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A B S T R A C T 

We present a surv e y strate gy to detect the neutral hydrogen (H I ) power spectrum at 5 < z < 6 using the SKA-Low radio 

telescope in presence of foregrounds and instrumental effects. We simulate observations of the inherently weak H I signal post- 
reionization with varying levels of noise and contamination with foreground amplitudes equi v alent to residuals after sky model 
subtraction. We find that blind signal separation methods on imaged data are required in order to reco v er the H I signal at large 
cosmological scales. Comparing different methods of foreground cleaning, we find that Gaussian Process Regression (GPR) 
performs better than Principle Component Analysis (PCA), with the key difference being that GPR uses smooth kernels for the 
total data covariance. The integration time of one field needs to be larger than ∼250 h to provide large enough signal-to-noise 
ratio (SNR) to accurately model the data covariance for foreground cleaning. Images within the primary beam field-of-view 

give measurements of the H I power spectrum at scales k ∼ 0 . 02 Mpc −1 − 0 . 3 Mpc −1 with SNR ∼2–5 in � [log( k /Mpc −1 )] = 

0.25 bins assuming an integration time of 600 h. Systematic effects, which introduce small-scale fluctuations across frequency 

channels, need to be � 5 × 10 

−5 to enable unbiased measurements outside the foreground wedge. Our results provide an 

important v alidation to wards using the SKA-Lo w array for measuring the H I po wer spectrum in the post-reionization Universe. 

Key words: techniques: interferometric – ( cosmology :) large-scale structure of Universe – radio lines: general. 
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 I N T RO D U C T I O N  

he standard model of cosmology, the � cold dark matter ( � CDM)
odel, helps us describe and understand the observed Universe.

n particular, measurements of the cosmic microwave background
CMB; e.g. Planck Collaboration 2020a ) and the large-scale structure
LSS; e.g. Alam et al. 2021 ) can be well fitted by the � CDM
odel, producing precise, per-cent level constraints on the model

arameters. Ho we ver, as we reach further into the realm of precision
osmology, potential inconsistency between different probes arises
n the form of cosmological tensions. Namely, measurements of
he Hubble parameter in the local Universe using tip of the red-
iant branch and Type Ia Supernovae (e.g. Riess et al. 2022 ) have
ignificant discrepancies ∼5 σ with the measurements made using the
MB (e.g. Planck Collaboration 2020b ). There also exists a tension
f ∼2.7 σ between the measurements of the amplitude of the dark
atter clustering S 8 from the CMB and from the LSS (e.g. Amon

t al. 2022 ). 
The disagreements between different cosmological observations

ighlight the need for understanding the evolutionary history of
he Universe. The CMB captures the cosmic structure at the last
cattering surface z ∼ 1100 (Dodelson & Schmidt 2020 ) while the
ocal measurements are made at z � 2.0, missing a large part of the
 E-mail: zhaoting.chen@manchester.ac.uk 

i  

t  

H  

Published by Oxford University Press on behalf of Royal Astronomical Socie
Commons Attribution License ( https://cr eativecommons.or g/licenses/by/4.0/), whi
bserv able Uni verse in between. One promising approach to fill the
ap is neutral hydrogen (H I ) intensity mapping (e.g. Battye, Davies
 Weller 2004 ; Chang et al. 2008 ; Mao et al. 2008 ; Wyithe & Loeb

009 ; Battye et al. 2013 ; Ko v etz et al. 2017 ). It uses the emission line
f the H I atoms, at the rest wavelength of ∼ 21 cm, as a tracer of
he underlying dark matter distribution. Neutral hydrogen is the most
bundant element in the Universe after recombination as predicted
y the Big Bang nucleosynthesis (Alpher, Bethe & Gamow 1948 ;
odelson & Schmidt 2020 ). The formation of dark matter structures,

.e. dark matter halos, attracts baryonic matter to fall into the halos
nd produces luminous stars and galaxies during the cosmic dawn
Schaerer 2002 ). The ultra-violet radiation produced by these objects
onized the initially neutral inter-galactic medium (IGM), a process
nown as the cosmic reionization (Furlanetto, Oh & Briggs 2006 ).
he 21-cm emission is dominated by the H I inside the IGM during

he cosmic reionization, after which the majority of the remaining H I

esides in the dark matter halos (Rahmati et al. 2013 ). Therefore, the
 I signal traces different cosmic structures during different epochs

nd can be used to probe cosmology across a wide range of redshifts.
The spectroscopic nature of the 21-cm line allows the measurement

f the matter clustering across the history of structure formation from
he cosmic Dark Ages, to the Epoch of Reionization (EoR), and all
he way to the low-redshift Univ erse. Howev er, the H I signal is
nherently weak, and resolving H I sources requires deep integration
ime even for observing the H I galaxies in the local Universe (e.g.
aynes et al. 2018 ). Without the need to resolve individual sources
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ty. This is an Open Access article distributed under the terms of the Creative 
ch permits unrestricted reuse, distribution, and reproduction in any medium, 

provided the original work is properly cited. 

http://orcid.org/0000-0002-4965-8239
http://orcid.org/0000-0002-5050-9847
mailto:zhaoting.chen@manchester.ac.uk
https://creativecommons.org/licenses/by/4.0/


H I IM with SKA-Low 3725 

o  

t  

c  

m
e
e
(
2
e  

M
c  

O
h
c  

d  

S  

K

s
b  

a
f
c  

2  

2  

e
u  

f
i
t
d
t
t  

p  

P  

w  

w
w  

P  

o  

w
E
(
r
m  

f
W
(
(
M
J  

r  

t  

t  

 

d
F
c
h  

S  

e  

A

C
fi
t  

t  

f  

H
a  

G  

2
 

p  

S
o  

i  

m  

d  

b
t  

a
F  

p  

c  

F  

a  

m  

T  

l  

c
u  

q  

a  

c

l
f
a  

z  

s
l
m
i
p
i  

p  

s
d
o

 

s  

o
m  

t
m  

f
n  

r  

c

2

I  

c  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/524/3/3724/7224014 by guest on 05 August 2023
f the H I emission, intensity mapping is a technique that maps
he 21-cm emission across a large area of the sky with relatively
oarse angular resolution, allowing efficient surv e ys of large cos-
ological volumes suitable for testing the � CDM model. Ongoing 

xperiments targeting different redshifts include MeerKAT (Santos 
t al. 2016 ), Canadian Hydrogen Intensity Mapping Experiment 
CHIME; CHIME Collaboration 2022 ), Tianlai (Xu, Wang & Chen 
015 ), Hydrogen Epoch of Reionization Array (HERA; DeBoer 
t al. 2017 ), Low-Frequency Array (LOFAR; Patil et al. 2017 ),
urchison Widefield Array (MWA; Tingay et al. 2013 ), and more, 

o v ering z ∼ 0.0–10.0. In the future, the Square Kilometre Array
bservatory (SKAO) will further enable detections of the neutral 
ydrogen clustering, with SKA-Low observing at 50–350 MHz, 
o v ering the redshift range from the cosmic Dark Ages z ∼ 27
own to the post-EoR Universe z ∼ 3.0 (Koopmans et al. 2015 ), and
KA-Mid observing at 350 MHz to 15.4 GHz co v ering z � 3 (Square
ilometre Array Cosmology Science Working Group et al. 2020 ). 
The biggest challenge of H I intensity mapping is measuring the 

ignal against the foregrounds which are several orders of magnitude 
righter than the H I . In order to measure the H I signal, extreme
ccuracy in the instrument calibration is necessary to model the 
oregrounds (Barry et al. 2016 ). The desired calibration accuracy 
alls for a thorough understanding of the sky (e.g. Trott & Wayth
017 ; Murray & Trott 2018 ), the beam (e.g. Th yag arajan et al.
015 ; Ewall-Wice et al. 2016b ), and the systematics (e.g. Trott
t al. 2018 ). Techniques of foreground mitigation can then be 
tilized to extract the H I signal. The spectral smoothness of the
oregrounds contrasts with the H I which is discretely structured 
n frequency since, for the H I , different frequencies correspond 
o different redshifts, and therefore different line-of-sight (LOS) 
istances. Fourier transformation along the frequency direction to 
he delay time space for individual baselines, a technique called 
he ‘delay transform’, can thus be used to isolate modes of the
ower spectrum where the H I dominates (Morales & Hewitt 2004 ;
arsons et al. 2012a , b ). The region of the wavenumber k -space
here H I signal can be measured is called the ‘observ ation windo w’
hereas the region dominated by the foregrounds is the ‘foreground 
edge’ (Datta, Bowman & Carilli 2010 ; Morales et al. 2012 ; Liu,
arsons & Trott 2014 ). Measuring the H I power spectrum in the
bserv ation windo w is usually referred to as ‘foreground a v oidance’,
hich is one approach among ongoing efforts of measuring the 
oR signal. Alternatively and/or additionally, blind signal separation 

BSS) techniques can also be applied on the foregrounds, or the 
esiduals of them after sky model subtraction. These techniques work 
ostly on the frequenc y–frequenc y co variance of the data, such as

ast independent component analysis (fastICA, Chapman et al. 2012 ; 
olz et al. 2014 ), generalized morphological component analysis 

GMCA; Chapman et al. 2013 ), correlated component analysis 
CCA; Bonaldi & Brown 2015 ), Gaussian process regression (GPR; 

ertens, Ghosh & Koopmans 2018 ), and more (see Chapman & 

eli ́c 2019 for a re vie w). For H I observations targeting the post-
eionization Univ erse, fore ground remo val using BSS methods is
ypically used to reco v er the H I signal, with transfer function correc-
ions of signal loss (e.g. Switzer et al. 2015 ; Cunnington et al. 2023a ).

