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Abstract – Many real-world systems such as traffic and electrical flow are described as flows
following paths of least resistance through networks, with researchers often focusing on promoting
efficiency by optimising network topology. Here, we instead focus on the impact of network node
properties on flow efficiency. We use the Price of Anarchy P to characterise the efficiency of
least-resistance flows on a range of networks whose nodes have the property of being sources,
sinks or passive conduits of the flow. The maximum value of P and the critical flow volume
at which this occurs are determined as a function of the network’s node property composition,
and found to have a particular morphology that is invariant with network size and topology.
Scaling relationships with network size are also obtained, and P is demonstrated to be a proxy for
network redundancy. The results are interpreted for the operation of electrical micro-grids, which
possess variable numbers of distributed generators and consumers. The highest inefficiencies in
all networks are found to occur when the numbers of source and sink nodes are equal, a situation
which may occur in micro-grids, while highest efficiencies are associated with networks containing
a few large source nodes and many small sinks, corresponding to more traditional power grids.

Introduction. – Flows on networks, such as traffic1

taking routes of shortest travel time or electrical current2

taking paths of least resistance though a network of con-3

nections can waste resources because they follow a local4

rather than a system-wide optimisation of the flow. For5

example, drivers generally behave non-cooperatively when6

selecting shortest routes, leading to traffic congestion that7

could be avoided by the intervention of a central man-8

agement with a global perspective [1]. When agents com-9

pete selfishly for resources or to minimise their effort, they10

eventually attain a Nash equilibrium [2, 3], whereby any11

change in their strategy fails to further lower their costs.12

The Price of Anarchy P [4] gauges the inefficiency caused13

by this lack of cooperation [5] and is defined as the ra-14

tio of the cost of the worst Nash equilibrium to that of15

the system’s global optimum (GO). In this Letter, P is16

established as a computationally efficient measure of inef-17

ficiency and network redundancy for flows such as electric-18

ity. The dependence of P on the numbers of flow sources19

and sinks, and network structure, is also addressed, and20

found to possess properties that are invariant with regard21

to networks of different topology. 22

P has been studied in a variety of contexts, such as in 23

network growth games [6], job scheduling [7], resource al- 24

location in public services [8], supply chains [9], and in net- 25

work traffic flows where a cost (i.e. travel time) is incurred 26

for traversing edges [10,11]. If the individual drivers com- 27

prise only a very small amount of the overall flow, then 28

it can be treated as a continuous quantity. Such flows 29

also serve as a model for electrical current, comprising in- 30

finitesimally small particles, following paths of least resis- 31

tance [12]. The Nash equilibrium corresponds to all routes 32

on the network between an arbitrarily chosen source-sink 33

pair having equal cost [13], or local voltage drop in the 34

case of an electrical network, such that no change in flow 35

pattern or routing can lower the cost. In [14] the upper 36

bound on P was found to be 4/3 if the edge cost functions 37

are linear functions of flow volume. Although these worst 38

case values of P are independent of network topology, de- 39

pending only on the class of edge function, values of P 40

that differ from these extremes are strongly influenced by 41

topology, flow volume, placement of sources and sinks and 42
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distribution of parameters in cost functions [4, 11]. For43

