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Abstract. The higher order generalisation of the clockwork mechanism to gravitational in-
teractions provides a means to generate an exponentially suppressed coupling to matter from
a fundamental theory of multiple interacting gravitons, without introducing large hierarchies
in the underlying potential and without the need for a dilaton, suggesting a possible ap-
plication to the hierarchy problem. We work in the framework of ghost free multi-gravity
with “nearest-neighbour” interactions, and present a formalism by which one is able to con-
struct potentials such that the theory will always exhibit this clockwork effect. We also
consider cosmological solutions to the general theory, where all metrics are of FRW form,
with site-dependent scale factors/lapses. We demonstrate the existence of multiple deSitter
vacua where all metrics share the same Hubble parameter, and we solve the modified Einstein
equations numerically for an example clockwork model constructed using our formalism, find-
ing that the evolution of the metric that matter couples to is essentially equivalent to that of
general relativity at the modified Planck scale. It is important to stress that while we focus
on the application to clockwork theories, our work is entirely general and facilitates finding
cosmological solutions to any ghost free multi-gravity theory with “nearest-neighbour” inter-
actions. Moreover, we clarify previous work on the continuum limit of the theory, which is
generically a scalar-tensor braneworld, using the Randall-Sundrum model as a special case
and showing how the discrete-clockwork cosmological results map to the continuum results
in the appropriate limit.
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1 Introduction

The existence of an exponentially large hierarchy between the interaction scales of electroweak
and gravitational physics remains somewhat shrouded in mystery. Generically, the mass of
the Higgs is quadratically unstable to radiative corrections arising from any new physics with
a mass scale in this large UV window; this is the hierarchy problem. Over the years, myriad
potential solutions to this problem have been proposed, though crucially no experimental
evidence that favours any one particular model has been forthcoming [1, 2], and so it remains
important to consider new ideas. Solutions are often based on supersymmetry [3], where loop
cancellations protect the Higgs mass from such corrections. However, there is another school
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of thought who purport that the apparent exponential hierarchy we observe is deceptive, and
that the mass scale of gravity is actually much closer to the electroweak scale. Historically,
this deception has been attributed to (e.g.) the presence of a warped [4] or large [5] extra
dimension, but more recently a new set of clockwork models [6, 7] have emerged, which show
signs of promise.

Underpinning the clockwork ethos is the realisation that the usual identification one
would make between new physics effects (i.e. UV completion) and their corresponding inter-
action scales is not necessarily a correct one — a hidden assumption is present. Interaction
scales characterise the strength of some effective interaction, whereas UV completion refers
to the mass scale at which new degrees of freedom must enter, and these two quantities
are incommensurable. If one were to take some arbitrary Lagrangian in natural units and
reinsert factors of ~ and c, it would be immediately clear that masses and interaction scales
have different dimensions, and in fact that the commensurable quantities are masses with
products of scales and couplings (see [8] and refs therein, and related discussions in [9] for an
explicit demonstration). Indeed, this is why we have been careful thus far when referring to
mass scales and interaction scales, so as to emphasise their distinction. In natural units, most
couplings are typically O(1), so the identification usually works in practice, but it could be
the case that UV completion occurs at a much lower energy than the associated interaction
scale, if we were to have particularly small couplings. It is in this sense that one is able
to solve the hierarchy problem, by using a small enough coupling so that quantum gravity
effects can enter at a mass scale small enough to not bother the Higgs, while still maintaining
Planck scale interactions. The question then is how we might obtain such a small coupling
in a natural manner; this is the purpose of the clockwork.

The clockwork mechanism was initially proposed to construct an axion setup where the
effective axion decay constant becomes super-Planckian [10, 11], as is required by cosmological
relaxation models [12]. A precursor idea was applied in the context of natural inflation with
multiple axions in [13]. The mechanism has since been generalised to a much wider class of
fields [8]. The premise is to use a chain of pairwise-interacting fields to generate a hierarchy
between the parameters of the fundamental theory and the effective coupling to an external
matter source, in a manner akin to the mechanism of gears in a clock (hence the name).

The framework is as follows [8]: suppose we have a system which contains N fields,
φi, referred to as ‘gears’ (following the analogy), arranged in a 1D-lattice in theory space.
The gears describe N particles, which remain massless due to N copies of some symmetry
S. Neither the explicit nature of the fields nor that of the symmetries are important, but
we know that the full symmetry group of the theory contains at least the product SN . Now
suppose we introduce an interaction potential between the fields linking nearest-neighbours,
characterised by some parameter q > 1 which treats the sites asymmetrically. Since we are
working on a 1D-lattice with boundaries, we have only N − 1 interactions, and since each
interaction breaks only the symmetry corresponding to each individual site, one diagonal copy
of S survives the breaking. As a result, the system possesses a massless zero-mode i.e. some
linear combination of the original φi fields which has mass eigenvalue 0, as well as a tower
of massive modes on top. This zero-mode is, however, not uniformly distributed throughout
the lattice. Because the interaction treats the sites asymmetrically, the distribution of the
zero-mode throughout the lattice is also asymmetric, and becomes exponentially suppressed
at one end. Thus, by coupling some matter fields to the gear at the suppressed end of
the lattice, one can engineer an exponentially suppressed coupling to the zero-mode. This
idea has seen various interesting applications in recent years [14–17], and has since been
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Figure 1. Schematic diagram depicting the classic clockwork setup. The gears are arranged in a
1D lattice, and we have nearest-neighbour interactions of strength q, which break all but one of the
individual symmetries S. The result is a zero-mode, a0, associated with the unbroken subgroup S0,
which is asymmetrically distributed through the lattice, scaling as a0 ∼ φ0 +φ1/q+ . . .+φN−1/q

N−1.
We are then able to engineer a hierarchy of scales by coupling matter to φN−1, as the overlap with
a0 is exponentially suppressed.

generalised to allow also for non-nearest-neighbour interactions [18]. A schematic diagram of
the classic setup is shown in figure 1.

If we apply the clockwork philosophy to gravitational physics, taking our clockwork
gears to be gravitons and our symmetries to be N copies of diffeomorphism invariance, then
we naively have a solution to the aforementioned hierarchy problem, with the clockwork
interactions breaking the overall symmetry down to one asymmetrically distributed diagonal
subgroup of diffeomorphisms associated with the surviving massless graviton.

As ever with gravity, things are not quite so simple. In [19], it was demonstrated that one
cannot apply the clockwork mechanism in the traditional sense [8] to non-Abelian theories,
by using a series of elegant group-theoretic arguments to show that such an asymmetric
structure in the unbroken diagonal subgroup is forbidden. The argument rested upon the
assumption of a lack of site dependence in the couplings between gears, as was the case in
the original proposal. The authors of [8] retorted in [20], saying that such site independence
could be little more than a statement about the full UV model, if one views the clockwork
as a low-energy EFT. Regardless, if we allow for site dependence in the couplings then we
can once again obtain interesting phenomenology, though there is some disagreement about
whether this defeats the object [19], as including site dependence necessarily means that we
must have a degree of hierarchy in the underlying fundamental theory. Such hierarchies in the
fundamental theory have in the past been accounted for by introducing a dilaton [21]; here
we instead take the view that a small hierarchy in the fundamental theory can be acceptable
so long as the couplings q remain roughly of order unity.

With this in mind, more opportunities avail themselves. In [6], it was shown that the
desired asymmetric distribution of the graviton zero-mode could be obtained in an entirely
new manner through a higher order generalisation of the standard clockwork mechanism, from
a fundamental theory with only hierarchies up to q2, and so no large parameters, provided
that q ∼ O(1). The unbroken diagonal subgroup of diffeomorphisms is symmetric, as it
must be [19], but the underlying background vacua follow an asymmetric distribution — the
action of the symmetric subgroup on their fluctuations then results in the desired zero-mode
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distribution. This situation was not considered in [19], whose background was Minkowski at
all sites, and it offers us a very enticing new prospect to solve the hierarchy problem. Later,
it was shown in [7], following the dimensional deconstruction philosophy of [22], that the
general ghost free multi-gravity action used in [6, 23] can be viewed as the deconstruction
of a general 5-dimensional continuum theory, where the discrete set of gears are considered
simply as the induced metrics on 4D hypersurfaces at discrete locations along the extra
dimension. In particular, it was shown that within the class of continuum gravitational
clockwork theories reside scalar-tensor theories where the scalar should not be identified with
a dilaton, distinguishing them from previous approaches. The continuum picture naturally
has the interpretation of a braneworld model, where coupling matter to one of the gears
becomes analogous to placing matter on a brane at the corresponding location in the 5th
dimension. It is no surprise, then, that amongst the special cases of the general theory put
forward in [7] resides the quintessential braneworld model of Randall and Sundrum, RS1 [4]
(though without any Z2 symmetry — we will discuss this in sections 4 and 5.1).

