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Abstract The principle of virtual power is used

derive a microforce balance for a second-gradient

phase-field theory. In conjunction with constitutive

relations consistent with a free-energy imbalance, this

balance yields a broad generalization of the Swift–

Hohenberg equation.When the phase field is identified

with the volume fraction of a conserved constituent, a

suitably augmented version of the free-energy imbal-

ance yields constitutive relations which, in conjunc-

tion with the microforce balance and the constituent

content balance, delivers a broad generalization of the

phase-field-crystal equation. Thermodynamically con-

sistent boundary conditions for situations in which the

interface between the system and its environment is

structureless and cannot support constituent transport

are also developed, as are energy decay relations that

ensue naturally from the thermodynamic structure of

the theory.

Keywords Continuum theory � Order parameter �
Microstructural fields

Mathematics Subject Classification 74A30 �
82C26 � 35B36

1 Introduction

The Swift–Hohenberg and phase-field-crystal equa-

tions describe a multitude of processes involving

spatiotemporal pattern formation. Swift and Hohen-

berg [1] derived the first of these equations through a

weakly nonlinear approximation of the infinite Prandtl

number version of the Boussinesq equations about the

Rayleigh number corresponding to the onset of

convective instabilitiies. Their equation can be for-

mulated as a relaxation, or ‘‘gradient flow’’, law for an

energy functional that depends on a scalar order

parameter along with its gradient and Laplacian. The

resulting evolution equation is parabolic and involves

a fourth-order spatial operator. As Burke and Kno-

bloch [2] explain, a distinguishing feature of the

Swift–Hohenberg equation that distinguishes it from

other pattern forming equations, like the Kuramoto–

Sivashinsky equation, but which stem from small

wave-number expansions is that it exhibits a finite
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wavenumber instability at onset and, thus, admits

stable spatially periodic equilibria. For this reason, it

has been used to study disclinations (Golovin and

Nepomnyashchy [3]), defects (Galla and Moro [4]),

grain boundaries (Boyer and Viñals [5]), oscillons and

other patterns in vibrated granular media (Crawford

and Riecke [6]), and radiation-induced microstructural

features in immiscible alloys (Simone et al. [7]).

Starting from the classical density functional theory

for crystallization, as described by Ramakrishnan and

Yussouff [8], Elder and Grant [9] derived the phase-

field-crystal theory by approximation for the two-

particle correlation function of the melt that enters the

free-energy density of the crystal relative (measured

relative to the homogeneous melt). The resulting

energy functional is identical to that underpinning the

Swift–Hohenberg equation. The salient order param-

eter is, however, a conserved quantity—the atomic

number density. The phase-field-crystal equation is

thus the conserved counterpart of the Swift–Hohen-

berg equation. This relationship is completely analo-

gous to that between the Cahn–Hilliard equation and

the Allen–Cahn equation. The spatial operator enter-

ing this parabolic equation is consequently of sixth-

order. Apart from modeling crystal growth and

dissolution, the phase-field-crystal equation has been

used to study a broad spectrum of phenomena,

including plasticity (Stefanovic et al. [10]), pattern

formation in liquid crystals (Löwen [11]), epitaxial

growth (Gránásy, et al. [12], Yua et al. [13]), glass

formation (Berry and Grant [14]), two-dimensional

materials like graphene (Seymour and Provatas [15],

grain boundary motion, grain rotation, and dislocation

reactions in body-centered-cubic bicrystals (Ya-

manaka et al. [16]), and plastic flow due to dislocation

motion (Skaugen et al. [17]). Additionally, as Provatas

et al. [18] explain, the phase-field-crystal equation also

provides a natural basis for developing multiscale

simulation methods.

Our goal in this paper is to develop a broadly

applicable thermodynamically consistent framework

that subsumes the Swift–Hohenberg and phase-field-

crystal equations, accompanied by suitable boundary

conditions and associated relations that guarantee that

appropriate measures of total energy be nonincreasing

along solution paths. To achieve this, we exploit and

extend an approach used by Fried and Gurtin [19] to

derive generalizations of the scalar Ginzburg–Landau

equation and later applied by Gurtin [20] to derive

generalized versions of the Cahn–Hilliard equation. In

that approach, the phase field is a basic kinematical

descriptor and power expenditures associated with its

temporal variations, along with those of its spatial

gradient, are ascribed to a system of microforces

subject to their own balance. However, because the

spatial operators entering the Swift–Hohenberg and

phase-field-crystal equations are respectively two

orders higher than those entering Ginzberg–Landau

and Cahn–Hilliard equations, wemust also account for

power expenditures associated with temporal varia-

tions of the second spatial gradient of the phase field.

This leads to a second-gradient phase-field theory.

Instead of the pivotal microforce balance of Fried

and Gurtin [19] and Gurtin [20], we emulate Gurtin

[21] and base our theory on a power balance. This

fundamental postulate requires that the instantaneous

power expended by all agencies external to any part of

the region within which the phase field is defined be

equal to the instantaneous power expended by all

internal actions within that part. In line with the

presence of the second gradient of the phase field, our

theory includes a hypermicrostress and a hypermicro-

traction above and beyond the microstress, its associ-

ated microtraction, and the internal and external

microforce densities that enter the conventional first-

gradient phase-field theory. We also relax the standard

requirement that the microtraction distributed on a

surface separating two parts depends only on the

orientation of that surface. As consequences of the

principle of virtual-power, we obtain a generalization

of the pointwise microforce balance from the conven-

tional first-gradient phase-field theory together with

representations for the microtraction and the hyper-

microtraction. The microstress and hypermicrostress

both appear in the generalized microforce balance.

Whereas the microtraction depends on surface orien-

tation and surface curvature, the hypermicrotraction

depends only on surface orientiation, albeit quadrat-

ically. As corollaries of the generalized pointwise

microforce balance and the representations for the

microtraction and hypermicrotraction, we derive

partwise statements of microforce balance and hyper-

microforce balance.

In our treatment of energetics, we follow the lead of

Fried and Gurtin [19] and Gurtin [20] and confine

attention to isothermal processes, with the conse-

quence that the first and second laws of thermody-

namics combine to yield a free-energy imbalance.
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Using the pointwise version of that imbalance, we find

the largest class of smooth, thermodynamically

admissible constitutive relations in which the free-

energy density, internal microforce density, micros-

tress, and hypermicrostress serve as dependent con-

stitutive variables and the phase field along with its

first and second spatial gradients and its temporal rate

serve as independent constitutive variables. Augment-

ing our microforce balance with those constitutive

relations delivers a broad generalization of the Swift–

Hohenberg equation. For equations of phase-field-

crystal type, the phase field is identified as the volume

fraction of a conserved constituent governed by a

transport equation expressing the balance of con-

stituent content. Using a suitably modified version of

the free-energy inequality, we find the largest class of

smooth, thermodynamically admissible constitutive

relations in which the list of dependent variables

considered previously is augmented to include the

constituent flux while the corresponding list of inde-

pendent constitutive variables is augmented to include

the chemical potential and its spatial gradient but no

longer includes the temporal rate of the phase field.