example, [15, 16] considered the case of a lattice network44

and revealed how P is affected by the size, aspect ratio45

and total flow through the lattice.46

In some cases, the addition of new edges into a net-47

work can cause a counter-intuitive increase in the cost of48

the flow due to the inefficiency of the Nash equilibrium.49

This is referred to as Braess’s paradox [17, 18], and has50

been studied in traffic networks [11, 19], where the addi-51

tion of a road can increase average travel time, and elec-52

trical circuits [12]. Variants of this phenomenon have also53

been reported in supply chains [20] and oscillator networks54

[21, 22]; refer to [23] for an overview.55

Previous studies of the Price of Anarchy have considered56

sources and sinks of flow only in specific arrangements. In57

[14] a single source-sink pair was considered whereas [11]58

treated ordered source-sink pairs with characteristic flows59

along overlapping paths occurring between them. The60

present Letter first establishes a connection between P61

and the efficiency and redundancy of least-resistance net-62

work flows, and then investigates the dependence of P on63

the relative and absolute numbers of flow source and sink64

nodes, to ascertain whether, for a given network, the con-65

figuration of node types can be altered to change efficiency.66

This is of importance to the design and control of electri-67

cal micro-grids which typically have varying numbers of68

low output intermittent sources of electrical power dis-69

tributed throughout their structure. As the drive towards70

smaller, distributed generators becomes more urgent in71

order to mitigate climate change, understanding the im-72

pact of variable generation on electrical networks presents73

a pressing interdisciplinary challenge [24].74

Network flow model. – We consider flows though
graphs G = (V, E), with n = |V| nodes and m = |E| edges,
wherein ns node have the property of being sources of
flow, nd are sinks and the remaining np are passive or
empty. Each edge e ∈ E has a linear cost function ce(fe) =
αefe +βe, where fe is the volume of flow or electrical cur-
rent on that edge. The functions ce can be interpreted as
the voltage drop across the edge, while the coefficients αe
and βe represent Ohmic resistance and flow independent
voltage drops respectively. For a flow vector f ∈ Rm the
total cost across the network is C(f) =

∑
e ce(fe)fe, rep-

resenting total power loss. The global optimum flow fGO

is then the flow pattern that minimises this cost:

min
f
C(f) constrained by Ef = b, (1)

where E ∈ Rn×m is the node-edge incidence matrix and b
is the flow injection vector with components

bv =


(1 + ξv)F/ns, if node v is a source,

−(1 + ξv)F/nd, if node v is a sink,

0, otherwise,

(2)

with F being the total flow or current injected into the net-
work, and ξv being random noise. The condition Ef = b

enforces conservation of flow at nodes, equivalent to Kir-
choff’s current law. The Nash equilibrium flow fNash is
given by the optimisation problem [13]

min
f

∑
e

∫ fe

0

ce(q) dq constrained by Ef = b. (3)