Clearly, much progress has been made surrounding the application of the clockwork
mechanism to gravity in recent years, but still there is much to be discovered. Indeed, we
do not actually know much about which explicit forms of interaction potential are able to
produce the asymmetric background vacuum structure needed to clockwork the graviton
gears, besides the existence of the particular case considered in [6]. Even less is known
about the cosmology of such models, though one might expect some clockworks to possess
interesting phenomenology worth studying, given the presence of RS1 as a special case in
the continuum version of the theory. The aim of the present work is to shed light on both of
these issues, as we develop a general formalism utilising symmetric polynomials to determine
which interactions give a valid clockwork vacuum, and begin to look at the cosmology by
determining the background evolution for two example models. One of these is essentially
a deconstruction of RS1, which serves as a good consistency check for our formalism as
the phenomenological consequences are well-studied in the continuum limit [24, 25]. The
formalism we present is entirely general and provides a means to determine the background
cosmological solutions to any modified theory of gravity utilising multiple pairwise interacting
metric fields, although in the present work we specialise to clockwork gravity models due to
their potential application to the hierarchy problem.

The structure of the paper, then, is as follows: in section 2 we outline the specifics of
clockwork theory and develop our symmetric polynomial formalism; in section 3 we specialise
to clockwork gravity; in section 4 we show how the continuum theory arises and explain how
the construction of the 5th dimension must differ from the usual RS1 orbifold; in section 5
we look at the background cosmology of two example models, and finally we conclude in
section 6.

Throughout, we work in natural units ~ = c = 1 and use a mostly-plus metric signature.

2 The clockwork mechanism

In order to implement the clockwork mechanism as outlined above, we need an action for
a chain of N fields originally exhibiting copies of some symmetry S, which will be broken
by introducing interactions. Of course, the ultimate goal here is to choose our fields to be
gravitons and our symmetries to be diffeomorphisms, but in this section we shall work only
with scalar fields, whose associated symmetries are Goldstone shifts inherited from N copies
of U(1). We do this for two reasons: first, for clarity — the formalism we introduce is much

– 4 –



J
C
A
P
0
7
(
2
0
2
3
)
0
6
2

more intuitive in the language of scalars, and second, as we will see later on, the clockwork
gravity potential is identical to the scalar potential when we look for the background vacuum
solution, with the respective conformal factors in the metrics (which we said fully determine
the structure of the graviton zero-mode [6]) playing the role of the scalar fields.

The Lagrangian we choose is one for N real scalar fields φ = (φ0, φ1, . . . , φN−1), which
interact via some homogeneous polynomial potential of degree “deg”, in D dimensions:

S =
∫
dDxL(φ, ∂φ) (2.1)

L(φ, ∂φ) = −1
2

N−1∑
i=0

∂µφi∂
µφi − V (φ) , (2.2)

where the potential is given by:

V (φ) =
N−1∑

i1,i2,...,ideg=0
Ti1i2...idegφi1φi2 . . . φideg , (2.3)

and the coefficients Ti1i2...ideg = T(i1i2...ideg) are totally symmetric. If we rescale the coordinates
by some parameter λ, and transform the fields accordingly i.e.

x
′µ = λαxµ , φ′(x′) = λφ(x) , (2.4)

then provided we take α = 1− deg /2, the action changes by an overall scale:

S[φ′(x′)] = λdeg +D− 1
2D degS[φ(x)] . (2.5)

We see that the action has a scaling symmetry when deg = 2D/(D− 2). In particular, when
D = 4, quartic potentials (deg = 4) have this scaling symmetry.

Although the clockwork has been generalised to allow for non-nearest-neighbour inter-
actions [18], we will restrict ourselves to nearest-neighbour anyway in the knowledge that,
when working with gravity, non-nearest neighbour (loop-type) interactions generically lead
to undesirable Boulware-Deser ghosts [26–28]. This means that our coefficients Ti1i2...idegare
restricted to only terms of the form Tiii..., Ti+1,ii..., Ti+1,i+1,i... and so on, i.e. the potential
contains only terms that look like φ4

0, φ3
0φ1, φ2

0φ
2
1 etc.

The equations of motion that result from the Lagrangian eq. (2.2) are:

∂µ∂
µφa − deg

N−1∑
i2,i3,...,ideg=0

Tai2i3...idegφi2φi3 . . . φideg = 0 , (2.6)

where the factor deg arises as a result of the symmetry in the coefficients. If we want there
to exist a vacuum solution at φ = c = (c0, c1, . . . , cN−1), we require:

N−1∑
i2,i3,...,ideg=0

Tai2i3...idegci2ci3 . . . cideg = 0 . (2.7)

Perturbing the vacuum solution, φ = c+ δφ, the fluctuations have dynamics determined via
the following second-order action:

S(2) =
∫
dDx

−1
2

N−1∑
i=0

∂µδφi∂µδφi −
1
2 deg(deg−1)

N−1∑
i3,i4,...,ideg=0

Tabi3...idegci3ci4 . . . cidegδφaδφb

 ,
(2.8)

– 5 –



J
C
A
P
0
7
(
2
0
2
3
)
0
6
2

giving the mass matrix:

M2
ab = deg(deg−1)

N−1∑
i3,i4,...,ideg=0

Tabi3...idegci3ci4 . . . cideg . (2.9)

Immediately we can see the presence of the zero-mode from equations (2.7) and (2.9),
N−1∑
b=0

M2
abcb = 0 , (2.10)

and hence there is a flat direction along transformations for which δφa ∝ ca. We can actually
see that this zero-mode arises from the earlier scaling symmetry by noticing that under the
scaling transformation eq. (2.4) we have that φ′a(x) = λφa(λ−αx). We may then calculate
the infinitesimal field variation at a point by writing λ = 1 + ζ for some ζ � 1, so we get:

δφa(x) = φ′a(x)− φa(x)
= ζ[φa(x)− αxµ∂µφa(x)] .

(2.11)

About the vacuum solution φa(x) = ca, we see that the variations are simply δφa = ζca,
which is exactly what we found for the zero-mode.

We would like to impose a hierarchy on the vacuum structure such that one end of
the chain of fields is exponentially suppressed compared to the other; this is the defining
feature of a clockwork model. That is, we want to take our vacuum solution φ = c to look
something like:

ca = c

qa
, (2.12)

for some constant q ' 1 and some universal scale c. This choice of vacuum is not unique;
in principle any vacuum possessing a hierarchy with ci+1/ci < 1 would suffice. Eq. (2.12)
is simply a natural choice and serves well to develop our formalism. The question we then
want to answer is whether we can determine a set of symmetric coefficients Ti1i2...ideg in the
potential eq. (2.3) such that the vacuum has this hierarchy but the coefficients themselves
do not. To begin to answer this question, we turn to symmetric polynomials to reformulate
the problem.

2.1 Symmetric polynomial formalism
We start this section by defining objects called the elementary symmetric polynomials:

e0(x1, x2, . . . , xdeg) = 1
e1(x1, x2, . . . , xdeg) =

∑
1≤i≤deg

xi

e2(x1, x2, . . . , xdeg) =
∑

1≤i<j≤deg
xixj

...
ek(x1, x2, . . . , xdeg) =

∑
1≤j1<j2<...<jk≤deg

xj1 . . . xjk

...
edeg(x1, x2, . . . , xdeg) = x1x2 . . . xdeg .

(2.13)
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Each ek contains
(deg
k

)
= deg!

k!(deg−k)! terms in total. The elementary symmetric polynomials
are special because any symmetric polynomial of degree deg can be expressed in terms of
sums and products of the elementary symmetric polynomials up to edeg; in essence they act
as a basis for general symmetric polynomials (hence their name).

