitions. 
Proof of Theorems 2 and 3: Shoulder MFs (or NMFs) have 

one kink at grade zero, whereas interior MFs (or NMFs) have 
two kinks at grade zero. Consequently, two shoulder and 

  Q − 2  interior MFs (or NMFs) have a total of   K0  (or   K1 ) = 

  2Q − 2  kinks at grade zero, which lead to   K0 +1  (or   K1 +1 ) 
=   2Q −1  first-order MF (or NMF) rule partitions (one 
partition occurs between the origin and the first kink).  

Corollary 3: Under Assumption A, if   K0 = K1 ≡ K , then 
the numbers of first-order MF and NMF rule partitions are the 
same, namely   K +1= 2Q −1 .  

Proof: This follows from Theorems 2 and 3 when 

  K0 = K1 ≡ K . 

Examples 1 and 2 satisfy the conditions of Corollary 2, 
which is why their numbers of first-order MF and NMF rule 
partitions are the same. 

C. First-Order Rule Partitions for a One Variable I-Fuzzy 
System 

For each  xi , a certain number of MF and NMF rules are 
fired (active), so that the total number of fired rules in a one-
variable I-fuzzy system is the sum of those two numbers, each 
of which can be read off from MF and NMF first-order rule 
partition figures. 

Example 3: This is a continuation of Examples 1 and 2. Fig. 
4 depicts MF, NMF and combined MF and NMF first-order 

L M H
1a 1a1a2a 2a

 0
 1

1\1 5\13\12\2 4\2

~L

~M

~H
2a 2a2a3a 3a

1\2 5\23\22\3 4\3

 1

 1

 1
 0
 0

 0

L M H  0
 1

 1

 1

 1
 0
 0

 0

MFs 

NMFs 
1a 1a1a2a 2a

2a 2a2a3a 3a

~L

~M

~H

1\3 9\35\33\5 7\5

MFs and 
NMFs 

2\4 4\4 6\4 8\4
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rule partitions when   Q = 3 . To determine the number or rules 
fired, stated in the bottom row of Fig. 4, project a vertical line 
upwards from a partition and add the two “a” numbers that it 
intersects. Observe that the one variable I-fuzzy system has 
nine first-order rule partitions (each with either three, four or 
five fired rules in it), which is almost double the number of 
first-order MF (or NMF) rule partitions in a MF (or NMF) 
fuzzy system (which is 5).  

The extensions of Fig. 4 from   Q = 3  to other values of Q 
are also given in Section II of the SM.  

From all of these examples one concludes that there is a lot 
more coarse-sculpting going on even in a one-variable I-fuzzy 
system than in a TSK fuzzy system. 

The partition counts in Fig. 4 can be generalized to Q MFs. 
Theorem 4: Under Assumption A, in a one-variable I-fuzzy 

system: (a) there are   4Q − 3  first-order rule partitions, and (b) 

if the MFs collectively have   K0  kinks at grade zero and   K1  

kinks at grade unity, then there will be   K0 + K1 +1  first-order 
rule partitions. 

Proof: (a) From the proof of Theorems 2 and 3, two 
shoulder and   Q − 2  interior MFs or NMFs collectively have a 
total of   4Q − 4  kinks at grade zero. These lead to   4Q − 3  first-
order rule partitions in a one-variable I-fuzzy system (one 
partition occurs between the origin and the first kink).  

(b) This follows from the construction procedure for the 
first-order rule partitions in a one-variable I-fuzzy system, e.g. 
see Fig. 4. Observe that   K0  dashed lines are drawn 

downwards from the   K0  MF kinks at MF grade zero, and   K1  

dashed lines are drawn downwards from the   K1  NMF kinks at 

NMF grade zero. Doing this leads to   K0 + K1 +1  rectangles in 
the bottom portion of these figures, and those rectangles are 
the first-order rule partitions in a one-variable I-fuzzy system. 

This theorem provides two ways to find the total number of 
first-order rule partitions in a one-variable I-fuzzy system. 

Example 4: Using results from Example 3 and Theorem 4 

  (Q = 3) ,   4Q − 3= 9 , which is correct. Fig. 3a reveals that 

  K0 = K1 = 4 , hence   K0 + K1 +1= 9 , which is also correct. 
More examples that demonstrate the correctness of   4Q − 3  

  = K0 + K1 +1  are in Section III of the SM. 
A critic of an I-fuzzy system may argue that, of course such 

a system has more first-order rule partitions than does a MF 
fuzzy system, because it has twice as many rules. The 
following theorem demonstrates that it is possible to level the 
playing field for these two kinds of fuzzy systems, so that they 
both have exactly the same number of such partitions. 