The optimisation problems in (1) and (3) are both con- 75

vex and solved using subgradient projection methods [26]. 76

The Price of Anarchy is then P = C(fNash)/C(fGO) ≡ 77

CNash/CGO. 78

Nash equilibria conditions are equivalent to Kir- 79

choff’s voltage law. – A physical interpretation of the 80

Nash equilibria obtains from a consideration of Kirchoff’s 81

voltage law (KVL), which states that voltages around 82

closed cycles in an electrical network sum to zero. If 83

there is a cycle embedded in a network, then there will 84

be at least two distinct paths between a pair of source 85

and sink nodes. At the Nash equilibrium, each arm of the 86

cycle must have equal cost; hence the cost of any traversal 87

around the cycle is zero, and so the Nash equilibrium con- 88

dition is equivalent to KVL. The Nash flow therefore nec- 89

essarily satisfies both Kirchoff’s current and voltage laws 90

and is thus a physically legitimate electrical flow for an 91

electrical network in stable operation with matched sup- 92

ply and demand. The relative inefficiency of this flow, re- 93

sulting in P > 1, stems from the constraints of Kirchoff’s 94

conservation laws that define the Nash equilibrium. 95

Relationship with network redundancy. – P 96

measures the disparity between the costs associated with 97

the Nash and GO flows. In an electrical context the GO 98

would correspond to a flow being able to violate KVL in 99

order to minimise total power loss; however, such an equi- 100

librium would nevertheless be desirable to obtain because 101

it minimises the power consumed by the network. There- 102

fore, P remains a useful metric for assessing efficiency in 103

networks with flows following paths of least resistance, and 104

also for topological redundancy as we now show. 105

Consider the network shown in fig. 1(a), first introduced 106

by Pigou [27], being the smallest graph admitting a value 107

of P > 1, and which serves as the canonical example to 108

demonstrate the Price of Anarchy [11, 13]. Edge 1 has 109

variable cost c1 = f1, whereas edge 2 has fixed cost c2 = 1. 110

F units of flow enter on the left and exit on the right. 111

Fig. 1(b) shows the value of P in this network as a function 112

of F . For 0 < F ≤ 1/2, indicated by the unshaded area, 113

all flow is routed over edge 1 under both the Nash and 114

GO equilbria, with identical costs C = F 2; consequently 115

P = 1. For 1/2 < F ≤ 1 (light gray area), f1 = F under 116

the Nash flow, so CNash = F 2. The GO minimises its cost 117

when f1 = 1/2, f2 = F − 1/2 and the total cost is then 118

CGO = F−1/4, giving P = F 2/(F−1/4). For F > 1 (dark 119

gray area), the Nash equilibrium routes all flow surplus 120

of 1 through edge 2, giving CNash = F , whereas the GO 121

remains unchanged – hence, P = F/(F − 1/4). 122
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Fig. 1: (a) The example Pigou network comprising a source
and sink node connected by a variable and fixed cost edge. (b)
P (red line) and R (blue dashed line) for the Pigou network
in (a) are shown as functions of F . (c) A small world network
with q = 0.1, k = 4, n = 16, ns = nd = 8, np = 0. (d) P and
R shown as functions of F for the small world network shown
in (c).

We now establish a qualitative relationship between P
and network redundancy. Recall that the Nash equilib-
rium condition and KVL are equivalent in electrical net-
works. It is possible to drive the Nash flow, with cost
CNash, towards the GO by manipulating the network such
that excess flow is transferred from edge 1 to edge 2. This
is achieved by reducing the capacity on edge 1. This ex-
cess capacity is given by the difference between the flow
on edge 1 for each equilibrium, i.e. fNash

1 −fGO
1 . The equi-

librium on this modified network has cost C′Nash ≤ CNash.
This means that edge 1 provides redundant capacity that
can be removed. Defining this edge redundancy in terms
of the costs obtains:

Re =
CNash − C′Nash

CNash
=


0, 0 ≤ F < 1/2,

(F − 1/2)
2
/F 2, 1/2 ≤ F < 1,

1/4F, F > 1,

(4)
which is the relative decrease in cost available by remov-123

ing capacity from edge 1. No relative decrease in cost is124

possible by removing any capacity from edge 2. In order125

to generalise this measure to larger networks it is aver-126

aged over both edges to give R := Re, which is the mean127

decrease in cost attainable by removing capacity from an128

edge. Fig. 1(b) shows R, whose form emulates P. For129

larger and more complex networks, such as the small world130

network depicted in fig. 1(c), this correspondence between131

P and R prevails, as shown in fig. 1(d).132

The correspondence between P and R is observed for133

real world networks such as the Austrian power grid, dis-134

played in fig. 2(a), where the flow has been computed using135

the network flow model outlined above. The peaks in R136

and P clearly coincide as shown in fig. 2(b). Further ex-137

amples of the correspondence are shown in fig. 2(c) and138

(a) (b)

(d)(c)

Fig. 2: (a) The Austrian power grid, constructed from open
source topological data from [29]. (b) P and R for the net-
work in (a) as a function of total current F , where F has been
normalised using the per-unit system. (c) and (d) show P and
R for the IEEE 14 bus and 118 bus test networks respectively,
where the flow F has again been normalised into the per-unit
system,