Using the methods mentioned abo v e, progress has been made at
ifferent redshifts towards the detection of the H I power spectrum. 
or single dish experiments targeting the low-redshift Universe, 
ross-correlation detections of the H I signal with optical galaxies 
ave been made by the Green Bank Telescope (Masui et al. 2013 ;
witzer et al. 2013 ; Wolz et al. 2022 ), the Parkes telescope (Anderson
t al. 2018 ), and the MeerKAT telescope (Cunnington et al. 2023b ).
 similar cross-correlation measurement has also been made by the 
HIME telescope using stacking (CHIME Collaboration 2023 ). The 
rst auto-correlation detection has been made using the MeerKAT 

elescope as a radio interferometer (Paul et al. 2023 ). For experiments
argeting EoR, upper limits on the H I power spectrum have been
ound by the MWA (Ewall-Wice et al. 2016a ; Trott et al. 2020 ) and
ERA (The HERA Collaboration 2022 ) using the delay transform 

nd foreground a v oidance, and by LOFAR using map making with
MCA and GPR fore ground remo val (P atil et al. 2017 ; Mertens et al.
020 ). 
In light of the recent progress, in this paper we explore the

ossibility of measuring the H I power spectrum at 5 < z < 6 using
KA-Low. While this redshift range is within the frequency coverage 
f the instrument, it has been largely neglected since it is not in the
nterests of the primary goal of H I science for SKA-Low, which
ainly focuses on the EoR (Koopmans et al. 2015 ). Despite probing

if ferent physics, observ ations of the post-reionization Uni verse can
enefit significantly from the wide frequency range of the SKA-Low 

elescope, as the deep observations of the EoR fields will provide
ccurate modelling of the radio continuum and the instrument. 
urthermore, it has been suggested that the Universe may still be
artially ionized at z ∼ 5.5 (Bosman et al. 2022 ), in contrast with
onventional constraints on the end of reionization to be at z ∼ 6 (e.g.
an et al. 2006 ). Using the H I power spectrum at 5 < z < 6 provides
 unique method of constraining the end of reionization. Ho we ver,
easuring the H I clustering at these redshifts has its own challenges.
he H I signal at the quasi-linear scales probed at 5 < z < 6 will be

ower than the signal at the EoR. Meanwhile, the low-frequency band
ontains more foreground contamination than the L-band typically 
sed for intensity mapping at lower redshifts. It is important to
uantify the signal and fore ground lev el at these frequencies as well
s the instrument effects, to verify if these redshifts can be used for
osmology. 

In this paper, we present an end-to-end pipeline including simu- 
ations of the sky signals and the interferometric observations, the 
oreground mitigation, and the power spectrum estimation to provide 
 proof-of-concept study for measuring the H I power spectrum at 5 <
 < 6 using SKA-Low. Using the simulation pipeline with different
ettings, we explore different levels of foreground residual and noise 
evel to find the requirements on integration time and foreground 
odelling needed. Methods for residual foreground removal are 

nvestigated focusing on the comparison between Principle Com- 
onent Analysis (PCA) and GPR, with quantitative investigations 
nto the differences in the performance of these two methods. We
resent our forecasts for future SKA-Low surv e ys on the power
pectrum measurements. Impacts of systematics are also briefly 
iscussed to provide an estimation of the requirements on levels 
f the systematics. 
The paper is organized as follows: The simulation of the sky

ignal is described in Section 2 . Simulations of the interferometric
bservations to get the images and subsequent power spectrum esti- 
ation from the images are discussed in Section 3 . The presence and

he structure of the foreground wedge, with foreground mitigation 
ethods applied, are quantified in Section 4 . The robustness of the

oreground mitigation methods is tested in the presence of thermal 
oise and systematic effects in Section 5 . We present the concluding
emarks in Section 6 . Throughout this paper, we assume the � CDM
osmology from Planck Collaboration ( 2020b ). 

 SI MULATI ONS  O F  T H E  R A D I O  SKY  

n this section, we outline the simulations of the sky signal which
onsist of the H I signal and the foregrounds at 5 < z < 6,
MNRAS 524, 3724–3740 (2023) 
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Figure 1. The input sky simulations of different foreground components 
at 220 MHz as described in Section 2 . The simulation of the synchrotron 
radiation is shown in the top panel. The simulation of the free–free emission 
is shown in the middle panel. The simulation of the extragalactic radio sources 
are shown in the bottom panel. The pixel size of the figure is (21 arcsecond ) 2 

and the total size of the signal simulation is (10 . 5 deg ) 2 . Note that the 
extragalactic signal shown in the bottom panel is simply for illustration with 
the sources plotted as point sources. Values larger than 100 K are masked 
for better presentation. When simulating the observations, the radio sources 
are directly put in as a source catalogue instead of a map, as described in 
Section 2.2 . 
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orresponding to ∼200–240 MHz. The SKA-Low instrument is
esigned to have a maximum channel resolution of 5.4 kHz (Braun
t al. 2019 ). Since we are only interested in the H I intensity mapping
hich uses large voxels to map the distribution of the H I emission,
e reduce the simulated data volume by assuming the redshift bin

s co v ered by 66 frequenc y channels with a channel bandwidth of
10 kHz. The coarser frequency resolution of 510 kHz corresponds
o k ‖ ∼ 0 . 4 Mpc −1 . While increasing the frequency resolution gives
ccess to higher k � where the foregrounds are weaker, the small
cales beyond BAO wiggles are difficult to model for cosmological
nferences. We leave simulations with the full frequency resolution
or future work. 

The primary beam field-of-view (FoV) for SKA-Low at these
requencies is ∼3 degrees (Braun et al. 2019 ). We simulate (10.5
e g) 2 sk y areas around the pointing centre for all the components
f the sky signal. While the sky area only extends to the −20 dB
1 per cent) sidelobes of the primary beam, we find that there is no
harp features in the cylindrical power spectrum from simulated fore-
round residuals (see Appendix B ). As discussed later in Section 3 ,
e perform the power spectrum estimation using only the centre

1 . 5 deg ) 2 and therefore the (10.5 de g) 2 sk y area is sufficient. The
ointing centre is at the EoR0 field (Lynch et al. 2021 ) at RA = 0
, Dec = −27 deg. The methods for generating the components are
escribed as follows. 

.1 Diffuse Galactic radiation 

he diffuse Galactic radiation at these scales is dominated by
he synchrotron radiation. We use the all-sky ‘Haslam map’ of
ynchrotron radiation at 408 MHz (Haslam et al. 1981 , 1982 ) with the
pdated version described in Remazeilles et al. ( 2015 ). The map is
hen extrapolated to the frequencies of interest using the Global Sky

odel (Zheng et al. 2017 ) at 1.4 and 2.3 GHz to calculate the spectral
ndices of the map pixels. The curvature of the spectral indices (see
.g. Irfan et al. 2022 ) is neglected for simplicity. 

The pixel size of the input Haslam map is (1 . 72 arcmin ) 2 , corre-
ponding to HEALPIX (G ́orski et al. 2005 ; Zonca et al. 2019 ) NSIDE
 2048. An image of (10 . 5 deg ) 2 around the pointing centre is created
ith a pixel size of 21 arcsec. The image is then Gaussian smoothed
ith a resolution of 1.75 arcmin. The input synchrotron radiation at

he central frequency of our simulation 220 MHz is shown in Fig. 1 .
Free–free emission from the Galactic electrons also contributes to

he diffuse Galactic radiation. Following Lian et al. ( 2020 ), we use
G21SIM 

1 to simulate the Galactic free–free emission. It is based on
he H α intensity map in Finkbeiner ( 2003 ). The free–free emission
n the frequency range of our interest is several orders of magnitude
maller than the synchrotron as shown in Fig. 1 . 

As discussed later in Section 3.1 , we make image cubes of the
bservations to perform residual foreground removal and power
pectrum estimation. In interferometric observations, during the
alibration and imaging process, the diffuse emission is largely
ubtracted and no visible structure is left in the image cube (see
.g. Rajohnson et al. 2022 ). Therefore, in our work, we assume
he majority of diffuse emission has been remo v ed and model the
iffuse foreground residual amplitude as 0.1 per cent of the original
mission of our simulation. Although this approach will require
ccurate modelling of the sky signal, it is fully within the power
f SKA-Low. Note that while we are only simulating 66 frequency
hannels from 200 to 240 MHz, a much wider frequency range, from
NRAS 524, 3724–3740 (2023) 

 https://github.com/ChenxiSSS/FG21SimPlus 

l  

b  

f  
0–350 MHz, will be utilized in future SKA-Lo w observ ations to
rovide accurately modelling of the continuum emission. As we show
ater in Section 3.1 , the output foreground image cube fluctuates on
he scale of ∼2 mJy per point spread function (PSF), corresponding
o the o v erall fluctuation of roughly 80 mJy, consistent with the flux
ensity level of residual image cubes from existing EoR observations
see e.g. fig. 2 of Mertens et al. 2020 ). Thus, the assumption for the
evel of foreground residual is representative for SKA-Low. It is
eyond the interest of this preliminary work to simulate the entire
requency range and produce the sky model for visibility subtraction.

https://github.com/ChenxiSSS/FG21SimPlus
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Note that there are other sources of foregrounds that are of Galactic
rigins, such as supernovae remnants (Wang et al. 2015 ). Since 
he dominant component of the foregrounds is the synchrotron, we 
xpect that the Galactic foreground simulated in our work is enough 
o capture the amplitude and the structure of the diffuse emission and
eave other components of the Galactic foregrounds for future study. 

.2 Extragalactic radio sources 

part from the Galactic diffuse emission, extragalactic radio sources 
lso contribute to the o v erall fore ground emission. While the Galactic 
oregrounds are mostly diffuse, the extragalactic foregrounds are typ- 
cally individual sources of finite size. Understanding the properties 
f the radio galaxies is a major scientific goal for radio surv e ys. F or
xample, both continuum and H I science results have been produced 
sing the same fields of the MIGHTEE surv e y (He ywood et al. 2022 ;
inigaglia et al. 2022 ); Observations of EoR0 field from the MWA
re used to produce both the upper limits on the reionization power
pectrum and the source catalogue (Beardsley et al. 2016 ; Trott et al.
020 ; Lynch et al. 2021 ). 
For future observations using SKA-Low, we expect a good under- 

tanding of the radio sources in the fields which will be iteratively
mpro v ed as the observations themselves will further help build 

ore complete catalogues. Here we use the source catalogue from 

he LOFAR Two-meter Sk y Surv e y observations of the ELAIS-N1
EN1) field (Sabater et al. 2021 ) and rotate the centre of the field to
ur pointing centre as shown in Fig. 1 . The EN1 catalogue co v ers
lightly less than the (10 . 5 deg ) 2 sky area used for simulating the
iffuse foregrounds. As discussed later in Section 3 , we only image
he central (1 . 5 deg ) 2 fields so the smaller input sky area for the radio
ources has negligible impacts on the intensity of the foreground 
mission in our image cubes. In real observations, the bright sources
n the beam sidelobe pose challenges to the data calibration which 
e do not consider in this work. These issues can be mitigated by

echniques such as secondary and direction-dependent calibrations 
see e.g. Patil et al. 2017 ; Mertens et al. 2018 ; Heywood et al. 2022 ).