The constitutively augmented microforce balance then

determines the chemical potential in terms of the

phase field and its first, second, third, and fourth spatial

gradients. Augmenting the constituent content balance

with the constitutive relation for the constituent flux

and the expression for the chemical potential then

yields a broad generalization of the phase-field-crystal

equation.

To derive thermodynamically consistent boundary

conditions for our equations, we adapt an approach

introduced by Fried and Gurtin [27] and subsequently

extended by Duda et al. [28]. We restrict attention to

situations where the boundary is unstructured and

cannot support constituent transport. As a starting

point, we formulate versions of microforce and

hypermicroforce balances and the free-energy imbal-

ance for an arbitrary boundary pillbox. For simplicity,

we rule out coupling effects and dissipative interac-

tions with the environment. This leads to what Fried

and Gurtin [27] call ‘zero-dissipation conditions’. In

the absence of constituent transport, we find that it is

generally permissible to assign the microtraction and

hypermicrotraction on the same portion of the bound-

ary. When species transport is present, we find that it is

additionally permissible to assign either the con-

stituent flow or the chemical potential across a portion

of the boundary. The thermodynamic structure of our

theory ensures the existence of energy decay relations

for our generalized Swift–Hohenberg and phase-field-

crystal equations for this class of boundary conditions.

The remainder of this paper is organized as follows:

In Sect. 2, we develop expressions for internal and

external expenditures that account explicitly for second

gradient effects and state the associated power balance.

In Sect. 3, we introduce and obtain the consequences of

the principle of virtual-power. In Sect. 4, we describe

interactions between the systemwith state characterized

by the phase field and its surroundings. In Sect. 5, we

pose the free-energy imbalance for situations where the

phase field is not a conserved order parameter and use

that imbalance to determine thermodynamically admis-

sible constitutive relations for the microstress, hyper-

microstress, and internal microforce density in terms of

the phase field, its first and second spatial gradients, and

its temporal rate. In Sect. 6, we augment the pointwise

microforce balance with the constitutive relations

obtained in Sect. 5 to arrive at our generalization of

the Swift–Hohenberg equation. In Sects. 7 and 8, we

consider the consequences of identifying the phase field

with the volume fraction of a single, independent,

mobile constituent, augment our theory to account for

the transport effects, use the free-energy imbalance to

determine thermodynamically admissible constitutive

relations for the microstress, hypermicrostress, internal

microforce density, and constituent flux, and arrive our

generalization of the phase-field-crystal equation. In

Sect. 9, we develop thermodynamically consistent

boundary conditions that are compatible with our

framework. In Sect. 10, we establish energy-decay

relations for our generalized versions of the Swift–

Hohenberg and phase-field-crystal equations. Finally, in

Sect. 11, we summarize and discuss our primary

findings.

2 Power expenditures

We consider a medium described by a phase field u
defined on a fixed open region B of three-dimensional

point space and some open time-interval. Our aim in

this section is to generalize the first-gradient phase-

field theory developed by Fried and Gurtin [19] to

account explicitly for effects associated with the

second gradient grad 2u of u.
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2.1 Internal power

In the first-gradient phase-field theory, the internal

power of a part P of B has the formZ

P

ð�p _uþ n � grad _uÞ dv; ð1Þ

where p and n are the internal microforce density and

the microstress. To incorporate second-gradient

effects, we introduce a second-order tensor, the

hypermicrostress R, with associated hypermicrostress

power R � grad 2 _u, and replace (1) by

W intðPÞ ¼
Z

P

ð�p _uþ n � grad _uþ R � grad 2 _uÞ dv:

ð2Þ

Since grad 2 _u is symmetric, R splits into a sum of

active and reactive components,

R ¼ Ra þ Rr;

Ra¼ 1
2
ðRþ R>Þ;

Rr¼ 1
2
ðR� R>Þ;

9>=
>; ð3Þ

with Rr being powerless. Whereas Ra can be deter-

mined constitutively, Rr is an unknown field which,

like the pressure of an incompressible material, must

be determined on a problem-by-problem basis.

2.2 External power

In the first gradient phase-field theory, the external

counterpart of (1) has the formZ

S

n � n _u daþ
Z

P

c _u dv; ð4Þ

where S ¼ oP is the boundary of P, n is the outward

unit normal on S, and c is the external microforce

density. Consistent with the presence of the hypermi-

crostress power R � grad 2 _u in (1), we replace the

surface microtraction n � n by a general surface

microtraction nS which, among other things, need

not depend linearly on n. Moreover, recognizing that

only the scalar normal component

o _u
on

¼ grad _u � n ð5Þ

of grad _u is independent of _u on S, we introduce a

surface hypermicrotraction rS and replace (4) by

WextðPÞ ¼
Z

S

�
nS _uþ rS

o _u
on

�
daþ

Z

P

c _u dv: ð6Þ

2.3 Balance of power

The central hypothesis of our theory is the assertion

that the instantaneous internal and external power

expenditures are balanced in every process. Precisely,

we stipulate that the equality

WextðPÞ ¼ W intðPÞ ð7Þ

holds at any time and for any choice ofP. Although Rr

does not enter the expression (3) for W intðPÞ, we
refrain from assuming thatR is symmetric. Instead, we

demonstrate that the final results of our analysis, which

include a pointwise statement of microforce balance

and representations for the microtraction nS and the

hypermicrotraction rS, involve only Ra.

3 Principle of virtual-power

To formulate the principle of virtual-power, we

assume that, at some arbitrarily chosen, but fixed,

time, the internal microforce density p, microstress n,

hypermicrostress R, external microforce density c,
surface microtraction nS, and surface hypermicrotrac-

tion rS are known, but not necessarily independent,

fields and consider _u as a virtual velocity v that can be
specified independently of any actual process. Then,

defining associated reckonings,

V intðP; vÞ ¼
Z

P

ð�pvþ n � grad vþ R � grad 2vÞ dv

ð8Þ

and

VextðP; vÞ ¼
Z

S

�
nSvþ rS

ov
on

�
daþ

Z

P

cv dv; ð9Þ

of the virtual internal and external power expenditures

of a part P of B, we emulate Gurtin [21] by imposing

the requirement that p, n, R, c, nS, and rS be consistent

with the principle of virtual-power
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VextðP; vÞ ¼ V intðP; vÞ ð10Þ

for all choices of P and v. Granted that the collection

of all virtual velocities contains all actual, or realiz-

able, velocities, since V intðP; _uÞ ¼ W intðPÞ and

VextðP; _uÞ ¼ WextðPÞ the balance of power (7) is a

consequence of the principle (10) of virtual-power for

v ¼ _u. Although it is certainly possible to build a

theory on the basis of (10) without having first

introduced W intðPÞ and WextðPÞ, the approach taken

in Sect. 2 affords the opportunity to describe precisely

the power-conjugate pairings that enter the internal

and external power expenditures (2) and (6).