Theorem 5: Under Assumption A, a one-variable TSK fuzzy 
system that uses  QMF  MFs, and a one-variable I-fuzzy system 

that uses  QI  MFs, have exactly the same number of first-order 
rule partitions (their sizes and locations may be different), if 

                                        QMF = 2QI −1  (7) 

Proof: From Theorems 2 and 4, the numbers of respective 
first-order rule partitions are   2QMF −1  and   4QI − 3 . (7) is 

obtained by equating these two numbers and solving for  QMF . 

Although it is possible to level the playing field as just 
described, this comes at a cost to the TSK fuzzy system, in 
that it will have many more design parameters to tune than 
does the I-fuzzy system. 

Example 5: When   QI = 3 , a six-rule I-fuzzy system, whose 
MFs are the ones depicted in Fig. 3a, will have (assuming M is 
not symmetrical) eight MF parameters and, if its TSK rule 
consequents are constants, six consequent parameters, for a 
total of 14 design parameters, whereas (using (7)) a five-rule 
TSK fuzzy system, whose five MFs include two shoulders and 
three interior trapezoids, will have 16 MF parameters, and, if 
its TSK rule consequents also are constants, five consequent 
parameters, for a total of 21 design parameters—50% more 
parameters to tune; for   QI = 4  an eight-rule I-fuzzy system 
will have a total of 20 design parameters, whereas a seven-rule 
MF fuzzy system will have a total of 31 design parameters, 
slightly more than 50% as many design parameters to tune.  

D. First-Order MF Rule Partitions for Two Variables 
The construction procedure for creating first-order MF rule 

partitions for two variables is unchanged from the one that is 
given in Table III of [1], and is based on constructing the first-
order MF rule partitions for   X1  and   X2 , and then combining 
those results. See Section I of the SM (Table SM-III). 

Example 6: This is a continuation of Example 1 (Fig. 3a). 
Its results are taken from [1] and are repeated here because 
they are used below in Section F. The first-order MF rule 
partition diagram for   X1 × X2  is depicted in Fig. 5. The 
number in each rectangle denotes its number of active MF 
rules, and is obtained by multiplying the comparable numbers 
for   X1  and   X2  that are given along the horizontal and vertical 
axes, respectively. The total number of first-order MF rule 
partitions is the product of the total number of such partitions 
(five) for each of the two variables, and is 25. 

Theorem 6: Under Assumption A, if   X1  and   X2  are 

covered by   Q1  and   Q2  MFs, respectively, with   K0( X1)  and 

  K0( X2 )  kinks at grade zero, then there will be   [K0( X1)+1]

  [K0( X2 )+1]  first-order MF rule partitions of   X1 × X2 . 
The proof of this theorem appears after the statement of 

Theorem 7, because the proofs of both theorems are so 
similar. 

Theorem 6 does not appear in [1] and is very useful when 
one only wants to know the total number of first-order MF 
rule partitions of   X1 × X2   

E. First-Order NMF Rule Partitions for Two Variables 
The construction procedure for creating first-order NMF 

rule partitions for two variables also uses the one that is given 
in Table III of [1], and is based on constructing the first-order 
NMF rule partitions for   X1  and   X2 , and then combining 
those results. 
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Fig. 5. Example 6 first-order MF rule partitions for two variables, Q 
= 3. 

 

 
Fig. 6. Example 7 first-order NMF rule partitions for two variables, Q 
= 3. 
 

Example 7: This is a continuation of Example 2 (Fig. 3b). 
The first-order NMF rule partition diagram for   X1 × X2  is 
depicted in Fig. 6. The number in each rectangle denotes its 
number of active NMF rules, and is obtained by multiplying 
the comparable numbers for   X1  and   X2  that are given along 
the horizontal and vertical axes, respectively. The total 
number of first-order NMF rule partitions is the product of the 
total number of such partitions (five) for each of the two 
variables, and is 25. 

Comparing Figs. 5 and 6, observe that, just as for one 
variable, more rules are fired in each of the first-order NMF 
rule partitions than are fired in the first-order MF rule 
partitions. 