In the source catalogue, we impose a flux density cut of 10 mJy
ssuming all sources abo v e this flux density can be perfectly peeled.
he 10 mJy limit is fairly conserv ati ve and can be set lower given

he high sensitivity of SKA-Low. For example, using 12 nights of
OFAR-EoR data observing the North Celestial Pole (NCP), Mertens 
t al. ( 2020 ) produced source-subtracted images with fluctuations at 
0 mJy level. The source model of the NCP field has also been built
terativ ely o v er the years down to sources with flux density down to

3 mJy (Yatawatta et al. 2013 ). The depth of the sky model for the
oR0 field simulated in this work can also be expected to reach mJy

ev el. Furthermore, we e xpect the sources below this flux density to
e modelled with 90 per cent accuracy. This is again a conserv ati ve
stimate, as relatively short observations of only 13 h used in Patil
t al. ( 2017 ) reports ∼ 5 per cent error in reco v ering the flux density
f a known bright source. As we discuss later, we focus on deep
bservations with ≥300 h of observation and therefore it is expected 
hat the flux of the sources around 1 mJy can be accurately modelled
ith below 10 per cent errors. We assume no position errors for the

ky modelling. 

.3 The H I signal 

 I resides mostly inside the dark matter halos after the EoR at z
 6. The collapse of the cold gas leads to star formation, creating

trong correlations between the star formation rate and the molecular 
H 2 ) gas content of the galaxies (Leroy et al. 2008 ). Therefore, the
lustering of H I can be related to the star forming properties of the
alaxies and can be used to constrain the galaxy astrophysics (e.g.
olz et al. 2016 ; Chen et al. 2021 ). At higher redshifts beyond

osmic noon z > 2, the fraction of H I within galaxies start to
rop (Villaescusa-Navarro et al. 2018 ) and the distribution of the
 I tilts more towards the massive halos (Spinelli et al. 2020 ). Due

o the lack of direct observations on these H I emission sources
t higher redshifts, the properties of the H I within halos are not
ell understood, which can be dramatically impro v ed by future H I

ntensity mapping experiments. 
The large sky area of (10 . 5 deg ) 2 , and the 5 < z < 6 redshift bin,

esult in a light cone of ∼1500 Mpc in the transverse direction and
500 Mpc in the los direction. For our purposes of exploring the

etectability of the signals, instead of using a full hydrodynamical 
imulation, we use semi-analytical simulations based on dark matter 
imulations and H I Halo Occupation Distribution (HOD; Cooray & 

heth 2002 ). It allows us to efficiently simulate the large volume
equired. The detailed steps of our H I simulation are as follows: 

(i) Assuming the Planck18 cosmology (Planck Collaboration 
020b ), we use PINOCCHIO 

2 (Monaco, Theuns & Taffoni 2002 ;
onaco et al. 2013 ) to simulate nine boxes of dark matter distri-

utions, each with a volume of (620 Mpc ) 3 . The total volume of
 × (620 Mpc ) 3 is to ensure that the lightcone falls well within the
imulated v olume, a v oiding edge effects. The total v olume is divided
nto nine sub-boxes to a v oid computational difficulties. 

(ii) Each sub-box has 1850 grid points per side, resulting in a mass
esolution of ∼ 3 . 25 × 10 9 M � h −1 . Note that this mass resolution is
ikely not enough to resolve all the H I -rich halos (see e.g. Villaescusa-
av arro et al. 2018 ). Ho we ver, it is enough to capture the bias of the
 I clustering which is sufficient for our purposes. 
(iii) Each sub-box is simulated across the 5 < z < 6 redshift

in with a snapshot taken at each observing frequency channel, 
qualling a total of 66 snapshots (see Section 3 for specifications
f the observations). The halo positions relative to the centre of the
ox in comoving space, the velocities, and the mass of the haloes are
aken. 

(iv) The nine sub-boxes are then put together onto 3 × 3 grids
ith the centres of the boxes re-positioned. We take the observer to
e at (0,0,0) and the centre of the 5th box is at (0,0,X cen ) where X cen 

s the comoving distance at the centre of the 5 < z < 6 redshift bin.
he halos are re-positioned accordingly. 
(v) The peculiar velocities of the halos are calculated given the 

D halo velocities and the position vectors. The halo positions are
odified to redshift space according to the Kaiser effect (Kaiser 

987 ). 
(vi) Each halo is assigned an H I mass according to the H I HOD

f the IllustrisTNG simulation in Villaescusa-Navarro et al. ( 2018 ).
he H I HOD follows M H I = M 0 ( M h /M min ) αexp ( −( M min /M h ) 0 . 35 )
ith M h the halo mass. We adopt the parameter values at z = 5,
ith M 0 = 1 . 9 × 10 9 h 

−1 M �, M min = 2 . 0 × 10 10 h 

−1 M �, and α =
.74. All H I masses are put into the halo centres, since we are only
nterested in large scales k < 0 . 5 Mpc −1 and hence the halos are
nresolved. The H I masses are then multiplied by a constant factor
o that at each redshift the H I mass density, �H I , equals to 10 −3 .
his is consistent with the observation of Crighton et al. ( 2015 ) and
nsures that the clustering amplitude is realistic. 

(vii) The distances between the halos and the observer are calcu- 
ated. For snapshot i corresponding to frequency channel i , the los
MNRAS 524, 3724–3740 (2023) 
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M

Figure 2. The brightness temperature power spectrum of the H I simulation 
described in Section 2.3 . In the top panel the blue solid line shows the 1D H I 

power spectra for the central area of (1 . 5 deg) 2 in the simulated lightcone. The 
shaded area shows the one standard deviation range of the input H I power 
spectrum where the standard deviation is calculated from all the snapshots of 
all the sub-boxes. The bottom panel shows the cylindrical power spectrum of 
the central area of (1 . 5 deg) 2 in the simulated lightcone. The red dashed line 
denotes the k = { 0.1, 0.2, 0.3, 0.4 } Mpc −1 contours for reference. The H I 

power spectrum of the central area agrees tightly with the H I power spectrum 

of the entire box, and is largely isotropic. 
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omoving distance range [ X 

i 
min , X 

i 
max ] is calculated according to the

hannel bandwidth and central frequency. Only halos in the distance
ange are selected. 

(viii) A rotational matrix along y -axis to rotate the x –z plane is
pplied to the halos so that the centre of the simulation corresponds to
he pointing centre RA = 0 h and Dec = −27 deg. The halo positions
re converted to angular coordinates. The H I mass is converted to the
ux density assuming that the flux is distributed as a step function
cross the frequency channel. This is a reasonable assumption given
hat the velocity resolution of SKA-Low at 5 < z < 6 is not high
nough to resolve the emission profiles of the H I sources. 

To validate our H I simulation, we compute the H I power spectra
or the nine sub-boxes, and compare to the central (1 . 5 deg) 2 area
f the light cone which we will use for imaging later. The resulting
verage H I power spectra for the boxes and for the central input
mage is shown in Fig. 2 . 

We emphasize that the variance of the H I signal, shown as
he shaded area in Fig. 2 , is underestimated. This is due to the
act that we assume a deterministic relation between the H I and
alo mass, ignoring the scatter of the relation (see e.g. fig. 4
f Villaescusa-Navarro et al. 2018 ). The scatter comes from the
NRAS 524, 3724–3740 (2023) 
ssembly bias of halos, which can be introduced by the inhomoge-
ous reionization history (e.g. Long et al. 2022 ). In our case of
nvestigating the detectability in thermal noise dominated case, this
ffect is negligible and we leave more realistic simulations for future 
ork. 
Note that the (1 . 5 deg) 2 image size corresponds to a maximum

ength scale equi v alent to k ∼ 0 . 03 Mpc −1 . Scales larger than this
an not be probed by the image, as one can see from the top panel of
ig. 2 . At smaller scales, k > 1 Mpc −1 , the H I power spectrum hits

he shot-noise plateau. This is not accurate and the actual shot noise
hould be much lower. In our simulation, the H I is directly put as
oint sources in the halo centres, so that the number density of H I

ources is underestimated (see Spinelli et al. 2020 for a discussion
f this). The actual shot noise should be much lower and requires
ore in-depth modeling of the H I halo model (Wolz et al. 2019 ;
hen et al. 2021 ). As we will discuss in Section 3 , the minimum
 -scale probed in our simulation is k ∼ 0 . 3 Mpc −1 and therefore we
re not affected by this insufficient modelling. The cylindrical power
pectrum shown in the bottom panel of Fig. 2 indicates that the
 I power spectrum from our simulation gives the correct isotropic

eatures, and therefore can be reliably used to study the detectability
f the H I power spectrum in the presence of the foreground wedge. 

 SI MULATI ONS  O F  O B S E RVAT I O N S  

n this section, we describe the simulation of the SKA-Low inter-
erometer to observe the input sky signal discussed in Section 2 , the
maging routine to produce the image cube within the primary beam
oV, and the power spectrum estimation. 

.1 From sky signal to image product 

he SKA-Low array will consist of 131,072 log-period dipole
ntennas within 512 stations co v ering the southern sky from 50 to
50 MHz. Since the specific station layout and specifications are not
nalized, we use the v3 station layout (de Lera Acedo et al. 2020 )
ssuming a frequency channel bandwidth of 510 kHz. We only take
he central area with 296 stations with a maximum baseline length of
.15 km. The longest baselines are not of cosmological interest and
re thus neglected to reduce data volume. The frequency range we
imulate is from 202.56 to 235.76 MHz, co v ering redshift 5–6 with
6 frequency channels. The station layout is shown at the left-hand
anel of Fig 3 . 