The seminal treatments of the principle of virtual

power for elastic materials with couple stress and

concomitant constitutive dependence on the second

gradient of the deformation were advanced by Toupin

[22, 23] and Germain [24]. For additional perspective

on the principle, see Antman and Osborn [25] and Del

Piero [26].

3.1 Alternative form of the virtual power balance

To extract useful information from the principle of

virtual power, we recast the virtual internal power (8)

in a more useful form. Using the identities

n � grad v ¼ div ðvnÞ � vdiv n;

R � grad 2v ¼ div ðR>grad v� vdivRÞ

þ vdiv divR;

9>>=
>>;

ð11Þ

and the divergence theorem, we first obtain an

intermediate alternative representation for the internal

power:

V intðP; vÞ ¼
Z

S

ððn� divRÞ � nvþ Rn � grad vÞ da

�
Z

P

ðdiv ðn� divRÞ þ pÞv dv: ð12Þ

As a consequence of the decomposition

grad v ¼ gradSvþ
ov
on

n ð13Þ

of grad v on S and the identity

Rn � gradSv ¼ PRn � gradSv; ð14Þ

where

P ¼ 1� n� n ð15Þ

is the perpendicular projector onto the tangent space of

S, we next see that
Z

S

Rn � grad v da

¼
Z

S

�
PRn � gradSvþ n � Rn ov

on

�
da: ð16Þ

Recalling that, for a tangential vector field f defined on

a surface A with unit outward tangent-normal m, the

surface divergence theorem takes the form

Z

oA

f � m ds ¼
Z

A

divA f da; ð17Þ

while bearing in mind that the surface S is closed,

whereby oS is empty, and that

PRn � gradSv ¼ divSðvPRnÞ � divSðPRnÞv; ð18Þ

we find that

Z

S

PRn � gradSv da ¼ �
Z

S

divSðPRnÞv da ð19Þ

and, thus, that (16) is equivalent to

Z

S

Rn � grad v da

¼
Z

S

�
divSðPRnÞvþ n � Rn ov

on

�
da: ð20Þ

Using (20) in (12), we obtain the desired recasting of

the virtual internal power (8):

V intðP; vÞ ¼
Z

S

ððn� divRÞ � n� divSðPRnÞÞv da

þ
Z

S

n � Rn ov
on

da

�
Z

P

ðdiv ðn� divRÞ þ pÞv dv: ð21Þ

Finally, augmenting (10) with (9) and (21), we deduce

that, given any virtual field v and any arbitrary part P,
the virtual power balance is satisfied for any arbitrary

part P and any virtual field v only if
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Z

P

ðdiv ðn� divRÞ þ pþ cÞv dv

þ
Z

S

�
ðnS � ðn� divRÞ � nþ divSðPRnÞÞv da

þ
Z

S

ðrS � n � RnÞ ov
on

da ¼ 0: ð22Þ

Reversing the steps leading to the inference (22), we

see, conversely, that it implies the virtual-power

balance (10).

3.2 Consequences of the virtual power balance

3.2.1 Pointwise microforce balance: representations

for the microtraction

and the hypermicrotraction

For any arbitrary part P and virtual field v in (22), we

may invoke the fundamental lemma of the calculus of

variations to obtain a statement of microforce balance

that holds at any point in B:

div ðn� divRÞ þ pþ c ¼ 0: ð23Þ

Additionally, since the restriction of v to S and its

normal derivative ov=on are kinematically indepen-

dent and, thus, can be arbitrarily and autonomously

chosen at each point of S, we obtain representations

for the surface microtraction nS and hypermicrotrac-

tion rS that hold at any smooth point on the boundary

S of a part P of B:

nS ¼ ðn� divRÞ � n� divSðPRnÞ;

rS ¼ n � Rn:

)
ð24Þ

For R ¼ 0, (23) and (24)1 respectively reduce to the

pointwise microforce balance div nþ pþ c ¼ 0 and

the representation nS ¼ n � n for the microtraction of

the first-gradient phase-field theory. In keeping with

the corresponding reduction rS ¼ 0 of (24)2, there is

no counterpart of rS in that theory. Since

divSðPRnÞ ¼ divSðRn� rSnÞ
¼ n � divSðR>Þ � R � Lþ 2HrS; ð25Þ

where

L ¼ �gradS n ¼ �ðgrad nÞP ð26Þ

is the curvature tensor of S and H ¼ 1
2
trL is the

corresponding mean curvature, we see that nS can be

written alternatively as

nS ¼ ðn� divR� divSðR>ÞÞ � nþ R � L� 2HrS:

ð27Þ

Thus, noting from (24)2 that rS depends quadratically

on the orientation n of S, we deduce that nS is also

quadratic in n and depends as well on the curvature

tensor L of S. Letting �S denote the surface S
oriented by�n and noting, with reference to (26), that

�S has curvature tensor �L, we thus see that

nS ¼ �n�S and rS ¼ r�S: ð28Þ

The relations (28) represent an action-reaction princi-

ple for oppositely oriented surfaces that touch and are

tangent at a point.

3.2.2 Partwise balances for microforces

and hypermicroforces

Integrating nS given by (24)1 over the closed surface S
of an arbitrary part P and using the divergence

theorem in conjunction with the pointwise microforce

balance (23), we find thatZ

S

nS daþ
Z

S

divSðPRnÞ daþ
Z

P

ðpþ cÞ dv ¼ 0:

ð29Þ

However, since S is a closed surface and PRn is

tangential on S, the second integral on the left-hand

side of (29) vanishes due to the surface divergence

theorem and we, thus, obtain a generalization

Z

S

nS daþ
Z

P

ðpþ cÞ dv ¼ 0; ð30Þ

the partwise microforce balance from the first-gradient

phase-field theory of Fried and Gurtin [19]. If we

formally neglect hypermicrostress by setting R ¼ 0,

we see that (30) reduces to the partwise microforce

balance of the first-gradient phase-field theory. Letting

r ¼ x� o denote the vector from an arbitrarily chosen

origin o to point in x on oB and integrating the sum

nSrþ rSn, with nS and rS given by (24), over oB and

again using the divergence theorem in conjunction
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with the pointwise microforce balance (23), we next

find that

Z

S

ðnSrþ rSnÞ daþ
Z

S

div Sðr � PRnÞ da

þ
Z

P

ðpþ cÞr dv ¼
Z

P

n dv: ð31Þ

However, since the second-order tensor r� PRn is

tangential in the sense that it annihilates the normal n

to S, we see that the second integral on the left-hand

side of (31) vanishes due to the surface divergence

theorem and we, thus, obtain a partwise hypermicro-

force balance

Z

S

ðnS rþ rS nÞ daþ
Z

P

ðpþ cÞr dv ¼
Z

P

n dv: ð32Þ

The balance (32) holds trivially in the first-gradient

phase-field theory. Indeed, if we set R ¼ 0, so that

nS ¼ n � n and rS ¼ 0, then the first term on the left-

hand side of (32) can be rewritten as

Z

S

ðnSrþ rSnÞ da ¼
Z

S

ðr� nÞn da

¼
Z

P

div ðr� nÞ dv

¼
Z

P

ðnþ ðdiv nÞrÞ dv; ð33Þ

whereby (32) simplifies to

Z

P

ðdiv nþ pþ cÞr dv ¼ 0; ð34Þ

which holds trivially due to the pointwise microforce

balance div nþ pþ c ¼ 0 of the first-gradient phase-

field theory and therefore contributes no additional

information.

3.3 Symmetry of the hypermicrostress

Referring to the decomposition (3) of the hypermi-

crostress R into a sum R ¼ Ra þ Rr of active and

reactive components, the former being symmetric and

the latter being skew, we find it convenient to

introduce the axial vector field 1 associated with Rr

and write

1� ¼ Rr ¼ 1
2
ðR� R>Þ: ð35Þ

Since div div ð1�Þ ¼ �div ðcurl 1Þ ¼ 0, we see that

div divR ¼ div divRa and, thus, that the pointwise

microforce balance (23) is equivalent to

div ðn� divRaÞ þ pþ c ¼ 0: ð36Þ

Next, since divð1�Þ ¼ �curl 1, Pð1�Þn ¼ 1� n, and

div Sð1� nÞ ¼ n � curl 1, we see that

n � div ð1�Þ ¼ �divSðPð1�ÞnÞ ð37Þ

and, thus, that the representation (24)1 for the micro-

traction is equivalent to

nS ¼ ðn� divRaÞ � n� divSðPRanÞ: ð38Þ

Furthermore, since n � ð1�Þn ¼ 0, the representation

(24)2 for the hypermicrotraction is equivalent to

rS ¼ n � Ran: ð39Þ

Finally, mimicking the steps leading to the partwise

microforce and hypermicroforce balances (30) and

(32) but using (36) in place of (23) and (38) and (39) in

place of (24), we see that those balances hold without

change if R is replaced by Ra.

Hence, insofar as the results (23), (24), (30), and

(32) of our analysis are concerned, in our initial

discussion of the internal power it would have been

legitimate to assume that R be symmetric. Without

loss of generality, we therefore assume herafter that:

R ¼ R>: ð40Þ

4 Interactions between the system and its

surroundings

Consider an arbitrary subsurfaceA of the boundary oB
of the region B occupied by the system and let n

denote the outward unit normal on oB. Following
Fried and Gurtin [27], we view A as a boundary

pillbox, of infinitesimal thickness, that straddles a

portion of the boundary. This allows us to isolate the

physical processes within on both sides of A. The

geometric boundary of the surface A is simply its

edge, the closed curve oA. Viewed, in contrast, as a

boundary pillbox, A has parallel faces �A with

corresponding unit normals �n and a lateral face oA,

as described by Fried and Gurtin [29].
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Guided by the partwise microforce and hypermi-

croforce balances (30) and (32), we introduce envi-

ronmental tractions nenv and renv and assume that,

given any subsurface A of oB,Z

A

nenv da and

Z

A

ðnenvrþ renvnÞ da ð41Þ

represent the net microforce and hypermicroforce

exerted by the environment on the portion A of the

pillbox surface. To derive microforce and hypermi-

croforce balances for the pillbox, we first note that, by

(28), the net microforce and net hypermicroforce

exerted by the system on the portion�A of the pillbox

surface are

�
Z

A

nS da and �
Z

A

ðnS rþ rS nÞ da: ð42Þ

Referring to (41)1 and (42)1, we infer that the

microforce balance for A takes the form

Z

A

ðnenv � nSÞ da ¼ 0: ð43Þ

Analogously, referring to (41)2 and (42)2, we see that

the hypermicroforce for A takes the form

Z

A

ððnenv � nSÞrþ ðrenv � rSÞnÞ da ¼ 0: ð44Þ

Since A is arbitrary, (43) and (44) localize to yield

balances valid pointwise on oB:

nenv ¼ nS; renv ¼ rS: ð45Þ

Finally, invoking the representations (24) for the

microstress n and hypermicrostress R ¼ R>, we find

that the pointwise balances oB can be written as

ðn� divRÞ � n� divSðPRnÞ ¼ nenv ð46Þ

and

n � Rn ¼ renv: ð47Þ

5 Free-energy imbalance: constitutive relations

We restrict attention to purely mechanical processes

governed by the purely mechanical partwise free-

energy imbalance

_Z

P

w dv�WextðPÞ ð48Þ

holds for all P, where w denotes the free-energy

density and WextðPÞ is given by (6) with nS and rS is

determined according to the representations in (24).

Using the power balance (7) in (48), we arrive at the

pointwise free-energy imbalance

_wþ p _u� n � grad _u� R � grad 2 _u� 0: ð49Þ

Guided by the presence of the power conjugate

pairings p _u, n � grad _u, and R � grad 2 _u in (49), we

consider a class of constitutive relations that determine

w, p, n, and R ¼ R> at each point x in B and each

instant t of time as smooth functions of u, gradu,
grad 2u, and _u at ðx; tÞ. Following Coleman and Noll

[30], we allow the external microforce density c to

take any value necessary to ensure satisfaction of the

microforce balance (23). It can then be shown that the

dissipation inequality (49) is satisfied in all processes

it is necessary and sufficient to require that:

• The free-energy density w is given by a constitu-

tive response function ŵ that is independent of _u:

w ¼ ŵðu; gradu; grad 2uÞ: ð50Þ

• The microstress n and hypermicrostress R are

given by constitutive response functions n̂ and R̂

that derive from ŵ:

n ¼ n̂ðu; gradu; grad 2uÞ

¼ oŵðu; gradu; grad 2uÞ
oðgraduÞ ;

R ¼ R̂ðu; gradu; grad 2uÞ

¼ oŵðu; gradu; grad 2uÞ
oðgrad 2uÞ :

9>>>>>>>>>>=
>>>>>>>>>>;