Theorem 7: Under Assumption A, if   X1  and   X2  are 

covered by   Q1  and   Q2  MFs, respectively, with   K1( X1)  and 

  K1( X2 )  kinks at grade unity, then there will be   [K1( X1)+1]  

  ⋅[K1( X2 )+1]  first-order NMF rule partitions of   X1 × X2 . 
Theorem 7 is very useful when one only wants to know the 

total number of first-order NMF rule partitions on   X1 × X2.  

Proof of Theorems 6 and 7: Theorem 6 (7) follows from 
Theorem 2 (3) in which   K0    (K1)  is replaced by   K0( X1)  

  [K1( X1)]  for   X1  and   K0( X2 )    [K1( X2 )]  for   X2 , after which 
Eq. (6) in [1] is used. That equation is: 

   
N*

1( X1,..., X p ) = N*
1( X1)!N*

1( X p ) , where 
  
N*

1( X j )  is the 

number of first-order rule partitions of 
 
X j  and * is T1 or IT2. 

Corollary 4: Under Assumption A, if   K0 = K1 ≡ K , then 
the numbers of first-order MF and NMF rule partitions on 

  X1 × X2  are the same, namely   (K +1)2 = (2Q −1)2 .  

Proof: This follows from Theorems 6 and 7 when 

  K0 = K1 ≡ K . 

Examples 6 and 7 satisfy the conditions of Corollary 3 

  (K = 4) , which is why their numbers of first-order MF and 
NMF rule partitions are the same. 

F. First-Order MF and NMF Rule Partitions for More Than 
Two Variables 

Theorem 8: Under Assumption A and   K0 = K1 ≡ K , let 

  
N MF

1 ( X1,..., X p )  and 
  
N NMF

1 ( X1,..., X p )  respectively denote the 
total number of first-order MF and NMF rule partitions of 

   
X1 ×!× X p . Then 

   
  
N MF

1 ( X1,..., X p ) = N NMF
1 ( X1,..., X p ) = (2Q −1) p = (K +1) p  (8)  

Proof: This is the extension of Corollary 4 from two to p 
variables. 

The extension of (8) to the case when Q is not the same for 
each  Xi  is straightforward (use Theorems 6 and 7).  

G. First-Order Rule Partitions in a Two-Variable I-Fuzzy 
System 

For each   (x1,x2 )  pair, a certain number of MF and NMF 
rules are fired (active), so that the total number of fired rules 
in a two-variable I-fuzzy system is the sum of those two 
numbers, each of which, e.g. for   Q = 3 , is read off from 
figures like Figs. 5 or 6.  

Example 8: This is a continuation of Examples 6 and 7. Fig. 
7 depicts MF, NMF and combined MF and NMF first-order 
rule partitions when   Q = 3 . Exactly how this figure was 
obtained from Figs. 5 and 6 is explained in Section III of the 
SM. Observe that this two variable I-fuzzy system has 81 first-
order rule partitions, whereas the “traditional” two-variable 
TSK fuzzy system only has 25 first-order rule partitions (Fig. 
5), a more than tripling of the number of first-order rule 
partitions. 

Obtaining a figure like the one in Fig. 7 is extremely 
tedious. The following is a way to bypass this construction if 
one only wants to know the total number of first-order rule 
partitions in a two-variable I-fuzzy system. 

Theorem 9: Under Assumption A for   X1  and   X2 , there are 

  (4Q − 3)2  first-order rule partitions in a two-variable I-fuzzy 
system. 

L M H

L
M

H 1 11

1 11

1 11

2

2

2 2

2

2 2

2 2

2 2

4 4

4 4

1 11

1 11
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2 2

2 2
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4 4

2 4 2 4 2

2
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 0
 1
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 1
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 0
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Fig. 7. Example 8 total number of first-order rule partitions in a two-
variable I-fuzzy system, Q = 3. 

 

Proof: This follows from Theorem 4 applied to two 
variables. 

Example 9: When   Q = 3 ,   (4Q − 3)2 = 92 = 81 , which agrees 
with the results in Example 8. 

H. Total Number of First-Order Rule Partitions in a p-
Variable I-Fuzzy System 

Theorem 10: Under Assumption A for each of p variables, 
when   K0 = K1 = K  the number of first-order rule partitions in 

a p-variable I-fuzzy system, 
  
N I

1( X1,..., X p ) , is: 

                               
  
N I

1( X1,.., X p ) = (4Q − 3) p   (9) 

Proof: This follows from Theorem 4 applied to p variables. 