The visibility data are simulated to represent one night of ob-
ervation at the EoR0 field. We assume a total integration of 12 h
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Figure 4. Left-hand panel: The power-square beam A 

2 (l , m) around the 
pointing centre in our simulation. The primary beam is averaged across all 
stations. The red square shows the (1 . 5 deg) 2 area within which the image cube 
is produced. Right-hand panel: The PSF corresponding to the u–v co v erage of 
our simulation using natural weighting. Pixels with values ≈0 are left blank. 
Both figures have a size of (3 deg) 2 with 512 × 512 pixels. Note that both the 
primary beam and the PSF are frequency-dependent and we show the values 
at central frequency 220 MHz here for presentation. 
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ith a time-resolution of 180 s in one tracking. The resulting u–v
o v erage of the baselines is shown in the right-hand panel of Fig
 . The u–v co v erage shown is dense within | u | < 1000m (which
orresponds to the physical scale k � 0 . 5 Mpc −1 ). Choosing the u–
 grid length to correspond to our image size, we find no loss of
–v grid sampling, justifying the usage of a relatively coarse time 
esolution. 

Follo wing the observ ational specifications discussed abo v e, we 
se the OSKAR 

3 package (Mort et al. 2010 ) to generate the visibility
ata. OSKAR takes in the telescope specifications, sky model and 
bservation strategy to simulate the primary beam, the u–v co v erage
nd the visibility data. It can also be used to generate dirty images,
hich we use to produce the image cube. The sky area for the

maging output is determined by the primary beam size. In the 
alculation of the power spectrum, the primary beam attenuation 
s squared since the power spectrum is the Fourier density field 
quared (see e.g. Parsons et al. 2014 ). To image within the primary
eam field-of-view, we take the limit where the power-square beam 

ttenuation reaches ∼0.5. The primary beam is largely Gaussian 
ear the pointing centre as shown in Fig. 4 , resulting in power-
quare beam having half the full width at half-maximum (FWHM) 
omparing to the actual beam. The image size is accordingly set to
e (1 . 5 deg) 2 and we choose the pixel size to be (0 . 45 arcmin) 2 with
00 × 200 grids. We apply the W-projection algorithm (Cornwell, 
olap & Bhatnagar 2008 ) with natural weighting to the baselines to
roduce the image cube. The power-square beam and the synthesized 
eam (PSF) are shown in Fig 4 . The PSF in Fourier space has a 
WHM of k ∼ 0 . 3 Mpc −1 . 
Gaussian random noise are added to the visibility data to simulate 

he thermal noise. The amplitude of the thermal noise is determined 
y the radiometer equation (Wilson, Rohlfs & H ̈uttemeister 2013 ), 

N = 

2 k B T sys 

A e 
√ 

δf δt 
, (1) 

here k B is the Boltzmann constant, T sys is the system temperature, 
 e is the ef fecti v e collecting area, δf is the frequenc y channel
andwidth, δt is the time resolution. We follow Braun et al. ( 2019 )
 ht tps://github.com/OxfordSKA/OSK AR 

t  

i  

T

nd set the natural sensitivity A e /T sys = 1 . 235 m 

2 K 

−1 to generate
andom complex Gaussian on every baseline. The images at the 
entral frequency for the foregrounds, the H I , and the thermal noise
re shown in Fig. 5 . All images are dirty images with no cleaning
outine applied. Throughout this paper, we use ‘Jy per PSF’ and
kelvin per PSF’ units for the images before deconvolution with 
he PSF. The ‘PSF’ refers to the integrated PSF area in steradian
 

d l d m PSF ( l , m ). ‘Jy per PSF’ is more commonly referred to as ‘Jy
er beam’. We use ‘Jy per PSF’ to a v oid confusion with the primary
eam. 

In Section 5.1 when we discuss residual foreground removal, the 
hermal noise is rescaled by a factor of 

√ 

t sim 

/ t int , where t sim 

= 12 h is
he observation time for the simulated one tracking and t int is the total
ntegration time set to 360, 480, and 600 h for different scenarios.
he rescaling mimics coherent averaging of the visibility data over 
MNRAS 524, 3724–3740 (2023) 
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ultiple nights. The thermal noise power spectrum is ∼4 orders of
agnitude larger than the H I power spectrum as we show in Fig. A1

n Appendix A . 

.2 Simulating systematics 

eal observations will contain a wealth of systematics, including
he radio frequency interference (RFI), gain instabilities, calibration
rrors, and more. While it is beyond the scope of this paper to properly
ake into account all of the systematics, we aim to simulate the effect
f systematics that can lead to spectral instability in a simplistic way.
he systematics are simulated using 

 

i 
obs ( u 

i , v i , f i ) = (1 + δe f ) V 

i 
true + V TN , (2) 

here V 

i 
true is the visibility data of the i th baseline without the

ystematics and the thermal noise. V TN is the thermal noise visibility.
e f follows a Gaussian distribution with zero mean and only depends
n the frequency channel. We simulate δe f with different standard
eviations from 10 −5 up to 10 −4 . The systematic errors are multiplied
o the full visibility data before the assumed sky model subtraction.
his effect is a crude approximation for bandpass calibration error
veraged across all timesteps, creating fluctuations on small fre-
uency scales which will leak foreground power into the observation
indow and bias the foreground removal techniques as we discuss

n Section 5 . Note that the calibration errors are complex and have
mooth structures in frequency for H I observations (see e.g. figs 2
nd 3 of Byrne et al. 2019 ). In our case, we focus on the blind removal
f residual foreground after calibration and choose Gaussian errors
o that the foreground scatter is present across the delay space (see
ppendix B ). 
It is worth pointing out that the 200–240 MHz frequency range

osts several prominent sources of RFI. Around 220 MHz there are
he RF11 and RF12 bands of digital TV (see e.g. fig. 2 of Offringa
t al. 2015 ), which can be identified through flagging algorithms
e.g. Offringa et al. 2010 ; Wilensky et al. 2019 ). The larger end of
he frequency range ∼240 MHz sits right next to military satellite
and (242–272 MHz) which may cause complete data loss of the
ntire frequency range (see fig. 4 of Sokolowski, Wayth & Lewis
015 ). The presence of this RFI forbids us to go below redshifts z <
. Overall we expect that the 200–240 MHz frequency range can be
bserved without substantial loss of data. 

.3 H I power spectrum from the imaging route 

he image cube can be used to estimate the H I power spectrum. We
ompute the H I power spectrum from the imaged data instead of
easuring the delay power spectrum directly from the visibilities for

wo reasons. First, the cosmological quantities such as the Hubble pa-
ameter and the comoving distance have significant evolution across
he large redshift bin �z = 1, making the delay power spectrum
stimation very difficult especially with regards to deconvolving w-
rojection kernel and primary beam attenuation. Secondly, if we can
erify the detectability of one field in image space, we can probe
arger cosmological scales through image mosaicing of o v erlapping
elds. 
To calculate the H I power spectrum, we first transform the flux

ensity I ( l , m , f ) in the image cube into Fourier space brightness
emperature 

˜ 
 ( k ⊥ 

, k ‖ ) = 

∫ 

d 3 x 

V 

exp 
[ − i k · x 

]( λ2 

2k B 

)2 
I ( x ) 
A ( x ) 

, (3) 
NRAS 524, 3724–3740 (2023) 
here x = [ l · D c ( z c ) , m · D c ( z c ) , D c ( z f )] is the physical coordinate
orresponding to the sky coordinate ( l , m ) and observing frequency f .
 is the comoving volume of the image cube. D c ( z) is the comoving
istance at redshift z . z c is the centre of the redshift bin and z f = f 21 / f −
 is the redshift corresponding to the frequency f where f 21 is the rest
requency of the 21-cm line. A ( x ) is the primary beam attenuation.

is the observing wav elength. The transv erse coordinates for each
oxel are assigned assuming an ef fecti ve comoving distance, which
s important to ensure that the operators for residual foreground
emo val and F ourier transformation are commutable as we discuss
n Appendix A . ˜ T ( k ⊥ 

, k ‖ ) is in the units of kelvin per PSF. The H I

ower spectrum in 3D k -space is 

 H I ( k ⊥ 

, k ‖ ) = 

| ̃  T ( k ⊥ 

, k ‖ ) | 2 
| ̃  PSF ( k ⊥ 

, f c ) | 2 
, (4) 

here ˜ PSF ( k ⊥ 

, f c ) is the 2D Fourier transform of the PSF at the
entral frequency f c 

˜ SF ( k ⊥ 

, f c ) = 

∫ 

d l d m exp 
[ − 2 πi( l u + mv) 

]
PSF ( l , m, f c ) . (5) 

In the calculations abo v e, sev eral approximations hav e been made.
he frequency evolution of the PSF is assumed to be negligible over

he frequency bandwidth of the simulated observation. The physical
oordinates of the voxels are assigned assuming an ef fecti v e como v-
ng distance. The flat-sky approximation is also used. While these
ssumptions may not be accurate enough for precision cosmology, as
e show in Fig. 6 , it can be seen that the output H I power spectrum

s within the 1 σ region of the input. It is sufficiently accurate for
tudying the detectability of the signal. The scales probed are from
 ∼ 0 . 03 Mpc −1 , limited by the size of the image, to k ∼ 0 . 3 Mpc −1 ,
imited by the image resolution due to the PSF. In the power
pectrum results shown hereafter, a Blackman–Harris frequency
aper is also applied to minimize potential leakage of foregrounds
nd systematics, with the details discussed in Appendix A . 

 QUANTI FYI NG  T H E  F O R E G RO U N D  W E D G E  

n this section, we use the image cube from H I and foreground
isibility data without the thermal noise to explore the limits of
educing foreground contamination. Without the thermal noise and
ny systematics, the H I and foreground-only case showcases the
est possible scenario for residual foreground removal. It helps us
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Figure 7. The cylindrical power spectra for the H I (left) and the foregrounds 
(right) estimated from the output image cubes. Note that the PSF is not 
deconvolved from the power spectra and the power spectra are in the units of 
K 

2 Mpc 3 / PSF 2 . 
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Figure 8. Top left-hand panel: The ratio between the H I power spectrum 

and the foreground power spectrum in cylindrical k ⊥ –k � space. The vertical 
red dashed line denotes the k = 0 . 3 Mpc −1 line where the effects of the PSF 
start to dominate. Top right-hand panel: The ratio between the H I power 
spectrum and the foreground power spectrum, with the foreground power 
suppressed by a factor of 10 4 . Bottom left-hand panel: The ratio between the 
H I power spectrum and the residual power spectrum after PCA cleaning. The 
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nderstand the requirements for sky modelling to enable detection 
nd locate the observ ation windo w in the k ⊥ 

–k � plane. We par-
icularly focus on scales of cosmological interest k < 0 . 2 Mpc −1 ,
specially the largest scale that can be probed using our image 
ube k ∼ 0 . 03 Mpc −1 . If these scales can be probed with little
oreground contamination, future surveys using wide-field imaging 
nd mosaicing can further extend the scales larger than the first
aryon acoustic oscillation (BAO; Eisenstein & Hu 1998 ) peak at 
 ∼ 0 . 04 Mpc −1 to the linear scales for cosmological analysis. 