The ek are useful because we know that our coefficients Ti1i2...ideg in the potential are
totally symmetric, so we can introduce the potential polynomial,

T (x1, . . . , xdeg) =
N−1∑

i1,i2,...,ideg=0
Ti1i2...ideg(x1)i1(x2)i2 . . . (xdeg)ideg , (2.14)

which is then manifestly symmetric in all of its arguments, and hence can be expressed in
terms of the elementary symmetric polynomials eqs. (2.13). Then, when combined with
eqs. (2.7) and (2.12), we get the requirement on the potential polynomial, and hence on
Ti1i2...ideg , that will give us the desired vacuum structure:

T (x1, q
−1, q−1, . . . , q−1) = 0 . (2.15)

In addition to this condition, we want T to contain only low powers of q so that there is no
fundamental hierarchy in the coefficients Ti1i2...ideg .

We can do a similar thing for the mass matrix, and introduce the mass polynomial,

M(x1, x2) =
N−1∑
i1,i2=0

M2
i1i2(x1)i1(x2)i2

= cdeg−2 deg(deg−1)
N−1∑

i1,i2,...,ideg=0
Ti1i2...ideg(x1)i1(x2)i2q−i3q−i4 . . . q−ideg

= cdeg−2 deg(deg−1)T (x1, x2, q
−1, . . . , q−1) ,

(2.16)

from which we should readily be able to determine the components of the mass matrix, once
the coefficients Ti1i2...ideghave been determined.

Currently, there is a lot of freedom in choosing a potential polynomial that may do the
job for us. However, our restriction to nearest-neighbour interactions constrains the form of
T to only a linear combination of terms of the form

T ⊃ κ(edeg)pei , (2.17)

for constant κ and some power 0 ≤ p ≤ N − 1. Given this restriction, we can construct the
most general possible potential polynomial as:

T (x1, . . . , xdeg) =
N−2∑
n=0

deg∑
m=0

αnm (edeg(x1, . . . , xdeg))n em(x1, . . . , xdeg) , (2.18)

for some arbitrary constants αnm. We will restrict ourselves a small amount to consider only
the cases where the potential polynomial can be split into a product of two sums:

T (x1, . . . , xdeg) =
N−2∑
n=0

αn (edeg(x1, . . . , xdeg))n
deg∑
m=0

βmem(x1, . . . , xdeg) , (2.19)
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with the αnm constants being split into a product of some new constants αn and βm. Making
this restriction provides us a parameterisation for the potential coefficients which, as we will
see, proves to be neat and useful. In particular, the coefficients Ti1i2...idegcan now be read
off as:1

Tpppp...p = αpβ0 + αp−1βdeg

T{p+1}q{p}deg−q = αpβq ,
(2.20)

for p = 0, . . . , N−1 and q = 1, . . . ,deg−1, with αN−1 = α−1 = 0, and all other Ti1i2...ideg = 0.
Then, all we need to construct a theory with the desired vacuum hierarchy is to find a set of
αn and βm such that eq. (2.15) is satisfied, with sufficiently small powers of q to avoid that
same hierarchy in Ti1i2...ideg .

We can go further here, because we can evaluate the elementary symmetric polynomials
at (x1, q

−1, . . . , q−1) — they are:

ek(x1, q
−1, . . . , q−1) =

(
deg−1
k − 1

)
x1q

1−k +
(

deg−1
k

)
q−k , (2.21)

so, the vacuum condition eq. (2.15) reads:

N−2∑
n=0

αnx
n
1q
n(1−deg)

deg∑
m=0

βm

[(
deg−1
m− 1

)
x1q

1−m +
(

deg−1
m

)
q−m

]
= 0 . (2.22)

Then, comparing coefficients either side, we see that the requirement is that the coefficients
of all powers of x1 must vanish separately, which leads to the following:

αi

deg∑
m=0

βm

(
deg−1
m

)
q−m + qdegαi−1

deg∑
m=0

βm

(
deg−1
m− 1

)
q−m = 0 ∀i (2.23)

If we can find a set of αn and βm that satisfies eq. (2.23), then we can build a clockwork
potential that provides the desired asymmetrically distributed vacuum solution.2 One is free
to make this even simpler, by setting all of the non-zero α’s to be equal, since this is just a
choice of potential, which turns the above into a condition only on the β’s. We will indeed
do this going forward to make our lives easier, but for now the αn remain for completeness.

We can do a similar thing for the mass polynomial eq. (2.16), where we need to evaluate
ek(x1, x2, q

−1, . . . , q−1). These follow a similar pattern:

ek(x1, x2, q
−1, . . . , q−1) =

(
deg−2
k − 2

)
x1x2q

2−k +
(

deg−2
k − 1

)
(x1 + x2)q1−k +

(
deg−2
k

)
q−k .

(2.24)
Substituting into our mass polynomial eq. (2.16) yields the following:

M(x1, x2) = K
N−2∑
n=0

αn
(
edeg(x1, x2, q

−1, . . . , q−1)
)n deg∑

m=0
βmem(x1, x2, q

−1, . . . , q−1) , (2.25)

1In terms of the old constants αnm, we would have had Tpppp...p = αp0+αp−1,deg and T{p+1}q{p}deg −q = αpq.
2Note that here, because of the two equations at the end points i.e. i = 0 and i = N − 1 where one of the

α’s vanishes, both of the two sums involving the βm’s must vanish separately. However, later in section 3 we
will see that including matter on the boundaries adds an extra term to eq. (2.23) that stops this from being
true, so we leave the condition in full here.
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defining the constant K = cdeg−2 deg(deg−1). Expanded out in full, the mass polynomial
reads:

M(x1, x2) = K
N−2∑
n=0

αn(x1x2)nqn(2−deg)

×
deg∑
m=0

βm

[(
deg−2
m− 2

)
x1x2q

2−m +
(

deg−2
m− 1

)
(x1 + x2)q1−m +

(
deg−2
m

)
q−m

]
.

(2.26)

From this expression, we can read off the components of the mass matrix,

M2
pp = K

αpqp(2−deg)
deg∑
m=0

βm

(
deg−2
m

)
q−m + αp−1q

(p−1)(2−deg)
deg∑
m=0

βm

(
deg−2
m− 2

)
q2−m


M2
p+1,p = M2

p,p+1 = Kαpq
p(2−deg)

deg∑
m=0

βm

(
deg−2
m− 1

)
q1−m , (2.27)

with the indices on M2 running from 0 to N − 1, again with αN−1 = α−1 = 0, and all other
M2
i1,i2 = 0. We can write this in a nicer and more symmetric manner by factoring out some

of the q’s:

M2
ij = K

(
q

2−deg
2
)i+j−1

×
{
δij
[
αiq

2−deg
2 A+ αi−1q

− 2−deg
2 B

]
+ αi+j−1(δi,j−1 + δi−1,j)C

}
,

(2.28)

where we have defined the constants:

• A = ∑deg
m=0 βm

(deg−2
m

)
q−m

• B = ∑deg
m=0 βm

(deg−2
m−2

)
q2−m

• C = ∑deg
m=0 βm

(deg−2
m−1

)
q1−m

for brevity.
Written out in full matrix form (and taking αn = 1 ∀ n 6= 0, N − 1 for simplicity), this

looks like:

M2 = K



aQ−1 C 0 0 . . . 0 0
C (a+ b)Q CQ2 0 . . . 0 0
0 CQ2 (a+ b)Q3 CQ4 . . . 0 0
0 0 CQ4 (a+ b)Q5 . . . 0 0
...

...
...

... . . . ...
...

0 0 0 0 . . . (a+ b)Q2N−5 CQ2N−4

0 0 0 0 . . . CQ2N−4 bQ2N−3


(2.29)
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where:
• Q = q

2−deg
2

• a = QA

• b = Q−1B

The symmetric polynomial formalism is powerful: just by determining a set of numbers
that satisfy some relatively simple condition, eq. (2.23), we are able to determine a potential
that will give the required asymmetric vacuum structure that characterises the clockwork,
as well as the matrix encoding the masses of the gears. One could hope to find an analytic
form for the eigenvalues of eq. (2.29), in order to determine the mass gap between the zero-
mode and first massive mode, as this would be the first to show up in collider experiments.
However, thus far this looks impossible except for when Q = 1 i.e. when the potential is
quadratic, and the matrix is near-Toeplitz [29–31] (the original clockwork case considered
in [8, 10] has Q = 1). Nevertheless, it is easy enough to calculate eigenvalues numerically on
a case-by-case basis.

2.2 Examples
To demonstrate the usefulness of the formalism, we now use it to reproduce some results from
the clockwork literature, to write down a new clockwork, and to make a statement about
shift symmetric potentials with deg > 2.