fig. 2(d), which show R and P for the IEEE 14 bus and 139

118 bus test networks [30, 31]. Here the peak values of P 140

are ∼ 1.035, corresponding to a value of R indicating an 141

average 0.4% increase in efficiency available to the whole 142

system from reducing the capacity of a single edge; as this 143

is a per edge value, it reveals a substantial amount of in- 144

efficiency across the network as a whole. 145

Key to what follows is that the maximum values of P 146

and R occur at the same flow volume F . Determination 147

of R is computationally onerous, requiring the evaluation 148

of a convex optimisation problem for each of a network’s 149

edges, rendering it impractical for all but the smallest of 150

networks. Evaluating P therefore provides a simple com- 151

putational proxy for identifying regimes of relative redun- 152

dancy, enabling very large networks of complex topology 153

and composition to be investigated. The algorithm for 154

computing R in a complex network is presented in the 155

below. 156

Computation of R. – Recall thatR is defined as the 157

mean relative increase in flow efficiency attainable by cap- 158

ping the capacity of an edge in the network. This requires 159

computing the optimal amount by which each edge should 160

be capped, which can be evaluated analytically for the net- 161

work in fig. 1(a). However, R is not analytically tractable 162

in the general case of complex networks with overlapping 163

paths from sources to sinks; therefore, the method out- 164

lined in algorithm 1 is used. 165

This algorithm takes a graph G = (V, E , c) comprising 166

a set of nodes and edges, V and E respectively, together 167

with a set of edge functions c, and compares the Nash flow 168

volume on each edge to the GO flow volume on that edge 169

in order to determine by how much its capacity should be 170
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Fig. 3: (a) The Nash equilibrium edge power xe = ce(fe)fe
distribution in small world networks with q = 0.1, k = 4,
n = 32, ns = nd = 16, np = 0. Distributions of (b) CGO

and (c) CNash in an ensemble of 1000 such networks with total
flow volume F = 20. The solid lines are fitted shifted gamma
distributions with shape parameter ν = 3.44, scale parameter
µ = 3.50 and shift parameter σ = 12.3 in (b) and ν = 3.51,
µ = 3.51 and σ = 12.4 in (c). (d) The mean Price of Anarchy
P as a function of F , with maximum at (F ∗,P∗

). The shaded
region indicates the 95% confidence interval, computed using
the statistical bootstrapping method [28].

Algorithm 1 Compute R

Input: A network G = (V, E , c)
Output: The redundancy measure R on G
1: Compute the Nash and GO flows fNash and fGO

2: CNash =
∑
e∈E ce(f

e
Nash)feNash

3: for e ∈ E do
4: if feNash > feGO then
5: Set an upper limit κ = feGO on edge e
6: Compute modified Nash flow f ′Nash