.1 Obser v ation windo w using only for egr ound avoidance 

e first use the H I -only image cube and foreground-only image
ube to estimate the power spectra for the H I and the foregrounds to
ompare them in cylindrical k -space. The cylindrical power spectra 
or the H I and the foregrounds are shown in Fig. 7 . Comparing
he ratio between the H I power spectrum and the foreground 
ower spectrum as shown in the top left-hand panel of Fig. 8 , the
oreground power spectrum is larger than the H I power spectrum at
 ‖ � 0 . 12 Mpc −1 , leaving no observ ation windo w at linear and BAO
cales. In Fig. 8 , the region where foreground power dominates does
ot have a clear wedge structure. This is due to the fact that the bright
ources in the primary beam side-lobes, which contributes mostly to 
he wedge structure at high k ⊥ 

, are assumed to be already remo v ed
n our simulation. Without the strong foreground emissions coming 
rom large angular extent (high delay time), the wedge structure at 
igh k ⊥ 

no longer exists. The lack of wedge feature can also be seen
rom observ ations (e.g. LOFAR observ aions sho wn in Mertens et al.
020 ; Hothi et al. 2021 ). As we demonstrate in Section 4.2 , the wedge
tructure reappears after foreground cleaning is applied to the data. 
his is due to the fact that removing residual foregrounds reduces the

oreground power near the pointing centre, making the foreground 
mission at larger angular distance comparatively brighter. 

If we relax the 10 per cent modelling residual as described in
ection 2.2 to an extreme 0.1 per cent, k ‖ � 0 . 05 Mpc −1 scales are
till lost as shown in the top right-hand panel of Fig. 8 , which
nvalidates the usage of the observations for cosmology. The result 
uggests that even with extreme level of calibration and sky modelling 
ccuracy, it is unlikely that foreground a v oidance can be used to
easure the H I power spectrum at cosmological scales at 5 < z < 6

ue to the weakness of the H I signal at these redshifts. We can use
ore ground remo val methods to mitigate the contamination at large 
cales as we show in the following sections. 
.2 Residual for egr ound r emo v al 

n order to suppress foreground contamination down to the wedge 
nd create an observation window at large scales, we explore methods 
f blind source subtraction to remo v e the residual foregrounds. We
ocus on two methods commonly used, namely the PCA (e.g. Spinelli
t al. 2022 ) and GPR (e.g. Mertens et al. 2018 ; Soares et al. 2022 ).
ollowing Chen, Wolz & Battye ( 2023 ), with the observation window 

nlarged due to the foreground cleaning we can choose a criteria for
he power spectrum estimation in 1D k -space 

 ‖ > c k k ⊥ 

, (6) 

here c k is a constant to be set. The value for c k can be found by
teratively testing with larger values to the point where the 1D power
pectrum results converge. 

We write out the general formalism for frequenc y–frequenc y 
ovariance based foreground removal methods 

ˆ 
 fg = 

ˆ C fg ̂  C 

−1 X , (7) 

here X is the mean-centred image cube which has dimensions 
f (N f , N p ) with N f the number of frequency channels and N p the
umber of pixels in one frequency channel. ˆ C fg is an estimation of
he covariance matrix for the foregrounds and ˆ C 

−1 is the inverse of
he estimation of the total data co variance. F or different methods
uch as PCA and GPR, different choices of ˆ C fg and ˆ C are used,
MNRAS 524, 3724–3740 (2023) 
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roducing different reconstructed foregrounds which we discuss in
etail in Section 5.1 . 

.2.1 Foreground Removal using PCA 

he PCA method separates the foregrounds by using the eigenvalue
ecomposition of the frequenc y–frequenc y data covariance matrix
e.g. Cunnington et al. 2021 ) 

ˆ 
 d = XX 

T / (N p − 1) , (8) 

he eigenvalues and eigenvectors of the covariance matrix are then
alculated. An estimation of the foregrounds can be extracted from
he data matrix using 

ˆ 
 

PCA 
fg = AA 

T X , A = [ v 1 , ..., v N fg ] . (9) 

ere, v i is the eigenvector corresponding to the i th largest eigenvalue
nd a total of N fg modes are remo v ed. To link it to equation ( 7 ), we
an rewrite equation ( 9 ) as 

ˆ 
 

PCA 
fg = 

(
AA 

T ˆ C d 

)(
ˆ C d 

)−1 
X , (10) 

here it is straightforward to see that, in the case of PCA, ˆ C PCA = 

ˆ C d 

nd ˆ C 

PCA 
fg = AA 

T ˆ C d . 
In our case, the eigenvalues of the data covariance reach a plateau

fter the third eigenvalue, suggesting that N fg = 3 is a good choice
or cleaning the foregrounds and a v oiding overcleaning the signal.
he ratio between the H I power spectrum and the residual power
pectrum after cleaning is shown in the bottom left-hand panel of
ig. 8 . Throughout the paper, the residual power spectrum is defined
s the power spectrum of the residual foreground image X res = X fg −
ˆ 
 fg , where X fg is the image of the input foregrounds and ˆ X fg is the

emo v ed fore ground by either PCA or GPR. 
Comparing Figs 7 and 8 , the cleaning efficiently enlarges the

bserv ation windo w at small k ⊥ 

. If the foreground contamination is
ptimally mitigated, the foreground wedge can be located using the
horizon limit’ (Liu et al. 2014 ) 

 

h 
k = 

H ( z ) D c ( z ) θ0 

c(1 + z) 
, (11) 

here H ( z) is the Hubble parameter, c is the speed of light and θ0 is
he angular extent of the instrument beam. As a crude approximation
e choose θ0 = 2 

√ 

�beam 

/ π where �beam 

is the integrated primary
eam which gives c h k = 0 . 24. From the bottom left-hand panel of
ig. 8 , we can see that the foreground wedge is close to the horizon

imit which is marked by the red dotted line, showing that the
oreground cleaning is ef ficient. Iterati vely increasing the threshold
e find that the 1D power spectrum converges at c k = 0.3, which we
se from now on in this paper. 

.2.2 For eground r emoval using GPR 

PR constructs the foreground component by fitting parameterized
ernels to the data covariance. Suppose we have the H I kernel K H I ,
he foreground kernel K fg and the thermal noise kernels K n fitted,
hen the estimated foreground can be written as (e.g. Mertens et al.
018 ) 

ˆ 
 

GPR 
fg = K fg 

(
K fg + K n + K H I 

)−1 
X . (12) 

t is straightforward to see that, in the case of GPR, ˆ C GPR = K fg +
 n + K H I and ˆ C 

GPR 
fg = K fg . 

The H I and the fore ground co variance matrices are shown in
ig. 9 for reference. The H I covariance is highly diagonal, due to the
NRAS 524, 3724–3740 (2023) 
iscrete and uncorrelated nature of the H I along the los. On the other
and, the fore ground co variance is smooth and shows a clear spectral
eature along the frequency direction, corresponding to the ne gativ e
pectral indices of the radio sources. Due to the spectral evolution
f the fore ground co variance, the conv entional choice of a Mat ́ern
ernel (Mat ́ern 1966 ) does not describe the foreground covariance
ell. Instead, we use Markov chain Monte Carlo (MCMC) to fit the
ernels using the following steps: 

(i) In each step, a random value σ n is sampled and a diagonal
ernel K n = σ 2 

n δ
K 
ij is calculated where δK is the Kronecker delta. In

his section, K n is the H I kernel. Following Soares et al. ( 2022 ), in
ection 5 when thermal noise is included, K n is the sum of the H I

nd the thermal noise covariance matrices. 
(ii) The total data covariance matrix is then subtracted by the

iagonal kernel K n . A third-order polynomial fitting is then per-
ormed on every row of the subtracted result, creating a fitted kernel
 fit . The kernel is then symmetrized to get the foreground kernel
 fg = ( K fit + K 

T 
fit ) / 2. 

(iii) The parameters for the kernels are then fitted by maximiz-
ng the log-marginal likelihood log p = −( X 

T K 

−1 X + log | K | +
 log2 π )/2, where n is the number of data points sampled and K is
he sum of the kernels K = K fg + K n . 

(iv) The MCMC fitting is then performed with 20 random w alk ers
ith 2000 iterations to make sure the chains converge. The initial
uess of σ n is taken to be the square root of the trace of the data
ovariance. The final kernels are the 50 per cent percentile of the K n 

nd the K fg samples in the chains excluding the first 100 steps. 

Note that after GPR cleaning, a bias correction can be applied as
hown in Mertens et al. ( 2018 ). We follow the quadratic estimator
ormalism of Kern & Liu ( 2021 ) and show in Appendix A that the bias
orrection term in our case is negligible. The resulting foreground
esidual power spectrum compared to the H I power spectrum is
hown in the bottom right-hand panel of Fig. 8 . Comparing the
oreground wedge in the GPR case with the horizon limit and with
he PCA case, we can see that in the absence of thermal noise, GPR is
lightly more efficient in cleaning the foregrounds and both methods
o well enough to enable the detection of the H I at large scales
 < 0 . 1 Mpc −1 . At the largest spatial scales of the image, there is
e gativ e residual power from o v ercleaning. The differences between
hese two methods are discussed later in Section 5.1 . 
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Figure 10. The 1D H I power spectrum results from image cubes of H I 

and foreground using foreground removal methods measured in the k � > 

0.3 k ⊥ regions. The blue data points shows the results from PCA and the 
yellow points show the results from GPR. The vertical dashed line denotes 
k = 0 . 3 Mpc −1 where the effects of PSF start to dominate. The centres of the 
k -bins are misplaced by 5 per cent for presentation. 

t  

o  

F  

t

5

I  

s
o
m
f  

m
s  

l

5

I  

s  

r  

‘  

t  

b  

d  

w  

t  

l  

w  

m
 

e
a  

c  

a  

i  

t

Figure 11. Left-hand panel: The ratio between the H I power spectrum and 
the residual foreground power spectrum in cylindrical k ⊥ –k � space using the 
PCA cleaning. Right-hand panel: The same with the left-hand panel except the 
residual is obtained using the GPR cleaning. All panels shown have values 
below 1 set to 1 to separate the observation window from the foreground 
wedge. The vertical red dashed line denotes the k = 0 . 3 Mpc −1 line where 
the effects of the PSF start to dominate. The red dotted line denotes the 
boundary for the observation window k � = 0.3 k ⊥ . 