2.2.1 Original (quadratic) clockwork scalar
The original clockwork proposal [8, 10, 11], as stated in section 1, was an axion setup that
used a deg = 2 shift-symmetric potential for N Goldstone bosons, πi. The shift symmetry
ensures that the theory is protected from quantum corrections [8]. Here, we will start from
their potential and try to obtain their mass matrix, using the techniques developed thus far
(this method to find the mass matrix is perhaps a bit overkill, given that we already know
the simple form of the potential, but it serves well as an illustration of the procedure).

The potential used in [8, 10] is the following:

V (π) = m2

2

N−1∑
j=0

(πj − qπj+1)2 . (2.30)

Expanding out the sum, we can extract from this potential the coefficients Ti1i2...ideg :

T00 = m2

2 , T(N−1)(N−1) = m2

2 q2 , Tpp = m2

2 (1 + q2) , Tp(p+1) = −m
2

2 q , (2.31)

for p = 1, . . . , N − 2. We can then use eq. (2.20) to determine the values of αn and βm
that should comprise our potential polynomial. A quick check shows that a good choice is
αn = α = m2/2, with

β0 = 1 , β1 = −q , β2 = q2 . (2.32)
In our formalism, choosing these numbers would be the starting point, and we would check
that they satisfy the vacuum condition and subsequently construct the potential V (π). With
these α’s and β’s, the potential polynomial T (x1, x2) reads:

T (x1, x2) = m2

2

N−2∑
n=0

(e2(x1, x2))n
[
1− qe1(x1, x2) + q2e2(x1, x2)

]
. (2.33)
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Substitution into eq. (2.23) returns 0, with both sums vanishing separately, and so the vacuum
condition is indeed satisfied as we expect.

Finally, all that remains to determine the form of the mass matrix is to calculate the
constants A,B, C and Q that appear in eq. (2.29). This is simple in this case, since the
potential is quadratic so we have Q = 1. The remaining constants are

A = β0

(
0
0

)
q0 = 1 , B = β2

(
0

2− 2

)
q2−2 = q2 , C = β1

(
0

1− 1

)
q1−1 = −q . (2.34)

Substituting into eq. (2.29) gives:

M2 = 2 m
2

2



1 −q 0 . . . 0
−q 1 + q2 −q . . . 0
...

... . . . ...
...

0 0 . . . 1 + q2 −q
0 0 . . . −q q2


, (2.35)

which is exactly the mass matrix in [8], and all is well. The authors of the original paper give
closed form solutions for the eigenvalues and eigenvectors of this matrix, finding in particular
the zero-mode which follows exactly the structure we have set out (ca = c/qa).

2.2.2 Quartic clockwork scalar
The second example we consider is a new clockwork theory, whose potential we build from
the ground up using our basic assumptions about the coefficients Ti1i2...ideg . In particular,
we stated that we would like to produce the desired vacuum hierarchy from a general deg
potential without introducing a similar hierarchy in Ti1i2...ideg . Ideally, we would like this
hierarchy to be only up to q2, if q ∼ O(1). In terms of the α’s and β’s, this means that we
would like to ideally have all α’s equal and βm ∝ q±1 at most.

Can we still satisfy the vacuum condition eq. (2.23) for some β’s with this property?
The vacuum condition tells us that, if we assert that βm ∝ q±1, for any deg only terms up to
m = 2 can be non-vanishing in order for the sums to cancel. In this case, it turns out that
we can indeed satisfy eq. (2.23), with the choice αn = α = 1 ∀ n, and,

β0 = 1
2 deg(deg−1)q−1

β1 = 1− deg
β2 = q ,

(2.36)

with all other βm = 0.3 The original proposal is just the deg = 2 version of this particular
choice (with everything multiplied up by q); this is the generalisation to arbitrary deg.

We shall consider the deg = 4 case as a simple albeit as yet unstudied example, and we
shall come back to study the gravitational version of this theory later in section 5. In the
gravitational theory, deg = 4 is a requirement because we are working in D = 4 spacetime
dimensions, but even in the pure scalar theory it is somewhat special because as we saw in
section 1 the theory has a scaling symmetry when deg = D = 4, which is the origin of the
zero-mode.

3We could also flip everything by a minus sign, and the choice would still satisfy eq. (2.23).
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For deg = 4, we have β0 = 6q−1, β1 = −3, and β2 = q. This means that the potential
coefficients are:

• Tiiii = 6q−1

• Ti+1,iii = −3

• Ti+1,i+1,ii = q

Recalling that the coefficients are symmetric on exchange of indices, we reconstruct the
potential which produces the desired vacuum solution:

V (φ) = T0000φ
4
0 + 4T1000φ

3
0φ1 + 6T1100φ

2
0φ

2
1 + . . .

= 6q−1φ4
0 − 12φ3

0φ1 + 6qφ2
0φ

2
1 + . . .

= 6
q

N−2∑
i=0

φ2
i (φi − qφi+1)2 .

(2.37)

The next step is to determine the mass matrix. For deg = 4 we have Q = q−1, and for
our choice of β’s the other constants are:

A = q−1 , B = q , C = −1 , (2.38)

which means that the mass matrix has components:

M2
ij = K(q−1)i+j−1

×
{
δij
[
(1− δi,N−1)q−2 + (1− δi,0)q2

]
− (δi,j−1 + δi−1,j)

}
.

(2.39)

We can diagonalise this mass matrix via an orthogonal field space transformation, φi =∑
j Oijaj , where the orthogonal matrix Oij has its columns given by the mass eigenvectors.

In particular, numerical investigations show the presence of the zero-mode with the correct
structure, Oi0 ∝ q−i, and so we have used the formalism to build a valid clockwork from a
deg = 4 potential.

We note that this mass matrix is of precisely the same form as the mass matrix derived
for the orignal ‘higher order clockwork gravity’ theory [6], after a bit of massaging to get their
mass matrix into the form used here (although we work with scalars, we will see in section 3
that the symmetric polynomial results carry over to the static vacuum of the gravitational
theory). The model of [6] used a rather convoluted choice for the coefficients Ti1i2...ideg , which
consequently lead to there being a function F (q) out in front of M2

ij . This just corresponds
to a more complicated choice of αn for us.

2.2.3 Shift symmetric potential
Suppose we now have a potential of arbitrary degree which carries a shift symmetry between
adjacent gears. That is, consider potentials of the form:

V (φ) =
N−1∑
i=0

(φi − qφi+1)deg , (2.40)

which have a valley along φi = qφi+1. The original proposal is the deg = 2 case of this type
of potential, but here we work with general deg.
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This type of theory cannot work as a clockwork in nature: if we define the theory in
terms of new fields χi = φi − qφi+1, whose potential consists of only self-interactions of the
form χdeg

i , then all the gears are massless unless deg = 2 (when the self-interaction is a mass
term). We would like to see how our formalism comes to the same conclusion.

It is not difficult to check that the set of βm that produces this potential is:

βm = (−q)mβ0 , (2.41)

for arbitrary β0. Naively, this is a nice choice because it automatically satisfies the vacuum
condition, due to the binomial coefficient identity,

n∑
m=0

(−1)m
(
n

m

)
= 0 (n > 0) , (2.42)

which forces both sums in eq. (2.23) to vanish.
However, when it comes to the mass matrix, if deg > 2, then the same identity forces

the constants A, B and C to vanish also, and so the mass matrix is populated entirely by
zeroes, as we expect.4

3 Discrete clockwork gravity

Now we have all we need to begin to turn our attention to gravity. We stated at the start
of section 2 that the action for clockwork gravity is equivalent to the scalar case in vacuum,
and we will see this explicitly in a short while, though some groundwork is required before
then. The starting point is the standard multi-metric gravity action in the tetrad formalism
(see [7, 23, 32]), with N Einstein-Hilbert kinetic terms and a deg = 4 interaction coupling
the various basis 1-forms:

S = SK + SV + SM (3.1)

SK =
N−1∑
i=0

M2
(4)i
4

∫
e(i)a ∧ e(i)b ∧ ?(i)R

(i)
ab (3.2)

SV = −
N−1∑

i,j,k,l=0

∫
Tijklεabcd e

(i)a ∧ e(j)b ∧ e(k)c ∧ e(l)d , (3.3)

where the Tijkl = T(ijkl) are our symmetric coefficients from section 2, and the tetrad basis
1-forms are e(i)a = e

(i)a
µ dxµ, with the vierbeins defined through g

(i)
µν = e

(i)a
µ e

(i)b
ν ηab. SM is

the action for the collective matter fields coupled to the theory. Indices are raised/lowered
site-wise, Latin indices with η