7: C′Nash =
∑
e∈E ce(f

′e
Nash)f ′

e

Nash

8: Re = (CNash − C′Nash)/CNash

9: else
10: Re = 0
11: end if
12: end for
13: R = Re

capped. A new Nash flow C′Nash is then computed after171

capping edge e, from which Re is then computed. This172

process is repeated for all edges to obtain the mean R :=173

Re. For some edges there may be no possible improvement174

in cost by removing capacity, in which case we set Re = 0.175

For examples of results using this method, see fig. 1(d) and176

fig. 2(b)-(d).177

Dependence of P on flow and network compo-178

sition. – We first consider networks whose source and179

sink nodes have homogeneous flow outputs and inputs re-180

spectively, given by the case where ξv = 0 for all v in181

eq.(2). For a total flow volume F , the dependencies of P182

on network structure and composition are obtained from 183

an ensemble of 1000 such random small-world network re- 184

alisations [32, 33]. These networks are parameterised by 185

the rewiring probability q, initial degree k, and the num- 186

ber of nodes n, comprising ns, nd and np source, sink 187

and passive nodes respectively, whose locations are ran- 188

domly allocated. The edge cost coefficients αe and βe are 189

both uniformly distributed random variables in the range 190

[0,1]. At the microscopic scale in the network, fig. 3(a) 191

shows that the individual edge costs are exponentially- 192

distributed. Unsurprisingly, at the macroscopic scale the 193

total Nash and GO costs (representing total power loss) 194

are gamma-distributed with a probability density function 195

P (C) = (C − σ/µ)
ν−1

exp(−(C − σ)/µ)/µΓ(ν), since they 196

are formed from an ensemble of exponentially-distributed 197

edge costs. This is shown in fig. 3(b),(c) and confirmed 198

by Kolmogorov–Smirnov tests (see supplementary mate- 199

rial for more detail). For each F , the mean of the resulting 200

distribution of P, denoted P, is shown in fig. 3(d). With 201

increasing flow, P rapidly rises to a maximum P∗ at F ∗, 202

before declining to unity. How the values of P∗ and F ∗ 203

depend on the network configuration, defined by ns, nd 204

and np is now considered. 205

The condition ns + nd + np = n constrains the space 206

of possible network configurations to a triangular-shaped 207

simplex whose vertices touch one of the ns, nd, np axes, 208

as depicted in fig. 4(a). The variation of P∗ and F ∗ for 209

constant n are then projected onto this simplex, as shown 210

in fig. 4(b),(c), respectively. The contours are symmetric 211

about a line bisecting the simplex, corresponding to net- 212

works with ns = nd and shown by section (i) in fig. 4(b). 213

Along this line the value of P∗ decreases monotonically 214

with increasing ns, as shown by the plot in fig. 4(d). Sec- 215

tion (ii) is a slice across the simplex at whose mid point 216

ns = nd. P
∗

increases monotonically as this point is ap- 217

proached from either direction, as shown in fig. 4(e), re- 218

vealing that inefficiency and average edge redundancy are 219

maximised as the number of source and sink nodes be- 220

comes equal. fig. 4(f) shows P∗ ∼ a + bn
−1/2
s on sec- 221

tion (iii), along which ns increases (and np decreases) 222

with nd = 1. The morphology of the contours shown in 223

fig. 4(b),(c) remains invariant with q, meaning that these 224

results pertain to both small-world and random Poisson 225

(q > 0.6) networks, as demonstrated in fig. 5. This in- 226

variant property also persists (supplementary material) 227

when considering scale-free networks [34], whose topology 228

is quite distinct from the small-world and Poisson classes. 229

In practice sources and sinks may be expected to have 230

heterogeneous levels of output and input, such as an elec- 231

trical grid containing a range of generators with differ- 232

ent output capacities. To account for this, ξv in eq.(2) 233

is now set to be a normally distributed random variable 234

with mean 0 and variance 0.2. This represents a substan- 235

tial amount of heterogeneity whilst typically still preserv- 236

ing the types of the nodes, and therefore the location on 237

the simplex. Fig. 6 demonstrates this heterogeneity in en- 238
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Fig. 4: (a) A sketch of the node configuration space simplex. The black dot represents a configuration of ns = 5, nd = 10
and np = 5. (b,c) P∗

and F ∗, respectively, for ensemble of 500 small world networks, each with n = 150, k = 4 and q = 0.1
projected onto the simplex in (a). (d–f) P∗

as a function of ns along the sections (i–iii) indicated in (b). In (f), the red line

indicates the function a+ bn
−1/2
s with a = 1.003, b = 0.024.

sembles of small world networks and reveals that the key239

features of the simplex remain. In particular the highest240

values of P∗ are found on the centre line of the simplex241

where the numbers of sources and sinks are equal.242

Whilst the morphology of the contours remains approx-243

imately invariant with network size (supplementary ma-244

terial), the values of P∗ and F ∗ do scale with network245

size. Fig. 7(a) shows that the maximum value of P∗ for246

small-world, Poisson and scale free networks saturates to247

a constant value for n > 50, whereas fig. 7(b) shows that248

F ∗ increases linearly with network size. These scaling re-249

sults can be used in conjunction with fig. 4 to interrogate250

networks of arbitrary size.251

Fig. 5: (a) P∗
and (b) F ∗ for an ensemble of 500 random

Poisson networks each with n = 64, generated by the Watts-
Strogatz method [32] with q = 0.6 and k = 4.