Figure 12. Left-hand panel: The estimated H I image ˆ X H I defined in 
equation ( 13 ) using the PCA cleaning at the central 220 MHz frequency 
channel. Right-hand panel: The same with the left-hand panel except the 
residual is obtained using the GPR cleaning. The colour scales of the images 
are set to range from −0.11 to 0.13 mJy per PSF for fair comparisons. The 
residual images obtained from PCA and GPR are similar with each other, yet 
the level of foreground leakage differs significantly as shown in Fig. 11 . 
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The success of the methods in cleaning the foregrounds indicates 
hat we can measure the H I power spectrum from the SKA-Low
bservation at 5 < z < 6, as we show using the 1D power spectrum in
ig. 10 . As mentioned, both methods can enable the measurements of

he H I power spectrum from k ∼ 0 . 05 Mpc −1 up to k ∼ 0 . 3 Mpc −1 . 

 FO R ECASTS  F O R  SKA-LOW  

n this section, we further explore the detectability of the H I power
pectrum for SKA-Low observations by including different levels 
f thermal noise in the simulation. In particular, to enable the 
easurement of the H I power spectrum, the robustness of the 

ore ground remo val methods in the presence of the thermal noise
ust be tested. Furthermore, we simulate systematics by generating 

tochastic errors along the frequency direction to test the limits of
evel of systematics allowed. 

.1 Robust for egr ound cleaning with low SNR 

n Section 4.2 , we show that the foreground removal methods can
uppress the foreground wedge to the horizon limit. Ho we ver, this
esult is based on the fact that the empirical data covariance is
clean’, i.e. the covariance is purely a combination of the H I and
he fore grounds. Therefore, the distinctiv e features of the H I can
e extracted from the signal using PCA and GPR. In reality, the
ata covariance is likely to contain a high level of thermal noise as
ell as systematics, making it difficult to construct the covariance of

he foregrounds. We test PCA and GPR in the presence of different
evels of thermal noise. As described in equation ( 1 ) in Section 3.1 ,
e simulate the thermal noise for the 12h tracking and rescale it to
atch 360, 480, and 600 h of integration time. 
We first show the results for the 360 h case and compare the

ffects of foreground removal methods. The PCA and GPR routines 
re kept the same as in Section 4.2 with the observation window
 k = 0.3. The ratio between the underlying H I power spectrum
nd the foreground residual after remo val in c ylindrical k -space
s shown in Fig. 11 . In contrast with the results shown in Fig. 8 ,
he amplitude of the residual power increases significantly. For the 
CA case, the observ ation windo w is heavily contaminated by the
oregrounds while the contamination is less severe in GPR. Note that
his difference is not visible in the residual image cube as we show
n Fig 12 . The amplitude of the fluctuation of the residual is roughly
he same with no indications of the different levels of foreground
ontamination. 

The difference between PCA and GPR can be seen using the
ormalism in Section 4.2 . Comparing equations ( 10 ) and ( 12 ), we
an see that GPR uses the fitting result to obtain smooth kernels
f the H I and the foregrounds for cleaning. On the other hand,
CA directly operates on the total data covariance, which contains a
uctuation around zero in the non-diagonal elements because of the 

hermal noise. The fluctuation of the thermal noise leads to small-
cale oscillations in the residual co variance. F or comparison, we
alculate the covariance of the ‘estimated’ H I , i.e. the total image
ubtracted by the remo v ed fore ground and the noise component 

ˆ 
 H I = X d − X n − ˆ X fg . (13) 
MNRAS 524, 3724–3740 (2023) 
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Figure 13. Left-hand panel: The frequenc y–frequenc y co variance of the 
‘estimated’ H I image ˆ X H I obtained using the PCA cleaning. Right-hand 
panel: The same with the left-hand panel except the residual is obtained using 
the GPR cleaning. 

Figure 14. The frequenc y–frequenc y co variance of the residual foreground 
image ˆ X res obtained using the PCA cleaning (‘PCA res’) and the GPR 

cleaning (‘GPR res’) for the central row C ff c with f c = 220 MHz. The H I 

covariance is shown in blue solid line (‘H I ’) for reference. 
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Figure 15. The 1D H I power spectrum measurements with 360 h of 
integration time after residual foreground cleaning. The error bars on the 
horizontal axis denote the width of the k -bins and the error bars on the 
vertical axis denote the errors of the bandpower estimation. The results for 
GPR are shown in the shape of cross (‘GPR’) and the results for PCA are 
shown in the shape of squares (‘PCA’). The shaded region denotes the input 
H I power spectrum (‘Input H I ’). 
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Comparing the covariance of ˆ X 

PCA 
H I and ˆ X 

GPR 
H I as shown in Fig. 13 ,

e can see that while the amplitude of the covariance is roughly
he same and close to the true H I shown in the left-hand panel of
ig. 9 , the PCA case has large fluctuations across the frequency chan-
el, leading to the stripe-like features in the frequenc y–frequenc y
ovariance matrix. While this fluctuation is also present in GPR,
ts amplitude is much smaller and the dominating component is
till the diagonal H I co variance. F or PCA, however, this fluctuation
ntroduces a small-scale fluctuation that spills foreground power into
he observation window, resulting in severe signal loss at all scales
ncluding scales where the foreground power is originally already
ower than the H I as shown in the upper left-hand panel of Fig. 8 .
o further illustrate the small-scale contamination, we calculate the
ovariance matrices for the residual foreground ˆ X res for PCA and
PR and compare them with the H I covariance as shown in Fig. 14 .
oth methods have clear foreground residual structure o v er large

requency scales. Ho we ver, the PCA residual has a much larger
mall-scale fluctuation with the amplitude larger than the diagonal
 I . The small-scale fluctuation results in severe contamination in
igh k � modes inside the observation window as shown in Fig. 11 . 
When comparing PCA and GPR, we assume full knowledge of the

rue H I , thermal noise, and foregrounds in our simulation to perform
uality checks on the foreground removal methods. It is important
o note that the fore ground remo val and power spectrum estimation
outines do not rely on knowing the underlying components. The
ore ground remo val is performed blindly and the H I power spectrum
s estimated by subtracting a thermal noise covariance as discussed in
NRAS 524, 3724–3740 (2023) 
ppendix A . We choose logarithmically distributed k-bins from 0.01
o 1 Mpc −1 with � [log( k /Mpc −1 )] = 0.25 and show the resulting 1D
ower spectrum for 360 h of integration time for both PCA and GPR
n Fig. 15 . Throughout this paper, the error bars on the 1D power
pectrum are calculated by calculating the sampling variance of the
D powers that fall into the 1D k -bins. The resulting measurement
rrors on the power spectrum are 

P ( k i ) = 

std [ P ( k ∈ k i )] √ 

N 

i 
modes 

, (14) 

here std[ P ( k ∈ k i )] denotes the standard deviation among the 3D
owers that belongs in the i th k -bin and N 

i 
modes denotes the number

f k -points in the i th k -bin. 
As shown in Fig. 15 , the foreground contamination leads to

 v erestimation for the GPR case from k ∼ 0.03–0 . 3 Mpc −1 . The
evere contamination of foregrounds results in signal loss on most
cales for the PCA case. In conclusion, we find that in the presence
f high thermal noise, PCA induces foreground contamination into
he observ ation windo w due to the small-scale fluctuation in the data
ovariance matrix. On the other hand, GPR does not introduce sizable
oreground leakage into the observation window and mitigates the
oregrounds to enable the measurements of the H I power spectrum
t large scales. 

Using GPR, we present our forecasts for the H I power spectrum
easurement for SKA-Low observations of the EoR0 field assuming

60, 480, and 600 h of integration time in Fig. 16 . The power
pectrum results converge to the input H I as the noise level decreases.
or 360 h of integration time, all bandpower measurements are within

he 1 σ error of the input H I with the bandpower at k ∼ 0 . 05 Mpc −1 

lightly o v erestimated due to fore ground contamination. While not
hown, we also tested that decreasing the integration time to 250 h
esults in the bias exceeding the 1 σ error. We conclude that the
ntegration time of one field needs to be greater than 250 h to enable
nbiased measurements of the H I power spectrum. In the case of
80 h, the H I power spectrum can be measured with ∼3 signal-to-
oise ratio (SNR) from k ∼ 0.03 to 0 . 3 Mpc −1 . Further increasing
he integration time to 600 h, we find that the bias further decreases
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Figure 16. Top panel: The 1D H I power spectrum measurements with 360, 
480, and 600 h of integration time after GPR foreground cleaning. The error 
bars on the horizontal axis denote the width of the k -bins and the error bars on 
the vertical axis denote the errors of the bandpower estimation. The shaded 
region denotes the input H I power spectrum (‘Input H I ’). The centres of the 
k-bins for the 360 and 600 h cases are misplaced by 5 per cent in k -direction 
for better presentation. Central panel: The fractional difference between the 
estimated H I power spectrum and the underlying H I input � P = ( ̂  P H I −
P H I ) /P H I . The black dotted line denotes � P = 0. Bottom panel: The signal- 
to-noise ratio (SNR) of the measurements. The black dotted line denotes 
SNR = 1. 
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Figure 17. The H I power spectrum measured from the residual foreground 
remo v ed image cube as described in Section 5.2 for different levels of 
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axis denote the width of the k -bins and the error bars on the vertical axis 
denote the errors of the bandpower estimation. The shaded region denotes the 
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for better presentation. 

a  

e  

s
w  

s  

l  

s
b

 

s
t
c  

l  

s  

r
t  

i  

s
c  

i  

m  

t
t  

c  

<  

p

6

I  

H  

a
s
a  

r

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/524/3/3724/7224014 by guest on 05 August 2023
nd the error bar scales as 
√ 

t int , suggesting that the thermal noise is
he dominant source of the measurement errors. 