(i)
ab and Greek indices with g

(i)
µν , while we can swap between

Latin and Greek indices using the vierbeins (via change of basis).
R

(i)
ab is the curvature 2-form associated with the i-th tetrad, with one index lowered by

ηab, and ?(i)R
(i)
ab is its Hodge dual (also a 2-form in D = 4 dimensions) again with respect to

the i-th metric. We have:

R
(i)
ab = 1

2R
(i)
abµνdx

µ ∧ dxν (3.4)

?(i)R
(i)
ab = 1

2

√
−g(i)R

(i)αβ
abεαβγδdx

γ ∧ dxδ , (3.5)

4When deg > 2, the sums for A,B and C have multiple terms which always mutually cancel, but when
deg = 2, which corresponds to the n = 0 case of the identity (2.42), the sums have only a single term, which
clearly survives — we saw this explicitly for the original scalar case.
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where the R’s with 4 indices are components of the i-th Riemann tensor. This kinetic term
is nothing more than the usual Einstein-Hilbert action, just written in a nicer way using
differential forms, so as to make computing the equations of motion simpler — we can see
this as follows (suppressing the (i) indices):

SK =
M2

(4)
8

∫
e aµ e

b
ν

√
−gRαβabεαβγδdx

µ ∧ dxν ∧ dxγ ∧ dxδ

=
M2

(4)
8

∫
e aµ e

b
ν

√
−gRαβabεαβγδ

εµνγδ√
−g

(?1)

=
M2

(4)
8

∫
Rαβµν

(
4δµ[αδ

ν
β]

)
(?1)

=
M2

(4)
2

∫
Rαβαβ(?1)

=
M2

(4)
2

∫
d4x
√
−gR ,

where in the 4th line we used the fact that the Riemann tensor is antisymmetric on its last
two (2-form) indices.

The action eq. (3.1) is the same as the standard dRGT action for ghost-free multi-metric
gravity [27, 28, 33, 34] in the metric formulation provided that the Deser-van Niewenhuizen
symmetric vierbein condition,

e(i)µ
ae

(j)b
µ = e(i)µbe(j)

µa , (3.6)

is satisfied. Taking nearest neighbour interactions ensures that this is true, and so avoids the
presence of Boulware-Deser ghosts in the clockwork theory [27, 28].

It is important to stress that the multi-gravity theory we are considering is entirely
specified by a choice for both the number of sites and the potential coefficients Tijkl. There-
fore, all the results we present in this section will hold for a general multi-gravity theory
with nearest neighbour interactions (and so any multi-gravity devoid of the Boulware-Deser
ghost), although we shall later specialise to some choice for the coefficients corresponding to
a clockwork model.

3.1 Modified Einstein equations

We get the equations of motion by varying the action with respect to the i-th tetrad [32],
e(i)a, resulting in:

M2
(4)i
2 e(i)b ∧ ?(i)R

(i)
ab + εabcd

∑
jkl

P(i)Tijkle(j)b ∧ e(k)c ∧ e(l)d = ?(i)T (i)
a . (3.7)

P(i) counts the number of times (i) appears in the coefficient Tijkl i.e. terms of the form

• Tijkl =⇒ P(i) = 1

• Tiijk =⇒ P(i) = 2

• Tiiij =⇒ P(i) = 3

• Tiiii =⇒ P(i) = 4 ,
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and ?(i)T
(i)
a is the dual of the energy-momentum 1-form T

(i)
a associated with matter coupled

to the i-th site, defined as:

?(i)T (i)
a = δSM

δe(i)a = 1
6
∣∣∣e(i)

∣∣∣T (i)µ
aεµναβdxν ∧ dxα ∧ dxβ , (3.8)

with T
(i)µ

ν = T
(i)µ

ae
(i)a
ν and

∣∣∣e(i)
∣∣∣ the vierbein determinant, which is just

√
−g(i). If the

matter sector has a metric formulation, this is just the standard energy-momentum tensor
of GR.

In components, after applying the Hodge star, eq. (3.7) reads:

M2
(4)iG

(i)µ
ν + 24e(i)a

ν e
(i)µ

[ae
(i)λ1

b e
(i)λ2

c e
(i)λ3

d]
∑
jkl

P(i)Tijkle(j)b
λ1

e
(k)c
λ2

e
(l)d
λ3

= T (i)µ
ν , (3.9)

and for brevity we can package up the interaction term into a single tensor W (i)µ
ν , so that

the Einstein equations are:

M2
(4)iG

(i)µ
ν +W (i)µ

ν = T (i)µ
ν , (3.10)

with, explicitly:

W (i)µ
ν = 24e(i)a

ν e
(i)µ

[ae
(i)λ1

b e
(i)λ2

c e
(i)λ3

d]
∑
jkl

P(i)Tijkle(j)b
λ1

e
(k)c
λ2

e
(l)d
λ3

. (3.11)

With our nearest neighbour restriction for the interactions, theW -tensor expands out as:

W (i)µ
ν = 24× 4e(i)a

ν e
(i)µ

[ae
(i)λ1

b e
(i)λ2

c e
(i)λ3

d]

×
[
Tiiiie

(i)b
λ1
e

(i)c
λ2
e

(i)d
λ3

+ 3Tiii,i+1e
(i+1)b
λ1

e
(i)c
λ2
e

(i)d
λ3

+ 3Tii,i+1,i+1e
(i+1)b
λ1

e
(i+1)c
λ2

e
(i)d
λ3

+ Ti,i+1,i+1,i+1e
(i+1)b
λ1

e
(i+1)c
λ2

e
(i+1)d
λ3

+ Ti,i−1,i−1,i−1e
(i−1)b
λ1

e
(i−1)c
λ2

e
(i−1)d
λ3

+ 3Tii,i−1,i−1e
(i−1)b
λ1

e
(i−1)c
λ2

e
(i)d
λ3

+ 3Tiii,i−1e
(i−1)b
λ1

e
(i)c
λ2
e

(i)d
λ3

]
.

(3.12)

3.2 Constraints and energy conservation

By the Bianchi identity, each Einstein tensor is covariantly conserved with respect to its own
(Levi-Civita) connection:

∇(i)µG(i)
µν = 0 , (3.13)

but because of our new interaction terms, this means that, individually, the energy-momen-
tum tensors are not covariantly conserved, but satisfy instead:

∇(i)µT (i)
µν = ∇(i)µW (i)

µν . (3.14)
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However, the matter sector as a whole, over all sites, remains generally covariant [32, 35, 36]:

N−1∑
i=0

∣∣∣e(i)
∣∣∣∇(i)µT (i)

µν = 0 , (3.15)

which therefore implies the following constraint on the interactions due to eq. (3.14), which
we shall henceforth refer to as the Bianchi constraint:

N−1∑
i=0

∣∣∣e(i)
∣∣∣∇(i)µW (i)

µν = 0 . (3.16)

The Bianchi constraint tells us something about what is going on physically. For ex-
ample, if we have matter coupled to only one site, then by virtue of eq. (3.15) the energy-
momentum tensor on that site is conserved individually and so a free test particle would
follow the geodesics of that site’s metric. By eq. (3.14), the corresponding W -tensor, and as
a consequence every other W -tensor, is also conserved individually in this case. The force
between two sources, however, will comprise a contribution from the zero-mode, as well as
suppressed contributions from the additional massive modes. If matter couples to more than
one site, it is not obvious what the ‘physical’ metric should be and there is more work to be
done to try and understand this.

Regardless, we can now begin to use all this technology to try to solve our modified
Einstein equations for cosmological FRW-like solutions.

3.3 Vacuum solutions

The first situation we consider is the vacuum case, where there is no matter on any of the
sites i.e. SM = 0. We shall take the ansatz for the gear metrics to be:

ds2
(i) = −c2

i (t)dt2 + a2
i (t)ηjkdxjdxk , (3.17)

and eventually look for deSitter vacuum solutions of the form ai(t) = ai,0e
Hit for some set

of constant Hubble parameters Hi, and ai,0 = ai(0). Since all of the metrics live on the
same space, we can only rescale the coordinates to fix the lapse and scale factor of one of
the metrics, while the rest must remain free (normally we will choose to fix them to 1 on an
appropriate site e.g. the first site, in vacuum, or the site where matter couples, if there is a
matter coupling).