For a TSK fuzzy system, there are [see (8)]   (2Q −1) p  first 
order MF rule partitions of 

   
X1 ×!× X p . Comparing 

  (2Q −1) p  and   (4Q − 3) p , observe that, as Q increases:  

                         
  

4Q − 3
2Q −1

⎛
⎝⎜

⎞
⎠⎟

p

= 2− 1
2Q −1

⎛
⎝⎜

⎞
⎠⎟

p

→ 2 p   (10) 

This means that, as Q increases, there will be a factor of 
approximately   2 p  more first-order rule partitions of 

   
X1 ×!× X p  in an I-fuzzy system than the number of such 

partitions in a TSK fuzzy system, which leads to our 
conjecture that the hugely-greater coarse sculpting of the state 
space by an I-fuzzy system provides it with the potential to 
outperform a TSK fuzzy system. 

IV. SECOND-ORDER RULE PARTITIONS FOR I-FUZZY SYSTEMS 
Second-order rule partitions for an I-fuzzy system can be 

found from MF and NMF second-order rule partition 
diagrams. This section is still for   ANMF

1 =~ AMF .  
 

A. Second-Order MF Rule Partitions for One Variable 
Second-order MF rule partition lines occur where the slope 

of a MF changes within a first-order MF rule partition. These 
lines occur at grades zero and unity MF kinks, but because MF 
kinks at grade zero have already contributed the first-order 
partition lines, new lines are only needed at the unity-grade 
kinks. 

Example 10: This is a continuation of Example 1. Fig. 8a 
begins with Fig. 3a after which dotted vertical lines are drawn 
at grade-unity MF kinks, indicated with brown filled-in 
circles. The second-order MF rule partitions are drawn below 
the brown circles and extend into one row. In that row, 
regarding the notation l\m:n, l is the numerical name for the 
first-order MF rule partition; m is the number of rules fired in 
that partition; and, n are the number of second-order MF rule 
partitions in it, e.g., 3\1:3 denotes first-order MF rule partition 
“3”, in which “1” rule is fired and in which there are “3” 
second-order MF rule partitions. Observe that there are 2 
second-order MF rule partitions in 1, 0 second-order MF rule 
partitions in 2, … and 2 second-order MF rule partitions in 5. 
The total number of second-order MF rule partitions is seven. 

B. Second-Order NMF Rule Partitions for One Variable 
Second-order NMF rule partition lines occur where the 

slope of a NMF changes within a first-order NMF rule 
partition. These lines occur at grades zero and unity NMF 
kinks, but because grade-zero NMF kinks have already 
contributed the first-order partition lines, new lines are only 
needed at the grade-unity kinks. 

Example 11: This is a continuation of Example 2. Fig. 8b 
begins with Fig. 3b after which dotted vertical lines are drawn 
at grade-unity kinks, also indicated with brown filled-in 
circles. The second-order NMF rule partitions are drawn 
below the brown circles and extend into one row. The total 
number of second-order NMF rule partitions is six. In this 
example the number of second-order NMF rule partitions is 
less than the number of second-order MF rule partitions. 
Examples SM-6 and SM-7 in the SM demonstrate that it is 
also possible for the number of second-order NMF rule 
partitions to be greater than or equal to the number of second-
order MF rule partitions. Such results depend on the relative 
locations of the grades zero and unity MF and NMF kinks. 

C. Second-Order Rule Partitions for a One-Variable I-Fuzzy 
System 

Comparing Figs. 8a and b observe that first-order MF lines 
become second-order NMF lines, and second-order MF lines 
become first-order NMF lines. 

Examining the last row of Fig. 4, and making use of the 
just-stated fact, it should be clear that it is not possible to show 
the second-order rule partition lines on this figure, because 
they will lie on top of the first-order MF and NMF lines. This 
does not mean that second-order rule partitions vanish in the I-
fuzzy system. They still exist, but when  ANMF =~ AMF  they can 
only be observed on the individual second-order MF and NMF 
rule partition diagrams, namely on figures like Figs. 8a and 8b. 
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(a) 

 
(b) 

Fig. 8. Second-order (a) Example 10 MFs and (b) Example 11 NMFs 
rule partitions for one variable,   Q = 3 . 

 

 
Fig. 9. Example 12 second-order MF rule partitions for two variables, 

  Q = 3 . 
 