ð51Þ

• The internal microforce density p is given by a

constitutive response function p̂ that splits addi-

tively into a contribution derived from ŵ and a

dissipative contribution determined by a nonneg-

ative kinetic modulus B that need not be indepen-

dent of _u:
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p ¼ p̂ðu; gradu; grad 2u; _uÞ

¼ � oŵðu; gradu; grad 2uÞ
ou

� Bðu; gradu; grad 2u; _uÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
� 0

_u: ð52Þ

Although the response function ŵ for the free-energy

density w serves as a potential for the microstress n,

the hypermicrostress R, and the equilibrium contribu-

tion to the internal microforce density p, the dissipa-

tive contribution to p is specified through the

nonnegative kinetic modulus B. In Sect. 3.3 we

showed that if R includes a skew, reactive component

Rr, then Rr does not enter the local microforce balance

(23) or the representations (24) for the microtraction

nS and hypermicrotraction rS. Thus, Rr is completely

indeterminate and, consistent with this observation, no

generality is incurred by omitting a reactive compo-

nent from (51)2.

6 Generalized Swift–Hohenberg equation and its

specialization

For each combination of ŵ and B, the local microforce

balance (23) and the constitutive relations (51) and

(52) for n, R, and p yield an evolution equation for u:

Bðu; gradu; grad 2u; _uÞ _u

¼ div
n oŵðu; gradu; grad 2uÞ

oðgraduÞ

� div
� oŵðu; gradu; grad 2uÞ

oðgrad 2uÞ
�o

� oŵðu; gradu; grad 2uÞ
ou

þ c: ð53Þ

If, in particular, we choose the response function ŵ and

the kinetic modulus B such that

ŵðu; gradu; grad 2uÞ
¼ f ðuÞ þ 1

2
kðu2 � 2‘2jgraduj2 þ ‘4jMuj2Þ ð54Þ

and

Bðu; gradu; grad 2u; _uÞ ¼ b; ð55Þ

where M denotes the Laplacian and k[ 0, ‘[ 0, and

b[ 0 are constant material parameters, then the

evolution equation (53) specializes to

b _u ¼ �kð1þ ‘2MÞ2u� f 0ðuÞ þ c: ð56Þ

If, moreover, the potential f and the coefficients k, ‘, and b
are chosen suitably, then (56) can be made to coincide

with the Swift–Hohenberg [1] equation, in which case

c is a source term that accounts for random fluctua-

tions. For this reason, we refer to the progenitor (53) of

(56) as the ‘generalized Swift–Hohenberg equation.’

7 Incorporation of constituent transport

7.1 Constituent-content balance

We next extend our formulation to the case where the

phase field u represents the mass fraction of a

conserved constituent with chemical potential l, flux
|, and external supply-rate s, per unit volume, while

continuing to restrict attention to isothermal processes.

Following Gurtin’s [20, §3] derivation of the Cahn–

Hilliard equation, we therefore supplement the local

microforce balance (23) by a partwise constituent-

content balance

_Z

P

u dv ¼ �
Z

S

| � n daþ
Z

P

s dv; ð57Þ

the pointwise version of which is

_u ¼ �div |þ s: ð58Þ

To account for constituent transport between the

system and its surrounding, we introduce an environ-

mental flux |env. The constituent-content balance for

the boundary pillbox corresponding to an arbitrary

subsurface A of oB then takes the form

Z

A

ð|env þ | � nÞ da ¼ 0 ð59Þ

and localizes to yield the following pointwise condi-

tion on oB:

|env þ | � n ¼ 0: ð60Þ
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7.2 Free-energy imbalance: constitutive relations

To account for the rate at which the total free-energy

of P changes due to constituent transport, we augment

the partwise free-energy imbalance (48), giving

_Z

P

w dv�WextðPÞ �
Z

S

l| � n daþ
Z

P

ls dv: ð61Þ

Localizing (61) and using the balances (23) and (58) to

eliminate the external microforce density c and the

rate s of constituent production, we arrive at the

pointwise free-energy imbalance

_wþ ðp� lÞ _u� n � grad _u

� R � grad 2 _uþ | � grad l� 0: ð62Þ

In recognition of the presence of the power-conjugate

pairing R � grad 2 _u in (62), we augment Gurtin’s [20,

§3] lists ðu; gradu; l; grad lÞ and ðw; n; p; |Þ of inde-
pendent and dependent constitutive variables to

include grad 2u and R, respectively. Restricting

attention to smooth constitutive relations, we then

find that the local imbalance (62) is satisfied in all

processes if and only the free-energy density w,
microstress n, and microstress R depend at most on

ðu; gradu; grad 2uÞ and — as for a nonconserved

phase field — are given by (50) and (51), and if:

• The internal microforce p is given by a constitutive

response function p̂ that differs from the chemical

potential l by a contribution derived from the

response function ŵ:

p ¼ p̂ðu; gradu; grad 2u; lÞ

¼ l� oŵðu; gradu; grad 2uÞ
ou

: ð63Þ

• The constituent flux | is given by a constitutive

response function |̂ of the form

| ¼ |̂ðu; gradu; grad 2u; l; gradlÞ
¼ �Mðu; gradu; grad 2u; l; grad lÞgrad l;

ð64Þ

where the mobility tensorMmust obey the residual

dissipation inequality

grad l �Mðu; gradu; grad 2u; l; grad lÞgrad l� 0

ð65Þ

for all choices of u, gradu, grad 2u, l, and grad l.

In contrast to the theory previously developed for a

nonconserved phase field u, the constitutive relation

(63) for the internal microforce density p is purely

conservative. Instead of being tied to kinetics associ-

ated with the evolution of u, dissipation is in the

present context a consequence of constituent transport.

8 Generalized phase-field-crystal equation and its

specialization

For each choice of ŵ, the local microforce balance (23)

and the constitutive relations (51) and (63) for n, R,

and p determines the chemical potential l in the form

l ¼ oŵðu; gradu; grad 2uÞ
ou

� div
n oŵðu; gradu; grad 2uÞ

oðgraduÞ

� div
� oŵðu; gradu; grad 2uÞ

oðgrad 2uÞ
�o

� c; ð66Þ

where the external microforce density c can embody,

for instance, the potential energy, per unit volume, of

an external gravitational or electromagetic field. The

associated evolution equation for u arises from using

(66) in the consequence

_u ¼ div ðMðu; gradu; grad 2u; l; grad lÞgrad lÞ þ s

ð67Þ

of augmenting the constituent-content balance (58)

with the constitutive relation (64) for the constituent

flux |. Due to the dependence of the response function

ŵ on grad 2u, l as determined by (66) involves fourth-

order spatial derivatives of u and (67) thus includes

sixth-order spatial derivatives of u.
Mimicking the assumptions leading from the gener-

alized Swift–Hohenberg equation (53) to the more

familiar specialization (56), we take ŵ to be of the form

(54) and assume that the mobility tensor has the form

Mðu; gradu; grad 2u; l; gradlÞ ¼ M1; ð68Þ

where M[ 0 is a material parameter. Then, (66)

reduces to
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l ¼ f 0ðuÞ þ kðuþ 2‘2Muþ ‘4M2uÞ � c