.2 Impact of systematics on for egr ound r emo v al 

nterferometric observations contain various systematics, such as 
FI, gain fluctuations, calibration errors, etc. These systematics 

mpact the H I power spectrum measurement in various ways. For
xample, the data loss coming from RFI requires inpainting or 
o v el F ourier transform methods which leav es residuals in the
ower spectrum (Trott et al. 2016 ; Pagano et al. 2022 ). Imperfect
alibrations leaks the foreground power into the observation window 

Barry et al. 2016 ). Gain and phase errors contribute to the foreground
ontamination in the H I power spectrum (Mazumder et al. 2022 ). As
 proof of concept, we are aiming to give a qualitative assessment of
he impact of the systematics. Following equation ( 2 ), we set std( δe f )
o 10 −5 , 5 × 10 −5 , and 10 −4 to check the resulting power spectrum
stimation. All fore ground remo v al and po wer spectrum estimation
teps are kept the same as Section 5.1 and we choose the integration
ime to be 600 h to isolate the impact of the systematics. Previous
iterature suggest that < 10 −5 level of systematic error is needed for
he measurement (Barry et al. 2016 ; Mazumder et al. 2022 ). Note
hat, ho we ver, as we simulate the systematics as a random error on
he true signal, it acts as a small frequency-scale fluctuation on the
esidual foregrounds which can be partially mitigated. Therefore, 
sing methods such as GPR, we can still reco v er the observation
indow with the level of systematics higher than 10 −5 . 
In Fig. 17 , we show the H I power spectrum measured from the k � 
 0.3 k ⊥ 

window with the signal perturbed by the 10 −5 , 5 × 10 −5 ,
nd 10 −4 systematic error. For a very small level of 10 −5 systematic
ffects, the GPR fore ground remo val method is unaffected by the
ystematics and remo v es the residual foreground sufficiently. As 
e increase the level of systematics to 5 × 10 −5 , the foreground

tarts to leak into the observ ation windo w especially at small scales,
eading to o v erestimation of the H I power spectrum. Increasing the
ystematics to 10 −4 the contamination becomes severe and leads to 
iased estimation of the H I power spectrum at all scales. 
Similar to Section 5.1 , we can use the covariance matrices to

how that the systematic effects break the frequency smoothness of 
he foreground, leading to biased foreground removal results. The 
ovariance matrices of the ‘estimated’ H I in presence of different
evels of systematics are shown in Fig. 18 . When no significant
ystematic effects are included as shown in the top panels, the
econstructed H I covariance matrix is largely diagonal, suggesting 
hat no sizeable foreground leakage is present. Ho we ver, as we
ncrease the level of systematics to 5 × 10 −5 , the small-scale stripes
imilar to the ones discussed in Section 5.1 appear. For the 5 × 10 −5 

ase, we can see that the diagonal component is still dominant and
ndeed as shown in Fig. 17 the H I power spectrum is still accurately

easured. Increasing the level of systematics to 10 −4 , we can see that
he covariance is completely dominated by the contamination from 

he systematics, leaving no observ ation windo w for the H I at all. In
onclusion, the level of residual systematics needs to be contained at
 10 −4 and ideally � 5 × 10 −5 for accurate measurement of the H I

ower spectrum. 

 C O N C L U S I O N S  

n this paper, we present the first proof of concept for measuring the
 I power spectrum at 5 < z < 6 using SKA-Low. We have presented

n end-to-end simulation and data analysis pipeline, generating the 
ky signal, the interferometric observation, performing the imaging 
nd the power spectrum estimation. We use the pipeline to generate
ealistic simulations consistent with deep observations of the EoR0 
MNRAS 524, 3724–3740 (2023) 
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Figure 18. Top left-hand panel: The frequenc y–frequenc y co variance matrix 
C ˆ X GPR 

H I 
of the ‘estimated’ H I image ˆ X H I obtained using the GPR cleaning 

with no systematics. Top right-hand panel: The same covariance matrix with 
the left-hand panel except the simulation includes systematic effects with 
10 −5 fluctuations. Bottom left-hand panel: The same covariance matrix with 
5 × 10 −5 systematic effects. Bottom right-hand panel: The same covariance 
matrix with 10 −4 systematic effects. 
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eld using SKA-Low and test foreground mitigation methods to
resent our forecasts for future SKA-Low observations. 
We start by simulating the input sky signal including the H I

nd the foregrounds. Galactic foregrounds are generated based on
emplates from observed maps of the radio sky and extrapolated
o the frequency range of our interests. We use a realistic radio
ource catalogue to simulate the extragalactic radio sources. The H I

lustering signal is generated by using large-volume, realistic dark
atter halo simulations with an H I HOD inpainting. Generating the

ky signal with different levels of foreground residuals compared
ith the underlying H I signal, we find that: 

(i) Assuming a realistic amplitude for foreground residuals after
ky model subtraction to be at ∼80 mJy in the image cube,
he foregrounds reside mainly at low k ‖ � 0 . 1 Mpc −1 , leaving an
bserv ation windo w at high k � for estimation of the H I power
pectrum. Residual foregrounds need to be subtracted using blind
ource separation methods to enable the measurement of the H I

ower spectrum at large cosmological scales k < 0 . 1 Mpc −1 . 
(ii) Testing PCA and GPR to remo v e the residual foregrounds, we

nd that if bright sources with flux density > 10 mJy are subtracted
ith the rest of the sources being modelled to 90 per cent accuracy,

emoving the residual foreground can enable detections of the H I

ower spectrum at large scales. The foreground wedge is consistent
ith the intrinsic foreground power coupled with the instrument

hromaticity, with the wedge corresponding to the primary beam
ize. 
NRAS 524, 3724–3740 (2023) 

p

(iii) Assuming no contribution from thermal noise and systematic
ffects, the empirical data covariance matrix calculated from the
mage cube reflects the true underlying covariance of the sky
ignal. Therefore, PCA and GPR can both sufficiently remo v e the
oregrounds with trivial differences between these two methods. 

(iv) From the image cube with (1 . 5 de g) 2 sk y area within the
rimary beam FoV, we can measure the H I power spectrum from
 ∼ 0 . 02 Mpc −1 to k ∼ 0 . 3 Mpc −1 . 

The results suggest that measuring the H I power spectrum at 5 <
 < 6 for cosmological analysis using SKA-Low is viable and will
pen up a new window for cosmology in the near future. Using wide-
eld imaging and/or mosaicing, we can probe linear cosmological
cales k ∼ 0 . 01 Mpc −1 to quasi-linear scales k ∼ 0 . 3 Mpc −1 . The
ide range of clustering scales probed can be used to constrain

osmology (Pourtsidou 2023 ). 
The detection of the H I signal at large cosmological scales de-

ends heavily on the robustness of foreground mitigation strategies.
imulating different level of depths for the observation, we find that:

(i) In general, future observations using SKA-Low contain a high
evel of thermal noise fluctuations. The effects of the thermal noise
n the data covariance are visible even for deep observations > 250 h.
(ii) The thermal noise fluctuations in the empirical data covariance
atrix make residual foreground removal more difficult. Thermal

oise creates numerical features on the fore ground-remo v ed image
ube on small frequency scales, breaking the spectral smoothness of
he data covariance. 

(iii) As a result of the spectral fluctuations, foreground removal
ethods induce numerical artefacts on small frequency scales. The

umerical artefacts leak power into the observation window which
eads to significant bias on the H I power spectrum estimation. Even
cales k ‖ > 0 . 1 Mpc −1 which can be probed with just foreground
 v oidance can be contaminated. 

(iv) Comparing PCA and GPR, we find that GPR performs much
etter in the presence of thermal noise. The key factor is that GPR uses
mooth kernels to model the signal and apply the fitted kernels instead
f the actual data covariance matrix for the foreground removal.
or observation with integration time > 250 h, GPR can sufficiently
emo v e the foregrounds and allow unbiased estimation of the H I

ower spectrum for k � > 0.3 k ⊥ 

regions. 
(v) For the integration time of 600 h, SKA-Low will be able to
easure the H I power spectrum in the 5 < z < 6 bin from 0.03 to
 . 3 Mpc −1 with a SNR of ∼5 across the scales. 

In conclusion, the viability of detecting the cosmological H I power
pectrum at 5 < z < 6 using SKA-Low depends on deep observations
o preserve the spectral smoothness of the data covariance to facilitate
ufficient foreground removal. It will allow accurate measurement
f the H I power spectrum, on the premise that deep fields with
f fecti v e inte gration time � 300 h are observed. Our results not only
olidify the science case of measuring post-reionization cosmology
ith SKA-Low, but also provides insights into survey design for
aximizing the scientific output of the instrument. 
Finally, we provide a qualitative study into the systematic effects

y introducing spectral fluctuations that can originate from bandpass
nstabilities and calibration errors. Testing the data analysis pipeline
or different levels of systematics we find that: 

(i) Systematic effects such as bandpass instabilities will introduce
uctuations in the small frequency interval, breaking the spectral
moothness of the foregrounds. It leads to spillo v er of the foreground
ower into the observation window outside the foreground wedge. 
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(ii) In the image cube averaged across all timesteps, the ef fecti ve
ystematic errors across the frequency channels need to be small to 
uppress the contamination. If the level of the systematics is abo v e
0 −4 , the power spectrum measurement will be biased across all 
cales of interests. 

(iii) For systematic errors � 5 × 10 −5 , we find that using GPR
o perform foreground removal gives unbiased estimation of the H I 

ower spectrum. 

The requirements on containing the systematic errors below 1 
er cent level again highlight the need for deep observations with 
ood understanding of the sky model and the instrument. With 
he unprecedented power of the SKA-Low array, we expect that 
uture surv e ys will be sufficiently systematic-mitigated to enable 
he detection of the H I power spectrum for the high redshift, post-
eionization Universe. 