 
Fig. 10. Example 13 second-order NMF rule partitions for two 
variables,   Q = 3 . 

 

D. Second-Order MF Rule Partitions for Two Variables 
The construction procedure for creating second-order MF 

rule partitions for two variables is unchanged from the one 
that is given in Table VI of [1], and begins with a first-order 
MF rule partition diagram. It is given in Table SM-VI in the 
SM  

Example 12: This is a continuation of Examples 6 and 10 
when   Q = 3 . Its results are taken from [1], and are repeated 
here because they are needed in Section F below. The second-
order MF rule partition diagram for   X1 × X2  is depicted in 
Fig. 9. Note that regarding the notation m:t, that appears in 

each of the Fig. 9 rectangles, m is the number of rules fired in 
that first-order MF rule partition; and, t is the number of 
second-order MF rule partitions in it, e.g., 2:3 denotes “2” 
rules are fired and there are “3” second-order MF rule 
partitions. The total number of second-order MF rule 
partitions is obtained by counting and is 77. 

As is explained in [1, Section III.B], there is a formula for 
computing the total number of second-order MF rule partitions 
for p variables, one that only needs information about the 
second-order MF rule partitions for each variable, and so it is 
practical. It is given in Section V of the SM. 

E. Second-Order NMF Rule Partitions for Two Variables 
The construction procedure for creating second-order NMF 

rule partitions for two variables is also the one that is given in 
Table VI of [1], and begins with a first-order NMF rule 
partition diagram. 

Example 13: This is a continuation of Examples 7 and 11 
when   Q = 3 . The second-order NMF rule partition diagram 

for   X1 × X2  is depicted in Fig. 10. The total number of 
second-order NMF rule partitions is again obtained by 
counting, and is 72. 

A formula for computing the total number of second-order 
NMF rule partitions for p variables is also given in Section V 
of the SM. 

F. Second-Order Rule Partitions for a Two-Variable I-Fuzzy 
System 

Comparing Figs. 9 and 10 observe that once again first-
order MF lines become second-order NMF lines, and second-
order MF lines become first-order NMF lines. Consequently, 
it is not possible to show the second-order rule partition lines 
on Fig. 7, because they will lie on top of the first-order MF 
and NMF lines. This does not mean that second-order rule 
partitions have disappeared in the I-fuzzy system. They still 
exist, but, when   (i = 1,2)    ANMF (xi ) =~ AMF (xi )  they can only 
be observed on the individual second-order MF and NMF rule 
partition diagrams, namely on figures like Figs. 9 and 10. 

V. PARTITIONS FOR MORE GENERAL I-FUZZY SYSTEMS 
This section extends the Sections III and IV results to 

  AMF / ANMF
ν  in (4), where  ANMF

ν = νANMF  and  0 <ν ≤1  (see Fig. 
1b and Corollary 1). 

 
A. First-Order Rule Partitions 

Theorem 11:  All results that are given in Section III about 
first-order NMF or combined MF and NMF rule partitions are 
unchanged for all  ANMF

v ,   0 < v ≤1 .  
Proof: First-order MF and NMF rule partitions are found by 

examining where kinks occur at grade zero, and this theorem 
is true because they occur at exactly the same points for all 

 ANMF
v  (see Fig. 1b). 
Example 14: Fig. 11 gives first-order partition information 

for MFs, NMFs and both MFs and NMFs in a one-variable I-
fuzzy system, when MFs and NMFs are given in (4), and 
 ν = 1 . Comparing Figs. 11 and 4, observe that: (1) The  
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Fig. 11. Example 14 total number of first-order rule partitions in a 
one-variable I-fuzzy system, when   ANMF

v = ANMF
1 ) and   Q = 3 . 

 

 
(a) 

 
(b) 

Fig. 12. Example 15 second-order NMF rule partitions for one 
variable,   Q = 3 : (a)   ANMF =~ AMF  and (b)   ANMF

v = ANMF
1 . 

 
number of first-order NMF and combined MF and NMF rule 
partitions are unchanged; and, (2) It is only the sizes of some 
of the NMF and combined MF and NMF rule partitions that 
have changed. 

B. Second-Order Rule Partitions 

Theorem 12: Second-order rule partitions for  ANMF
v

 
  (0 < v ≤1)  are different from those of   ~ AMF . 