¼ f 0ðuÞ þ kð1þ ‘2MÞ2u� c ð69Þ

and the evolution equation for u that arises on using

(68) and (69) takes the form

_u ¼ MMðkð1þ ‘2MÞ2uþ f 0ðuÞÞ þ �s; ð70Þ

where we have introduced an effective constituent

supply rate �s ¼ sþMMc. If, moreover, the potential f

and the coefficients k, ‘, and M are chosen suitably,

then (56) can be made to coincide with the phase-field-

crystal equation originated by Elder and Grant [9], in

which case �s is a source term that accounts for random

fluctuations. For this reason, we refer to the evolution

equation that arises from using (66) to eliminate l
from (67) as the ‘generalized phase-field-crystal

equation.’

9 Boundary conditions

9.1 Free-energy imbalance for a boundary pillbox

We next adapt the approach of Fried and Gurtin [27]

and Duda et al. [28] to derive thermodynamically

consistent conditions on the boundary oB of the region

B that serves as an interface between the system and

the environment. For simplicity, we pursue a unified

approach in which constituent transport is taken into

consideration from the outset and restrict attention to

situations where oB is not endowed with surface

energy and cannot support constituent transport.

Granted these restrictions, the free-energy imbalance

for boundary pillbox corresponding to a subsurface A
of oB has the formZ

A

�
nenv _uenv þ renv

o _uenv

on

�
da

�
Z

A

�
nS _uþ rS

o _u
on

�
da

þ
Z

A

lenv|env daþ
Z

A

| � n da� 0; ð71Þ

From the versions (45)1, (45)2, and (60) of the

microforce, hypermicroforce, and constituent-content

balances that apply on oB in (71) and taking into

account the arbitrary nature of A, we obtain a

corresponding inequality,

ð _uenv � _uÞnenv þ
� o _uenv

on
� o _u

on

�
renv

þ |envðlenv � lÞ� 0; ð72Þ

which holds pointwise on oB. In general, (46), (47),

(60), and (72) can be used to formulate boundary

conditions that incorporate coupling between

microstructural evolution associated with the phase

field and constituent transport, while accounting for

dissipative interactions between the system and its

surroundings. To ensure that (72) holds, it is sufficient

— but certainly not necessary — to require that

ð _uenv � _uÞnenv ¼ 0;

� o _uenv

on
� o _u

on

�
renv ¼ 0;

|envðlenv � lÞ ¼ 0:

9>>>>=
>>>>;

ð73Þ

9.2 Uncoupled zero-dissipation boundary

conditions

These equalities in (73) are the versions of what Fried

and Gurtin [27] call ‘uncoupled zero-dissipation

conditions’ appropriate to the present investigation.

The following classes of boundary conditions, posed

for an arbitrary subsurfaceA of oB, are consistent with
(46), (47), (60), and (72):

(i) Assigned microtraction onA: For this class of

boundary conditions, nenv is given on A and

nS ¼ ðn� divRÞ � n� divSðPRnÞ is pre-

scribed on A in accord with

ðn� divRÞ � n� divSðPRnÞ ¼ nenv; ð74Þ

the surfacial microforce balance (46) is

trivially satisfied on A, and uenv is deter-

mined on S through (73)1. If, in particular,

nenv ¼ 0, then B is free of microtraction on

the subset A of oB.
(ii) Assigned hypermicrotraction on A: For this

class of boundary conditions, renv is given on
A and rS ¼ n � Rn is prescribed on A in

accord with

n � Rn ¼ renv; ð75Þ
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the surfacial hypermicroforce balance (47) is

trivially satisfied on A, and ouenv=on is

determined on A through (73)2. If, in partic-

ular, renv ¼ 0, then B is free of hypermicro-

traction on the subset A of oB.
(iii) Assigned constituent flow across A: For this

class of boundary conditions, |env is given and

| � n is prescribed on A in accord with

| � n ¼ �|env; ð76Þ

the surfacial constituent-content balance (60)

is trivially satisfied on A, and lenv is deter-

mined on A through (73)3. If, in particular,

|env ¼ 0, then B is chemically insulated from

the environment on the subset of A of oB.
(iv) Assigned chemical potential on A: For this

class of boundary conditions, lenv is given

and l is prescribed on S in accord with

l ¼ lenv; ð77Þ

|env is determined on A through the surfacial

constituent-content balance (60), and is deter-

mined on A through (73)3. If, in particular,

lenv ¼ constant, then B is in contact with a

reservoir of uniform chemical potential on the

subset of A of oB.

Although the microtraction and hypermicrotraction

can be assigned on the same portion of oB, the

constituent flow and the chemical potential can only be

assigned on complementary portions of oB. The list

(i)–(iv) of boundary conditions is not comprehensive.

It is also possible to assign u or ou=on onA. Physical

motivation for such boundary conditions is, however,

lacking. We thus exclude them from consideration at

this time.

In the absence of constituent transport, (71) reduces

to an imbalance involving environmental and internal

power expenditures. If the inequality is then replaced

by an equality, then the resulting balance of power can

be viewed as a counterpart, applicable to a subsurface

A of the boundary oB of B, of the balance of power (7)
for a part P of B. It is of course possible to formulate

an associated balance of virtual-power for a subsur-

face A of oB and the boundary conditions presented

above in items (i) and (ii) can be obtained as a

consequence of that virtual balance.

9.3 Constitutively augmented boundary

conditions

We next specialize the (i)–(iv) to develop boundary

conditions for the generalized Swift–Hohenberg equa-

tion (53) and the generalized phase-field-crystal

equation arising from combining (66), (67), and (68).