With this choice for our metric, the Einstein tensor has the following non-vanishing
components:

G
(i)0

0 = −3
(
ȧi
aici

)2
(3.18)

G
(i)j

k = 1
c2
i

(
− ȧ

2
i

a2
i

− 2 äi
ai

+ 2 ȧi
ai

ċi
ci

)
δjk . (3.19)

Also, the vierbeins are:

e
(i)0
0 = ci (3.20)

e
(i)k
j = aiδ

k
j , (3.21)

– 16 –



J
C
A
P
0
7
(
2
0
2
3
)
0
6
2

which lead to the following non-vanishing W -tensor components, in terms of the α’s and β’s
defined in section 2 for the potential coefficients:

W
(i)0

0 = αi

4∑
m=0

24βm
(

3
m

)
ami+1a

−m
i + αi−1

(
ai−1
ai

)4 4∑
m=0

24βm
(

3
m− 1

)
a−mi−1a

m
i (3.22)

W
(i)j

k = 24δjk
{
αi
[
β0 + β1(ci+1c

−1
i + 2ai+1a

−1
i ) + β2(2ci+1c

−1
i ai+1a

−1
i + a2

i+1a
−2
i )

+ β3(ci+1c
−1
i a2

i+1a
−2
i )
]

(3.23)
+ αi−1

[
β1(ci−1c

−1
i a2

i−1a
−2
i ) + β2(2ci−1c

−1
i ai−1a

−1
i + a2

i−1a
−2
i )

+ β3(ci−1c
−1
i + 2ai−1a

−1
i ) + β4

]}
.

So, we have 2 sets of Einstein equations: a modified Friedmann equation coming from all
of the 00-type terms, and a modified Raychaudhuri equation coming from the jk-type terms.

Considering first the modified Friedmann equation, and substituting in our deSitter
ansatz for the vacuum solution, we get:

3M2
(4)i

(
Hi

ci

)2
= αi

4∑
m=0

24βm
(

3
m

)
ami+1,0a

−m
i,0 e

m(Hi+1−Hi)t

+ αi−1

4∑
m=0

24βm
(

3
m− 1

)
a4−m
i−1,0a

m−4
i,0 e(4−m)(Hi−1−Hi)t .

(3.24)

Note that we still we have the lapse on the left hand side that we must deal with. Thank-
fully, we are able to make some progress here due to the Bianchi constraint, eq. (3.16). In
appendix A, we show that if there is no matter coupling, or matter couples to one site only,
then the only way to satisfy the constraint is to take the lapses to be given in terms of the
scale factors as,

ci = ȧi
ȧI

, (3.25)

where I is the site whose lapse we fix to 1 via coordinate rescaling. In terms of eq. (3.16)
this is the case where each term in the sum vanishes separately i.e. where every W -tensor is
covariantly conserved with respect to its own connection, which must necessarily be the case
in vacuum. This directly generalises the solution for 2 sites given in [32, 35] and for 3 sites
in [36] (who work in conformal time so that the above becomes ci = (ȧi/ȧI)aI , but it describes
the same situation). Physically, it means that there is no flow of energy-momentum across
the sites. The solution also automatically satisfies the Bianchi constraint even if matter
couples to more than one site; it is just that more complicated solutions could also exist, in
that scenario.

With this expression for the lapses, something nice happens to the Friedmann equation.
Substituting into eq. (3.24) yields:

3M2
(4)iH

2
I = a2

i,0e
2(Hi−HI)t

[
;αi

4∑
m=0

24βm
(

3
m

)
ami+1,0a

−m
i,0 e

m(Hi+1−Hi)t

+ αi−1

4∑
m=0

24βm
(

3
m− 1

)
a4−m
i−1,0a

m−4
i,0 e(4−m)(Hi−1−Hi)t

]
,

(3.26)
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and we see that the l.h.s. is now a constant, while the r.h.s. is time-dependent. The only
way that these equations can be satisfied is if all sites have the same Hubble parameter, thus
killing the time dependence by forcing the exponentials on the r.h.s. to 1! We find, therefore,
that the theory possesses deSitter vacua,

ai(t) = ai,0e
Ht , (3.27)

for some constant H (so the lapses are, explicitly, ci = ai,0/aI,0 — in particular this means
that the Friedmann and Raychaudhuri equations become equivalent), where the ai,0’s and H
satisfy the algebraic equations:

3M2
(4)iH

2 = a2
i,0

[
αi

4∑
m=0

24βm
(

3
m

)
ami+1,0a

−m
i,0 + αi−1

4∑
m=0

24βm
(

3
m− 1

)
a4−m
i−1,0a

m−4
i,0

]
. (3.28)

Since we are free to set aI,0 = 1, this is a system of N equations for N variables (H and
the N − 1 remaining ai,0’s) and is hence in principle solvable, with a number of solutions,
corresponding to deSitter vacua with different values of H. The number of physical deSitter
vacua depends only on the number of solutions to these equations that have real scale factors,
which in general is dependent on both the number of sites and the potential coefficients Tijkl.

Naturally, the vacuum condition eq. (2.23) we derived in section 2 is simply a special
case of eq. (3.28).5 Namely, it is the static (i.e. H = 0) solution where we impose the desired
clockwork vacuum structure ai,0 = a0,0/q

i (if we set aI,0 = 1 then this also fixes the overall
normalisation to be a0,0 = qI), and then choose our α’s and β’s to ensure that this vacuum
is indeed a solution to the Einstein equations.6 In fact, if we work in conformal time (so that
the lapses become ci = ai,0, and all metrics are conformally flat) one can see directly that the
clockwork gravity potential eq. (3.3) is identical to the deg = 4 scalar potential eq. (2.3) we
used throughout section 2, with the conformal factors ai,0 playing the role of the scalars φi.

The upshot is that we are free to use all of the techniques we have already developed
in order to pick a good set of coefficients Tijkl for the gravitational theory. This carries over
to the graviton mass matrix too — which we can determine by expanding around the static
vacuum solution,

g(i)
µν = a2

i,0ηµν + ai,0
M(4)i

h(i)
µν , (3.29)

where the normalisation by M(4)i is to ensure the Fierz-Pauli kinetic term for h(i)
µν is canoni-

cal [37]. The second-order variation of the potential is then [6]:

S
(2)
V = 1

2

∫
d4x

N−1∑
i,j=0

1
2M(4)iM(4)j

M2
ij

[
h(i)h(j) − h(i)µ

νh
(j)ν

µ

]
, (3.30)

where h(i) = h
(i)µ

µ, and the mass matrix M2
ij is as in section 2, so we are able to calculate its

components given a set of Tijkl, and hence determine the spectrum of graviton masses.

5It is important to stress, however, that without the symmetric polynomial formalism we would not have
possessed the intuition about splitting the Tijkl into α’s and β’s that was crucial in all of this.

6A choice of α’s and β’s completely specifies the theory. We choose them such that the clockwork vacuum
is a static solution to our theory, but in principle one could choose them however they wish — the results of
this section are entirely general.
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3.3.1 The physical Planck scale

We have thus far not said anything about how we should interpret the quantity M(4)i, which
looks like a Planck scale for each site, so might naively be assumed to be just that. The
physical Planck scale Meff, however, is the one associated with the clockwork zero-mode,
which is related to M(4)i but is crucially not the same thing.

To figure out what this scale should be, we must work in terms of the graviton mass
eigenstates, which we obtain as in section 2.2.2 via an orthogonal rotation of the field basis,

h(i)
µν =

N−1∑
j=0

Oij h̃(j)
µν , (3.31)

where the columns of the orthogonal matrix O are given by the mass eigenvectors. In par-
ticular, we have the zero-mode, h̃(0)

µν = h
(i)
µνOi0 = N

qi h
(i)
µν , where the normalisation is:

N = 1√∑N−1
i=0 q−2i

=
√

1− q−2

1− q−2N . (3.32)

Note that for q > 1 we see that the contribution to the zero-mode from the i-th metric
diminishes as i increases towardsN−1. It also follows that the gear metrics may be written as:

g(i)
µν = a2

i,0ηµν + ai,0
M(4)i

N
qi
h̃(0)
µν + ai,0

M(4)i

N−1∑
j=1

Oij h̃(j)
µν . (3.33)

So, if we include a minimal coupling to matter on the I-th site, and assume (as in [6])
that the fundamental clockwork scaleM(4)i = M(4) is the same on all sites, then the variation
in the action becomes (fixing aI,0 = 1 so that a0,0 = qI):

δSM = 1
2

∫
d4x δg(I)

µν T
(I)µν

=
∫

d4x
1

2Meff
h̃(0)
µν T

(I)µν + 1
2M(4)

N−1∑
j=1

Oij h̃(j)
µν ,

(3.34)

and we can identify the physical Planck scale as:

M2
eff = 1− q−2N

1− q−2 q2IM2
(4) , (3.35)

which can be much larger thanM(4) if the number of fields in the chain is big enough (indeed,
this is the purpose of using the clockwork).