The linear scaling shown in fig. 7(b) can be explained.252

F ∗ corresponds to a threshold beyond which the network253

flows adjust such that the two equilibrium costs begin to254

converge. To exceed the threshold the total flow must255

increase linearly because the expected density of flow de-256

creases with increasing n.257

(a) (b)

Fig. 6: (a) P∗
and (b) F ∗ for an ensemble of 500 random

n = 64 small-world networks with q=0.1. In these networks
ξv is a normally distributed random variable, with mean 0 and
variance 0.2, inducing sources and sinks to have heterogeneous
flow inputs and outputs.

Conclusion. – This Letter has investigated how in- 258

efficiency of flows occurring on different classes of random 259

network, as gauged by the Price of Anarchy P, is affected 260

by the network structure and the function of its nodes. 261

It has also established a correspondence between P and 262

measures of network redundancy, an important consider- 263

ation in addressing issues of network resilience and cost- 264

effectiveness. This is primarily motivated by understand- 265

ing properties associated with flows of current in electrical 266

micro-grids, wherein nodes are either sources or sinks of 267

current, or are passive conduits. Poisson, scale-free and 268

small-world networks are used to establish the general- 269

ity of the results with respect to network topology; this 270

reveals a predictable dependence of P upon node compo- 271

sition for networks of arbitrary structure. 272

The simplex plots fig. 4(b) and (c) and their symme- 273

try and invariance properties, when taken in conjunction 274
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Fig. 7: (a) P∗
and (b) F ∗ as functions of n for small world net-

works (blue squares) with q = 0.1 and k = 4; Poisson networks
(gray triangles) generated using the Watts-Strogatz method
with q = 0.6 and k = 4 and scale-free networks (red circles),
generated using the Barabási-Albert method [34]. All networks
are chosen to have a node configuration ns = nd = ne.

with the system size scalings shown in fig. 7, provide an275

operating space that defines maximal inefficiency and re-276

dundancy for an ensemble of networks with general topol-277

ogy and with variable node composition. With applica-278

tion to micro-grids, a given network’s composition will279

change both diurnally and seasonally, traversing a trajec-280

tory through this configuration space. This path will de-281

pend on the nature of the sources of power and the load282

consumed by the sinks – features that will vary with pop-283

ulation behaviors and the variable outputs from renewable284

power sources, for example. This information can be ex-285

ploited to aid in the dynamic design and management of286

smart networks so as to constrain trajectories to preferred287

regions on the simplex. Insofar as redundancy is related288

to resilience [35–37], this aspect of the system’s perfor-289

mance can be manipulated dynamically via the network’s290

node type configuration and edge costing. A striking fea-291

ture is that greatest values of inefficiency (or redundancy)292

occur when the number of sources and sinks are equal,293

as apparent in fig. 4(b) and fig. 5(a), a situation that is294

prevalent for small renewable energy networks where the295

numbers of generators and consumers are comparable. By296

contrast, the results show that a centralised electrical dis-297

tribution grid comprising a few sources but many sinks298

has a low P∗, indicating it is both efficient and lacks re-299

dundancy. Equivalent plots can be constructed that are300

particular for an individual network’s structure and com-301

position with which its performance can be gauged.302

These findings have established that even for simple lin-303

ear edge functions, network topology and flow conserva-304

tion laws are sufficient to induce inefficiency that depends305

predictably on the configuration of nodes. An interesting306

extension to this work would be the consideration of non-307

linear cost functions, for which the values of P may be308

substantially larger [11,14].309

The inefficiency caused by redundancy is only one met-310

ric with which to assess performance and it is inefficient311

networks that will generally also be the most resilient to312

faults or attack. Redundancy may also give networks flex-313

ibility to operate in a variety of conditions; however, since314

inefficiency and redundancy coincide, as we show in our 315

results, optimising a network’s structure and composition 316

purely for efficiency may result in a loss of useful redun- 317

dancy. Hence in using the simplex to aid network design 318

it is likely that options will be constrained to an operating 319

space offering an acceptable efficiency-resilience trade-off. 320
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