9.3.1 Generalized Swift–Hohenberg equation and its

specialization

For the constitutive relations (51) underlying the

generalized Swift–Hohenberg equation (53), the

boundary conditions (74) and (75) specialize to

noŵðu;gradu;grad 2uÞ
oðgraduÞ

� div
�oŵðu;gradu;grad 2uÞ

oðgrad 2uÞ
�o

� n

� div S

�
P
oŵðu;gradu;grad 2uÞ

oðgrad 2uÞ n
�
¼ nenv; ð78Þ

and

n � oŵðu; gradu; grad
2uÞ

oðgrad 2uÞ n ¼ renv; ð79Þ

respectively. Moreover, for the constitutive relations

(51) underlying the classical Swift–Hohenberg equa-

tion, (74) and (75) specialize further to

k‘2
� ou
on

þ ‘2
oðMuÞ
on

�
¼ �nenv ð80Þ

and

k‘4Mu ¼ renv: ð81Þ

9.3.2 Generalized phase-field-crystal equation and its

specialization

In addition to the boundary conditions (78) and (79),

for the constitutive relations (63) and (64) underlying

the generalized phase-field-crystal Eqs. (66), (67), and

(68), the boundary conditions (76) and (77) specialize

to
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Mgrad
noŵðu;gradu;grad2uÞ

ou

�div
noŵðu;gradu;grad2uÞ

oðgraduÞ

�div
�oŵðu;gradu;grad2uÞ

oðgrad2uÞ

�o
� c

o
�n¼�|env;

ð82Þ

and

oŵðu; gradu; grad 2uÞ
ou

� div
n oŵðu; gradu; grad 2uÞ

oðgraduÞ

� div
� oŵðu; gradu; grad 2uÞ

oðgrad 2uÞ

�o
¼ lenv; ð83Þ

respectively. Moreover, for the constitutive relations

(51), (63) and (64) underlying the classical phase-

field-crystal equation, (76) and (77) specialize further

to

M
oðf 0ðuÞ þ kð1þ ‘2MÞ2u� cÞ

on
¼ �|env ð84Þ

and

f 0ðuÞ þ kð1þ ‘2MÞ2u� c ¼ lenv: ð85Þ

10 Energy-decay relations for uncoupled zero-

dissipation boundary conditions

We next establish energy-decay relations for the

generalized Swift–Hohenberg Eq. (53) and the

phase-field-crystal equation arising from combining

(66) and (67). In so doing, we assume that the assigned

microtraction and hypermicrotraction conditions (74)

and (75) on all of oB and for the generalized phase-

field-crystal equation arising from combining (66) and

(67) subject to the assigned microtraction and hyper-

microtraction conditions (74) and (75) on all of oB.
Additionally, we assume either that the assigned

constituent flow condition (76) or that the assigned

chemical potential condition (77) holds on all of oB. In
the latter case, we restrict attention to situations in

which the system is in contact with a reservoir with

uniform chemical potential lenv ¼ constant.

Our results rely on identities for the partial time-

derivative _w of the free-energy density w which we

now obtain. To derive those identities, we first observe

that, from the relations (50), (51)1, and (51)2 for the

free-energy density w, microstress n, and hypermi-

crostress R in the constitutive theories in the gener-

alized Swift–Hohenberg equation (53) and the

generalized phase-field-crystal equations (66)–(67),

_w¼ oŵðu;gradu;grad2uÞ
ou

_u

þoŵðu;gradu;grad2uÞ
oðgraduÞ �grad _u

þoŵðu;gradu;grad2 _uÞ
oðgrad2uÞ �grad2 _u

¼ oŵðu;gradu;grad2uÞ
ou

_uþn �grad _uþR �grad2 _u

¼
�oŵðu;gradu;grad2 _uÞ

ou
�divðn�divRÞ

�
_u

þdivð _uðn�divRÞþR>grad _uÞ: ð86Þ

Using the local microforce balance (23) in (86), we

next see that

_w ¼
�
pþ oŵðu; gradu; grad 2uÞ

ou
þ c

�
_u

þdiv ð _uðn� divRÞ þ R>grad _uÞ: ð87Þ

The relation (87) holds regardless of whether con-

stituent transport is present. Referring, in particular, to

(52), we see that in the absence of constituent transport

(87) specializes to

_w ¼ div ð _uðn� divRÞ þ R>grad _uÞ þ c _u� B _u2;

ð88Þ

where, for brevity, we have suppressed the argument

ðu; gradu; grad 2u; _uÞ of the kinetic modulus B.

Alternatively, referring to (63), we see that in the

presence of constituent transport (87) specializes to

_w ¼ div ð _uðn� divRÞ þ R>grad _uÞ þ c _uþ l _u:

ð89Þ

Furthermore, using the pointwise constituent-content

balance (58) and the constitutive relation (64) for the

constituent flux |, we see that (90) is equivalent to
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_w ¼div ð _uðn� divRÞ þ R>grad _u� l|Þ
þ c _uþ ls� grad l �Mgrad l; ð90Þ

where, for brevity, we have suppressed the argument

ðu; gradu; grad 2u; l; grad lÞ of the mobility tensor

M.

10.1 Generalized Swift–Hohenberg equation

Integrating (88) over B, applying the transport and

divergence theorems and using the boundary condi-

tions (74) and (75) for assigned microtraction and

hypermicrotraction in the identity

_uðn� divRÞ � nþ Rn � grad _u

¼ nenv _uþ renv
o _u
on

þ div Sð _uPRnÞ; ð91Þ

while taking into considersation that, by the surface

divergence theorem and since oB is a closed surface,

Z
oB

div Sð _uPRnÞ da ¼ 0; ð92Þ

we obtain the identity

_Z

B

w dv ¼
Z

oB

�
nenv _uþ renv

o _u
on

�
da

þ
Z

B

c _u dv�
Z

B

B _u2 dv; ð93Þ

where the dependence of the kinetic modulus B on

ðu; gradu; grad 2u; _uÞ is again suppressed. Recalling

that (73)1;2 apply on oB and, from (52), that B must

satisfy B� 0, we thus deduce an energy-decay relation

_Z

B

w dv�
Z

oB

�
nenv _uenv þ renv

o _uenv

on

�
daþ

Z

B

c _u dv

ð94Þ

for the generalized Swift–Hohenberg Eq. (53) subject

to the uncoupled zero-dissipation boundary conditions

(74) and (75) for the microtraction nS and hypermi-

crotraction rS.

10.2 Generalized phase-field-crystal equation

For the generalized phase-field-crystal equation, we

assume that (74) and (75) and either the assigned

constituent flow condition (76) or the assigned chem-

ical potential condition (77), with lenv ¼ constant

hold on all of oB.
If (74), (75), and (76) hold on oB, we see from (57)

that the constituent-content balance for B becomes

_Z

B

u dv ¼
Z

oB

|env daþ
Z

B

s dv: ð95Þ

Furthermore, proceeding as in the derivation of (93)

but starting with (90) instead of (88) and using not only

(74) and (75) but also (76), we obtain the identity

_Z

B

w dv ¼
Z

oB

�
nenv _uþ renv

o _u
on

þ l|env
�
da

þ
Z

B

ðc _uþ lsÞ dv

�
Z

B

grad l �Mgrad l dv; ð96Þ

where the dependence of the mobility tensor M on

ðu; gradu; grad 2u; l; grad lÞ is again suppressed.