3.3.2 Adding a cosmological constant

The full treatment of the Einstein equations given above is more general than the derivation of
our vacuum condition eq. (2.23) from section 2, and allows for modification by a cosmological
constant. We see this by taking on some sites j a non-zero energy-momentum tensor of
the form:

T (j)
µν = −σjg(j)

µν , (3.36)
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for some constants σj , which will subsequently appear on the r.h.s. of our Einstein equations.
In particular, the static H = 0 clockwork vacuum solution which we use as a means of
choosing a good set of potential coefficients Tijkl is modified to:

αi

deg∑
m=0

deg!βm
(

deg−1
m

)
q−m+qdegαi−1

deg∑
m=0

deg!βm
(

deg−1
m− 1

)
q−m+

∑
j

σjδ
j
i = 0 ∀i , (3.37)

where we write the result for general deg, but of course we have deg = 4.
A particularly interesting case is the one where we have j = 0, N − 1 i.e. we place a

cosmological constant on only the first and last sites of the clockwork lattice. In this case,
since we have (by definition) that α−1 = αN−1 = 0, the two σ’s play the role of the missing
sum on each of the end sites, that is:

σ0 = −α0

deg∑
m=0

deg!βm
(

deg−1
m

)
q−m , (3.38)

σN−1 = −qdegαN−2

deg∑
m=0

deg!βm
(

deg−1
m− 1

)
q−m . (3.39)

If all of the nonzero α’s are equal, the vanishing of the bulk equations implies that the σ’s
must be equal and opposite:

αn = α ∀n =⇒ σ0 = −σN−1 . (3.40)

In section 4, we will see that in the continuum limit these σ’s are identified with the respective
tensions of branes placed either end of the clockwork lattice, so this result is not surprising.

3.4 Matter solutions

Now we wish to add a minimal matter coupling to some of the sites. Since we are interested
in cosmology, we assume that each energy-momentum tensor is of perfect fluid form, but
keep in the possibility of an additional cosmological constant σ, i.e.

T (i)
µν = (ρi + σi)uµuν + (pi − σi)γ(i)

µν , (3.41)

for 4-velocity uµ and γ(i)
µν = uµuν + g

(i)
µν .

When T
(i)
µν refers to any form of matter other than a cosmological constant (e.g. ra-

diation, pressureless dust), it is necessarily time-dependent due to the conservation equa-
tion (3.15). This means that our exponential ansatz for the vacuum solutions no longer
works, because the r.h.s. of our Einstein equations will always be time-dependent, which is
inconsistent with the constancy of the l.h.s. . Therefore, we must work with the equations in
general, and figure out a way to solve them.

Written out in full, the modified Friedmann equation reads:

3M2
(4)i

(
ȧi
aici

)2
=αi

4∑
m=0

24βm
(

3
m

)
ami+1a

−m
i

+ αi−1

(
ai−1
ai

)4 4∑
m=0

24βm
(

3
m− 1

)
a−mi−1a

m
i + (ρi + σi) ,

(3.42)
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and the modified Raychaudhuri equation is:

M2
(4)i
c2
i

(
ȧ2
i

a2
i

+ 2 äi
ai
− 2 ȧi

ai

ċi
ci

)
= 24

{
αi
[
β0 + β1(ci+1c

−1
i + 2ai+1a

−1
i ) + β2(2ci+1c

−1
i ai+1a

−1
i + a2

i+1a
−2
i )

+ β3(ci+1c
−1
i a2

i+1a
−2
i )
]

+ αi−1
[
β1(ci−1c

−1
i a2

i−1a
−2
i ) + β2(2ci−1c

−1
i ai−1a

−1
i + a2

i−1a
−2
i )

+ β3(ci−1c
−1
i + 2ai−1a

−1
i ) + β4

]}
− (pi − σi) .

(3.43)

At first glance, these equations appear very ugly: they are N highly nonlinear coupled
differential equations, which are difficult to solve (and potentially impossible to do so analyt-
ically in general). To make things more tractable, we can use the same result for the lapses
that we used in deriving the vacuum solutions, since this came directly from the Bianchi
constraint, which still holds here. Therefore, we fix the lapse/scale factor to 1 on some site
I where there is a minimal matter coupling and so take ci = ȧi/ȧI .

Substituting these lapses into the Friedmann equations, eqs. (3.42), as before, yields a
series of equations for ȧI , which we package together as:

3M2
(4)i

(
ȧI
ai

)2
= fi(a) , (3.44)

where each fi is understood as the r.h.s. of the i-th Friedmann equation. That is, fi essentially
represents the 00-component of the i-th W -tensor encoding the clockwork interactions, plus
any additional matter minimally coupled to the i-th site. Each fi is a function of ai and
its nearest-neighbours only i.e. fi(a) = fi(ai, ai−1, ai+1). While we only have an evolution
equation for aI , taking the ratio of fi and fj gives a set of algebraic conditions that the a’s
must satisfy throughout the evolution, namely, that:

a2
jfj(a) = a2

i fi(a) . (3.45)

So, we should (at least numerically) be able to evolve aI via eq. (3.44), and at each time step
ensure that the rest of the scale factors obey eq. (3.45). This will then implicitly track the
evolution of all ai, and so solve for the background evolution. We will do this to solve the
evolution equations for two example models in section 5.

As eluded to in section 1, one of the models we use as a consistency check for our work
is a deconstructed version of the RS1 braneworld. It is not immediately obvious that we can
do this, so it is useful to first review how we can relate our discrete clockwork to a continuum
theory in 5D, of which RS1 exists as a special case, with suitable modifications to the system
boundaries. This is explored in the next section, clarifying the work of [7].

4 Continuum clockwork gravity

Following [7], we can relate our 4D clockwork quantities to an underlying 5D geometry into
which they are embedded. We take the continuum 5D line element to be:

ds2 = gµν(x, y) + dy2 , (4.1)
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which corresponds to a 5D geometry given byM = M4 × [0, L], where M4 is our usual 4D
spacetime, parametrised by coordinates xµ, and the new coordinate y ∈ [0, L] parametrises
the compact extra dimension, which lives on an interval from 0 to L. Our bulk spacetime
M possesses a boundary ∂M that has two components: one at y = 0 and one at y =
L. The component at y = 0 is negatively oriented, whereas the component at y = L is
postively oriented, in the sense that integrating over the boundary component in question
comes equipped with the appropriate sign. Usually, when one talks of these kind of 5D
deconstructions, the extra dimension is orbifolded on S1/Z2 [4, 24, 25, 38], with fixed points
of Z2 at y = 0 and y = L rather than true boundaries, with the Z2-symmetry being used
to ease calculations at these special points. With the clockwork, we are not afforded this
luxury. The reason for this will become clear very shortly, but for now we work with the
geometry as described. From now on we will use M,N = 0, 1, 2, 3, 5 to refer to 5D indices
and µ, ν = 0, 1, 2, 3 to refer to 4D indices.

With our choice of line element, 4D hypersurfaces of constant y have a very simple unit
normal, nM = (0, 1), and so the induced metric hMN = gMN − nMnN has only hµν = gµν
as its non-zero components. We can define the constant-y hypersurfaces’ extrinsic curvature
for arbitrary vector fields X and Y by:

K(X,Y ) = g(∇Xn, Y ) . (4.2)

The components are given by the Lie derivative of hMN along the normal vector, KMN =
1
2LnhMN , so only the following components are non-vanishing:

Kµν = 1
2∂ygµν , (4.3)

which in terms of the vierbeins reads:

Kµ
ν = 1

2e
µbeσbeνa∂ye

a
σ + 1

2e
µa∂yeνa . (4.4)

We connect the discrete theory to the continuum by interpreting the (i) indices as
corresponding to discrete locations in the 5th dimension, separated by some distance δy.
That is, we have yi = iδy, and the i-th discrete clockwork metric is the induced metric on
the hypersurface at yi:

g(i)
µν(x) = gµν(x, yi) . (4.5)

This picture makes it clear why we cannot orbifold our 5th dimension on S1/Z2: the first
and last sites of the clockwork lattice in the discrete theory are just that, endpoints of the
system, so in the continuum limit they must become true boundaries of the extra dimension,
without Z2-symmetry. When we come to talk about RS1, we shall see the effect of this lack
of Z2-symmetry on calculations explicitly.