Proof: Second-order MF and NMF rule partitions are found 
by examining where kinks occur at grade unity, and they occur 
at exactly the same points for all  ANMF

v  (see Fig. 1b), but these 

points are different from those for   ~ AMF  (compare Figs. 1a 
and 1b), hence the truth of this theorem. 

Example 15: Fig. 12a is a repeat of Fig. 8b, and Fig. 12b 
shows the second-order partition lines for the NMF portion of 
Fig. 11. Comparing Figs. 12a and 12b, observe that: (1) there 
are 8 (6) second-order NMF rule partitions in Fig. 12b (a); 
and, (2) The locations of some of the second-order NMF rule 
partitions in Fig. 12b are different from the locations in Fig. 
12a. At last, we see a difference between using   ~ AMF  and 

  ANMF
1 , namely, an I-fuzzy system that uses   ANMF

1  can achieve a 
finer sculpting of the state space than an I- fuzzy system that 
uses   ~ AMF . 

Because second-order rule partitions are found by 
examining where grade-unity kinks occur, and they occur at 
exactly the same points for all  ANMF

v , the results shown in Fig. 
12 for the locations and sizes as well as the number of fired 
rules in each partition are the same for all  ANMF

v . It seems,  
 
 

TABLE I 
EXAMPLE 16 FIRST-AND SECOND-ORDER RULE PARTITIONS (Q=3) 

 
Fuzzy 
system 

Number of 
variables 

Number of first-
order rule partitions 

Number of second-
order rule partitions 

T1  1 5 (Example 1) 7 (Example 10) 
IT2  1 5 [1, Example 1] 9 [1, Example 3] 
I- 1 9 (Example 4) 13 (Figs. 8a, b)  
T1  2 25 (Example 6) 77 [1, Example 4] 
IT2  2 25 [1, Example 6] 135 [1, Example 4] 
I- 2 81 (Example 8)  149 (Figs. 9 and 10) 

 

therefore, that the only advantage for using  ANMF
v ,   v ≠ 1 , is 

one additional design degree of freedom, v. 

VI. OBSERVATIONS 
Because the numbers of first- and second-order rule 

partitions only depend on the number of kinks at either zero or 
unity, or Q (Theorems 2–4, 6–12), partition counts do not 
depend on (Assumption A) “… where each MF intersects only 
its neighboring left and right MFs once.” They do depend on 
(Assumption A) “… for Q MFs: left and right shoulders and 

  Q − 2  interior trapezoidal MFs (not necessarily 
symmetrical)”. See, e.g. Examples SM-3 and SM-4 in the SM 
for further verification of this. 

Although this paper has focused exclusively on T1 fuzzy 
systems, it is very interesting to compare the number of first-
and second-order rule partitions for a T1, IT2 and I-fuzzy 
system. 

Example 16: We do this for   Q = 3  in Table I. Observe that 
for one variable an IT2 (I-) fuzzy system has 5 (9) first-order 
and 9 (134) second-order rule partitions, and for a two 
variables an IT2 (I-) fuzzy system has 25 (81) first-order and 
135 (1495) second-order rule partitions. This (partition theory) 
suggests that an I-fuzzy system has the potential to outperform 
an IT2 fuzzy system, something that has already been 
demonstrated in [29] and [30], but for Gaussian T1 and IT2 
MFs.  

We conjecture (from partition theory) the following 
ordering for performance improvement for fuzzy systems:  

  
 

T1< IT2 < T1 Intuitionistic < GT2 < IT2 Intuitionistic
< GT2 Intuitionistic

 (11) 

VII. CONCLUSIONS AND FUTURE WORK 
This paper has provided new application independent 

perspectives about the performance potential of an 
intuitionistic (I-) fuzzy system over a (classical TSK) fuzzy 
system, by extending sculpting the state space works from a 
fuzzy system to an I-fuzzy system. It has demonstrated that, 
for piecewise-linear MFs (trapezoids and triangles), an I-fuzzy 
system always has significantly more first-order rule partitions 
of the state space—the coarse sculpting of the state space—
than does a TSK fuzzy system, and that some I-fuzzy systems 
also have more second-order rule partitions of the state 
space—the fine sculpting of the state space—than does a TSK 

 
4 This number was obtained by adding the numbers of second-order rule 

partitions in Figs. 8a and 8b.  
5 This number was obtained by adding the numbers of second-order rule 

partitions in Figs. 9 and 10. 
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fuzzy system. It is the author’s conjecture that: It is the always 
significantly greater coarse (and possibly finer) sculpting of 
the state space that provides an I-fuzzy system with the 
potential to outperform a TSK fuzzy system. 