Recalling that (73)1�3 apply on oB and the positivity

condition (65) forM, we thus deduce an energy-decay

relation

_Z

B

w dv�
Z

oB

�
nenv _uenv þ renv

o _uenv

on
þ lenv|env

�
da

þ
Z

B

ðc _uþ lsÞ dv ð97Þ

for the generalized phase-field-crystal equations (66)–

(67) subject to the uncoupled zero-dissipation bound-

ary conditions (74), (75), and (76) for the microtrac-

tion nenv, hypermicrotraction renv, and normal

component | � n of the constituent flux |.

If (74), (75), and (77) hold, the constituent-content

balance (57) applies with P ¼ B. Furthermore, pro-

ceeding as in the derivation of (96) while taking into

consideration the assumption that

lenv ¼ constant; ð98Þ

we obtain the identity
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_Z

B

ðw� lenvuÞ dv ¼
Z

oB

�
nenv _uþ renv

o _u
on

�
da

þ
Z

B

ðc _uþ ðl� lenvÞsÞ dv

�
Z

B

grad l �Mgrad l dv ð99Þ

and, thus, again taking advantage of (65) and (73)1;2,

arrive at the energy-decay relation

_Z

B

ðw� lenvuÞ dv�
Z

oB

�
nenv _uenv þ renv

o _uenv

on

�
da

þ
Z

B

ðc _uþ ðl� lenvÞsÞ dv ð100Þ

for the generalized phase-field-crystal equations (66)–

(67) subject to the uncoupled zero-dissipation bound-

ary conditions (74) and (75) for the microtraction nenv
along with hypermicrotraction renv and the assigned

chemical potential condition (74) with

lenv ¼ constant.

11 Discussion of results

In this work, we used the principle of virtual power

and a free-energy imbalance to develop a second-

gradient phase-field theory. In addition to the micro-

traction, microstress, and internal and external micro-

force densities that enter in the first-gradient phase-

field theory by Fried and Gurtin [19], this theory

involves a hypermicrostress and a corresponding

hypermicrotraction. In our theory, the hypermi-

crostress and hypermicrotraction enter to account for

power expenditures associated with temporal varia-

tions of the second spatial gradient of the phase field.

The microforce balance (23) that arises from the

principle of virtual power (10) in conjunction with the

thermodynamically compatible constitutive relations

(51) and (52) yields a family of evolution equations

that encompasses and broadly generalizes the classical

Swift–Hohenberg equation. When the phase field

represents the volume fraction of a conserved con-

stituent, a suitably augmented version (62) of the free-

energy imbalance yields constitutive relations (51)

and (63) which, in conjunction with the microforce

balance (23) determines the chemical potential as a

functional of the phase field. Together with the

constituent-content balance (58) and the constitutive

relation (64) for the constituent flux yields a family of

evolution equations that encompass and broadly

generalizes the phase-field-crystal equation. The

first-gradient phase-field theory of Fried and Gurtin

[19] is recovered if higher-order terms, represented by

the hypermicrotraction and hypermicrostress, arising

from the second-gradient of the phase field are

neglected. We also derived thermodynamically con-

sistent boundary conditions (74)–(77) for our two

families of evolution equations and associated energy-

decay relations. For our generalization of the Swift–

Hohenberg equation, the microtraction and hypermi-

crotraction are prescribed over the entire boundary of

the region upon which the phase field is defined. For

our generalization of the phase-field-crystal equation,

the normal component of the constituent flux and the

chemical potential are also prescribed on complemen-

tary portions of the boundary. In this case, we present

two alternative energy decay relations, one corre-

sponding to situations where only the normal compo-

nent of the constituent flux is prescribed and the other

corresponding to situations where the system is in

contact with a reservoir of uniform chemical potential.

The framework presented here can be extended to

incorporate other physical effects, such as deformation

or thermal transport, and thus provides a platform for

developing theories in which the phase field evolves in

tandem with other independent kinematic or thermo-

dynamic fields. Another possible enhancement, clo-

sely aligned with Gurtin’s [20] derivation of the

viscous Allen–Cahn equation, would involve account-

ing for viscous contributions to the microstress and

hypermicrostress, yielding further generalizations of

the Swift–Hohenberg and phase-field-crystal equa-

tions. For brevity, we leave such developments for

future consideration.
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dient. J Mécanique 12(2):235–274

25. Antman SS, Osborn JE (1979) The principle of virtual work

and integral laws of motion. Arch Ration Mech Anal

69(3):231–262

26. Del Piero G (2009) On the method of virtual power in

continuum mechanics. J Mech Mater Struct 4(2):281–292

27. Fried E, Gurtin ME (2007) Thermomechanics of the inter-

face between a body and its environment. Continuum Mech

Thermodyn 19(5):253–271

28. Duda FP, Sarmiento A, Fried E (2019) Phase fields, con-

straints, and the Cahn–Hilliard equation. (Submitted)
29. Fried E, Gurtin ME (2006) Tractions, balances, and

boundary conditions for nonsimple materials with applica-

tion to liquid flow at small-length scales. Arch Ration Mech

Anal 182(3):513–554

30. Coleman BD, NollW (1963) The thermodynamics of elastic

materials with heat conduction and viscosity. Arch Ration

Mech Anal 13(1):167–178

Publisher’s Note Springer Nature remains neutral with

regard to jurisdictional claims in published maps and

institutional affiliations.

123

1868 Meccanica (2020) 55:1853–1868

http://creativecommons.org/licenses/by/4.0/

	Generalized Swift--Hohenberg and phase-field-crystal equations based on a second-gradient phase-field theory
	Abstract
	Introduction
	Power expenditures
	Internal power
	External power
	Balance of power

	Principle of virtual-power
	Alternative form of the virtual power balance
	Consequences of the virtual power balance
	Pointwise microforce balance: representations for the microtraction and the hypermicrotraction
	Partwise balances for microforces and hypermicroforces

	Symmetry of the hypermicrostress

	Interactions between the system and its surroundings
	Free-energy imbalance: constitutive relations
	Generalized Swift--Hohenberg equation and its specialization
	Incorporation of constituent transport
	Constituent-content balance
	Free-energy imbalance: constitutive relations

	Generalized phase-field-crystal equation and its specialization
	Boundary conditions
	Free-energy imbalance for a boundary pillbox
	Uncoupled zero-dissipation boundary conditions
	Constitutively augmented boundary conditions
	Generalized Swift--Hohenberg equation and its specialization
	Generalized phase-field-crystal equation and its specialization


	Energy-decay relations for uncoupled zero-dissipation boundary conditions
	Generalized Swift--Hohenberg equation
	Generalized phase-field-crystal equation

	Discussion of results
	Acknowledgements
	References