Our work strongly fa v ours using the future SKA-Low data for
 I science after cosmic reionization. We have demonstrated that 

he H I power spectrum can be measured with statistical significance 
sing observational depth that can easily be reached using SKA-Low. 
urthermore, we have showcased residual foreground removal using 
PR that suppresses the foreground wedge to probe cosmological 

cales, which is robust in the presence of a reasonable level of
ystematic effects. The tools presented in this paper can be further
sed for more realistic simulations of SKA-Low observations to 
evelop the data analysis pipeline towards future detections. 
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PPENDI X  A :  QUADRATI C  ESTI MATOR  F O R  

OWER  SPECTRUM  ESTIMATION  

e present the quadratic estimator for the power spectrum estimation
sed in this paper, following equations ( 3 ) and ( 4 ). The aim of using
he quadratic estimator formalism is to incorporate renormalization
f the estimator after the operations of foreground cleaning and
requency tapering. It also performs bias correction to remo v e the
hermal noise power spectrum and potentially some bias from the
PR cleaning. Our formalism follows closely the work of Kern &
iu ( 2021 ) and Chen et al. ( 2023 ). Note that we are not aiming to
onstruct the covariance for the total data vector with the number of
lements being the number of pixels times the number of frequency
hannels N pix × N f . The resulting covariance matrix of size ( N pix ×
 f ) 2 is too large and therefore not of our interests for a preliminary

tudy. Instead, we construct the estimator for each pixel across the
 � direction, so that we are only dealing with one pixel at a time with
 covariance matrix of size N f × N f . 

In this section, we use i to denote the i th pixel in the Fourier
ransformed image cube. For each pixel, the Fourier density gives
 bandpower vector ( ̂ p 

i 
T ) α , with the αth element being the power

pectrum at ( k i ⊥ 

, k α‖ ). The quadratic estimator can be written as 

 ̂

 p 

i 
T ) α = 

(
˜ d 

i 
)† 

E 

i 
α

˜ d 

i − ˆ b α, (A1) 

here E 

i 
α and ˆ b α are the estimation matrix and bias correction

espectively. Here, ˜ d 

i is the data vector along the frequency direction
or the i th pixel. We collapse the Fourier transform along the
ransverse directions and the PSF deconvolution in this data vector
o that for the j th frequency channel 

( ̃ d 

i ) j = 

∫ 

d 2 x ⊥ 

V 

exp 
[ − i k i ⊥ 

· x ⊥ 

]
×

(
λ2 

2k B 

)2 I ( x ⊥ 

, x 
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‖ ) 
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2 ( x ⊥ 

, x 
j 

‖ ) 

/˜ PSF ( k i ⊥ 

, f c ) . 

(A2) 

The estimation matrix E 

i 
α can be written as 

 E 

i 
α) α = 

∑ 

β

M αβR 

† T 

† F 

† w βF T R = 

∑ 

β

M αβR 

† T 

† C ,βTR , (A3) 

here M αβ is the renormalization matrix, T is the frequency taper,
 β is the selection matrix with all elements being zero except the βth
iagonal element and F is the 1D discrete Fourier transform kernel
long the frequency direction. C , β = F 

† w βF is the Fourier operator.
 is the fore ground remo val operation. F or PCA as described in

quation ( 9 ), the removal matrix is R = I − AA 

T where I is the
dentity matrix. For GPR as described in equation ( 12 ), the removal

atrix is R = I − K fg 

(
K fg + K n + K H I 

)−1 
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Figure A1. Left-hand panel: The cylindrical power spectrum of the thermal 
noise calculated using tr [ NE 

d 
α] for the case of 360 h of integration time. Right- 

hand panel: The cylindrical power spectrum of the GPR bias correction using 
tr [ K fg E 

d 
α] for the case of 360 h of integration time. 
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Figure B1. The primary beam of the instrument around the pointing centre 
in our simulation. The image size is (20 deg) 2 . The beam is simulated at the 
central frequency 220 MHz and averaged over all time steps for one station. 

Figure B2. The delay power spectra of the visibility data in our simulation. 
Left-hand panel: The delay power spectrum of the full foreground signal. 
Central panel: The residual foregrounds. Right-hand panel: the H I signal. The 
| u | and η range correspond roughly to the k -range of the cylindrical power 
spectra shown in the paper. The black dashed line denotes the foreground 
wedge. 
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The renormalization matrix can be calculated by taking the 
xpectation value of equation ( A1 ) 

 ( ̂ p 

i 
T ) α〉 = 

∑ 

β

tr 
[
C ,βE 

i 
α

]
( p 

i 
T ) β + tr 

[(
N + C fg 

)
E 

d 
α

] − ˆ b d α. (A4) 

ollo wing K ern & Liu ( 2021 ), we can form the quantity 

 αβ = tr 
[
R 

† T 

† C ,αT RC ,β

]
, (A5) 

nd choose M = H 

−1/2 (Tegmark, Hamilton & Xu 2002 ) to renor-
alize the estimator. 
In order to remo v e the bias in the power spectrum estimation from

he foregrounds and the thermal noise, from equation ( A4 ) we can
hoose 

ˆ 
 

d 
α = tr 

[(
N + C fg 

)
E 

d 
α

]
(A6) 

o remo v e the bias. In reality though, we do not know the underlying
hermal noise and the foregrounds. In order to remo v e the noise bias,
e calculate N by simulating 1000 realizations of the thermal noise 
sing the same σ N . Here, σ N is assumed to be a known quantity,
hich is the case for our simulation. In real observations, a good

stimation of σ N can be obtained by calculating the fluctuations 
f the Stokes V visibility data on long baselines (e.g. Paul et al.
021 ). For each realization, we pass the visibility data to the same
maging pipeline to generate the image cubes. For each pixel in 
he image cube, we then calculate the average frequency–frequency 
orrelation across all realizations to obtain an estimation of N . We
in the resulting noise bias tr [ NE 

d 
α] into cylindrical k -space and show

he thermal noise power spectrum in Fig. A1 for the case with 360 h
f integration time. The vertical stripes follow the baseline densities 
n different scales. 
The covariance of the foregrounds can be extracted from the 

PR fitted kernel K fg . Note that, since we work on the frequency–
requenc y co variance, K fg E 

d 
α is the same for each pixel, and therefore

here is no k ⊥ 

dependence of the bias term as shown in the right-hand
anel of Fig. A1 . We note that this is not a result of GPR but the
esult of our simplified quadratic estimator formalism. Nevertheless, 
t gives us a good estimation of the order of magnitude of the GPR
ias correction. As one can see, the correction is at least two orders of
agnitude smaller than the H I signal shown in Fig. 15 , and therefore

his bias correction is negligible in our case. 
Finally, we comment on the fact that in the power spectrum 

stimation, the 2D Fourier transform shown in equation ( A2 ) is
pplied to the data before the GPR removal R , while the GPR
tting for the kernels are done on the original data vector before
he transform. These two operations are commutable, as the GPR 

emoval only operates along the frequency direction, independent of 
he 2D Fourier transform on the transverse plane. We verified that
here is no visible difference in the resulting power spectrum if these
wo operations are swapped. Performing the 2D Fourier transform 

rst allows us to only construct the estimator one pixel at a time,
ro viding massiv e speed-up. 

PPENDI X  B:  C AV E AT S  O F  T H E  SI MULATIO NS  

e discuss the limitations of our simulation settings. Specifically, we 
uantify the effects of limited (10.5 de g) 2 sk y area for the input signal,
oupled with the instrument beam which gets cut off at 1 per cent at
he 10.5 deg angular extent. Furthermore, we discuss the Gaussian 
alibration errors simulated in terms of its structure in frequency. 

The primary beam of the instrument is shown in Fig. B1 . Around
he centre (10 . 5 deg ) 2 region, the beam only goes down to 10 −2 ,
ntroducing sharp features in the simulation. We first note that, as
iscussed in Section 4 , the image power spectrum does not show
 clear wedge structure due to the small image size. To investigate
he chromatic structure of the data, we instead calculate the delay
ower spectrum directly from visibility and present it in Fig. B2 . As
hown in the top panel, the full foreground delay power spectrum
MNRAS 524, 3724–3740 (2023) 
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igure B3. The delay power spectra of the visibility data after applying gain
rrors. Left-hand panel: The delay power spectrum of the residual foreground
ignal with no error applied. Central panel: The residual foregrounds with
aussian errors as shown in the top and the delay power spectrum shown in

he bottom. Right-hand panel: The residual foregrounds with sine errors. 

hows a clear wedge structure. Abo v e the wedge, the effect of sky
ignal getting cut off at 10 . 5 deg can be seen as the diamond-shape
tructures. Assuming the bright sources are remo v ed as described
n Section 2 , we calculate the delay power spectrum of the residual
oregrounds shown in the centre panel of Fig. B2 . The chromatic
eatures disappear as there is no bright emission coming from the
eam sidelobes. Finally, we also present the delay power spectrum
f the H I signal in Fig. B2 to show that the sky cut-off does not affect
he H I simulation. 
NRAS 524, 3724–3740 (2023) 

Published by Oxford University Press on behalf of Royal Astronomical Society. This is an 
( https://cr eativecommons.or g/licenses/by/4.0/), which permits unrestricted reus
The calibration errors for SKA-Low observations are likely
mooth in frequency (Byrne et al. 2019 ), which are not the Gaussian
andom fluctuations we use. Using the delay power spectra, we then
nvestigate the assumption of the Gaussian gain errors described in
ection 3 . For comparison, we simulate another type of error that
ollows the sine function with a period of 15 frequency channels.
he errors are then rescaled so that the standard deviation across

he channels is 10 −4 . The sine errors are then compared against the
aussian errors as shown in Fig. B3 . 
For the sine error case shown in the right-hand panel, the

oreground wedge gets lifted into higher delay. Comparing to the
aussian error case in the central panel, the leakage still concen-

rates around relatively low delay. This means that the foreground
ontamination can be easier to remo v e for GPR, as its structure has
arge frequency intervals. In the Gaussian case, ho we ver, the scatter
f the foreground power into higher delay is visible across all scales.
he foreground contamination is at the smallest frequency interval,
hich is difficult to distinguish from the H I signal. Therefore, we

onclude that the conclusions reached in Section 5.2 are robust, as
he foreground contamination is not an optimistic case. 

We emphasize that the smooth frequency structures of the gain
rrors pose other challenges in sky modelling and continuum sub-
raction, which are beyond the scope of this paper and left for future
ork. 
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