Rule partition theory demonstrates the potential for 
improved performance, but it is the architecture of an I-fuzzy 
system that attempts to achieve this. Choosing NMFs as the 
complements of the MFs introduces no new design 
parameters; choosing them as in (4) introduces two new 
design parameters for each NMF; and choosing them by using 
a scaled version of (4) introduces yet one more design 
parameter.  

Some open research questions and extensions to this paper 
are: 

1) Study how much performance improvement occurs when 
one uses a NMF other than the complement of the MF. 
This may be application dependent.  

2) Extend all results to IT2 I-fuzzy systems. We don’t 
expect any surprises, i.e., an IT2 fuzzy system usually 
has the same number of first-order rule partitions as does 
a T1 fuzzy system (although they are of different sizes), 
but an IT2 fuzzy system usually has many more second- 
order rule partitions than does a T1 fuzzy system. 
Consequently, an IT2 fuzzy system usually has a much 
greater fine sculpting capability of the state space than 
does a T1 fuzzy system. We expect comparable results 
between T1 and IT2 I-fuzzy systems. 

3) Extend all results to GT2 I-fuzzy systems. Such systems 
have not appeared yet. 

4) Extend all results to non-singleton T1 and IT2 I-fuzzy 
systems. Such systems also have not appeared yet. 

5) Demonstrate (or not) the performance ordering for fuzzy 
systems that is given in (11). 

6) Extend all sculpting results to Gaussian- (and bell-) 
shaped MFs. This needs to be done not only for I-fuzzy 
systems but also for all other kinds of fuzzy systems. 

7) Study (suggested by a reviewer) the connections, and 
provide some new ones, between sculpting the state 
space and universal approximation for I-fuzzy systems. 

8) Develop rule-partition mathematics. Drawing partition 
diagrams can be tedious. Mathematics for determining 
the number of first- and second-order rule partitions for 
any value of Q and p = 1, 2 is already under 
development and will be reported on in another article. 

9) Extend patch learning [31] (PL) to I-fuzzy systems. A 
patch is a first-order rule partition. PL consists of three 
steps: 1) train an initial global model using all training 
data; 2) identify from the initial global model the patches 
which contribute the most to the learning error, and train 
a (local) patch model for each such patch; and, 3) update 
the global model using training data that do not fall into 
any patch. [31] has demonstrated the effectiveness of PL 
on five regression problems, but to-date only for T1 
fuzzy systems.  

APPENDIX A: PROOF OF THEOREM 1  

(a)   ANMF
1  is a valid NMF if  

                                 ANMF
1 (x)+ AMF (x) ≤1 .  (A-1) 

Examining Fig. 1b, it is clear that (A-1) is satisfied when 

  x ∈[0,b] ,   x ∈[c,d]  and  x ∈[e,10] , so one only needs to see if 
(A-1) is satisfied for   x ∈[b,c]  and   x ∈[d ,e] . The proof is 
only provided here for   x ∈[b,c]  and   v = 1 , for which one 
must examine:  

                  (x − b) / (c − b)+ (c − x) / (c − a)≤1
?

  (A-2) 
It is straightforward to show, by means of simple algebra 

that (A-2) reduces to   x≤ c
?

 which is always true for   x ∈[b,c] ; 
hence, (A-1) is satisfied when   x ∈[b,c] .  

(b) Focusing on   x ∈[b,c] , one needs to first locate the 

intersection point of   ANMF
1  and AMF, say   x * , which is found 

by solving the equation   (x *−b) / (c − b) = (c − x*) / (c − a) , 
after which the intersection point,   AMF (x*) , is computed, i.e. 

  x* = (c2 − ab) / (2c − a − b)  &   AMF (x*) = (c − b) / (2c − a − b) .  

To prove that   AMF (x*) < 0.5 , assume   AMF (x*) ≥ 0.5  and 

show that this leads to a contradiction, i.e., 

                        
(c − b) / (2c − a − b) ≥ 0.5⇒ b− a ≤ 0  (A-3) 

Examining Fig. 1b, observe that   b− a > 0 ; hence, (A-3) is 
false, which means that   AMF (x*) < 0.5  is true. (A-3) 
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