We are lead to introduce finite difference expressions for derivatives in the y direction,

∂yeµa →
1
δy

[
e(i+1)
µa − e(i)

µa

]
, (4.6)

which we can then use, along with the symmetric vierbein condition (and a lot of algebra),
to rewrite the discrete action eq. (3.1) in terms of these extrinsic curvatures. The continuum
limit is achieved by sending δy → 0 and the number of sites N → ∞, while keeping the
product (N − 1)δy = L fixed. In this limit, the clockwork action eq. (3.1) becomes:

Sbulk =
∫
M

[
M3

(5)
2 R(5) − 2Λ5(y) + α1(y)M4

(5)K + α2(y)M3
(5)K2 + α3(y)M2

(5)K3

]
, (4.7)
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where

K = Kµ
µ (4.8)

K2 = δ[µ
α δ

ν]
β K

α
µK

β
ν (4.9)

K3 = δ[µ
α δ

ν
βδ
ρ]
γ K

α
µK

β
νK

γ
ρ (4.10)

2Λ5(y) = 24
δy

(Tiiii + 4Tiii,i+1 + 6Tii,i+1,i+1 + 4Ti,i+1,i+1,i+1) (4.11)

α1(y)M4
(5) = −24 (Tiii,i+1 + 3Tii,i+1,i+1 − 3Ti,i+1,i+1,i+1) (4.12)

α2(y)M3
(5) +M3

(5) = −24δy (Tii,i+1,i+1 + 2Ti,i+1,i+1,i+1) (4.13)
α3(y)M2

(5) = −24δy2Ti,i+1,i+1,i+1 (4.14)

M3
(5) =

M2
(4)
δy

, (4.15)

and R(5) is the Ricci scalar constructed from the 5D metric with components gMN . If one
wishes, the extrinsic curvature terms can instead be realised as an extra scalar degree of
freedom, which is not a dilaton [7]. We can also invert these to give us the coefficients Tijkl
in terms of the 5D quantities:7

24Tiiii = 2Λ5δy + 28α3
M2

(5)
δy2 − 6

α2M
3
(5) +M3

(5)
δy

+ 4α1M
4
(5) (4.16)

24Tiii,i+1 = −9α3
M2

(5)
δy2 + 3

α2M
3
(5) +M3

(5)
δy

− α1M
4
(5) (4.17)

24Tii,i+1,i+1 = 2α3
M2

(5)
δy2 −

α2M
3
(5) +M3

(5)
δy

(4.18)

24Ti,i+1,i+1,i+1 = −α3
M2

(5)
δy2 . (4.19)

Eq. (4.7) is the action that describes the 5D bulk in the continuum theory. To account
for the boundary ∂M, we must include a Gibbons-Hawking term [39, 40] to ensure that the
variational problem is well-posed:

Sboundary =
∫
∂M

M3
(5)K , (4.20)

where K is the trace of the extrinsic curvature on the boundary ∂M.
In principle, we may also place a brane at each of the respective boundary components,

each with some tension σi and matter Lagrangian Lm,i:

Sbranes =
∑
i=L,R

∫
d4x

√
−h(i) (−σi + Lm,i) , (4.21)

where h(i) are the induced metrics on each of the left and right branes — which we identify
with the first and last site of clockwork i.e. h(L)

µν (x) = gµν(x, 0) = g
(0)
µν , and h

(R)
µν (x) =

gµν(x, L) = g
(N−1)
µν . The full action for the continuum clockwork is then just the sum of the

three pieces outlined above,

S = Sbulk + Sboundary + Sbranes . (4.22)
7We corrected a minus sign error in [7] here.
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4.1 Randall-Sundrum (continuum)

The Randall-Sundrum model is the simplest possible special case of the continuum the-
ory (4.22), which has α1 = α2 = α3 = 0 and Λ5 = const, so that the bulk is just pure 5D
gravity i.e.

Sbulk =
∫
M

M3
(5)
2 R(5) − 2Λ5 . (4.23)

To determine the equations of motion, we vary the action with respect to the metrics
in question. In standard GR, variations of the boundary metric h vanish, but here we must
allow them to be arbitrary, as we are interested in what they do (they correspond to the first
and last sites of the clockwork). The result is that we get two sets of equations — one set
for the bulk due to the Ricci scalar variation:

M3
(5)GMN + 2Λ5gMN = 0 , (4.24)

which is just standard GR in 5D, and one set for the boundary due to the Gibbons-Hawking
variation, which reads:

KMN −KhMN = −κ2SMN (y = 0)
KMN −KhMN = +κ2SMN (y = L) ,

(4.25)

where SMN is the brane energy-momentum tensor associated with Lm,i and σi, κ2 = 1/M3
(5),

and the sign change on the r.h.s. is due to the change in orientation between the two boundary
components.

We can understand these boundary equations as being one side of the usual Israel
junction conditions across a singular hypersurface embedded in an underlying spacetime
manifold [41, 42]. Indeed, we can reconstruct the usual S1/Z2 orbifold by thinking of the full
spacetime in that case to be constructed from two separate intervals, [−L, 0] and [0, L], which
share a common boundary at y = 0, and also at y = L due to the Z2 symmetry. Variation
of the Gibbons-Hawking term with this construction leads to precisely the Israel conditions
across the branes at y = 0 and y = L, and the Z2 symmetry manifests as an additional factor
1/2 on the r.h.s. of eqs. (4.25). For us, we only have the interval [0, L], so there is no notion
of jumping across a brane, and hence our boundary equations have no factor 1/2.

Since the bulk is just 5D GR, the Bianchi identity says that the Einstein tensor is
covariantly conserved. By eq. (4.24), so too is the energy-momentum tensor:

∇MGMN = ∇MTMN = 0 . (4.26)

As a result of the Codazzi equation, which relates the 5D quantities to their projection onto
a 4D hypersurface [25, 43], the brane energy-momentum tensor is also covariantly conserved
with respect to its associated covariant derivative i.e.

∇µ(4)Sµν = 0 . (4.27)

The solutions to this system are well-studied in the literature (see e.g. [24, 25, 44] and
refs therein), so we shall only give a very brief overview.
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4.1.1 Static vacuum solution

This is the solution where we have no matter, only tension, on the brane i.e. SMN = −σhMN ,
which is the continuum version of the situation in the discete theory where we have only a
cosmological constant on each of the end sites. In full analogy with the discrete case, we take
our metric to depend only on y, and make it such that the hypersurfaces are conformally
flat. That is, the bulk is AdS5, and we have:

ds2 = e−2A(y)ηµνdxµdxν + dy2 , (4.28)

where for convenience we work with the warp factor A(y) rather than the usual scale factor
a(y), but of course we can go between them with the identification a = e−A. With this
metric, the bulk equations become:

Gµν = (6A′2 − 3A′′)gµν (4.29)
Gµ5 = G5µ = 0 (4.30)
G55 = 6A′2 , (4.31)

where primes denote derivatives with respect to y. From the 55-equation we get:8

A = ky , k2 = − Λ5
3M3

(5)
, (4.32)

and the µν-equation is internally consistent with this result.
Regarding the boundary, the only surviving components of the extrinsic curvature are

Kµν = −A′hµν , so we get:

3A′hµν = +κ2σ0hµν (y = 0)
3A′hµν = −κ2σLhµν (y = L) ,

(4.33)

which implies that our brane tensions must satisfy:

σ0 = −σL = 3kM3
(5) . (4.34)

This is the standard RS1 solution, adapted to our lack of Z2-symmetry (including Z2-
symmetry would give σ0 = −σL = 6kM3

(5) instead, which is the usual result [4]).

4.1.2 Matter solution

As with the discrete theory, when we add a dynamical matter fluid to the system, we no
longer have the freedom to solve the system for a conformally flat hypersurface metric, and
need to keep things general. The metric ansatz that does the job for us is:

ds2 = −c2(t, y)dt2 + a2(t, y)ηijdxidxj + b2(t, y)dy2 , (4.35)

where now it proves more convient to work with the conventional scale factors rather than
warp factors. With this choice of metric, we get our 5D Einstein equations, of which there

8We could, of course, also have had A = −ky. All this amounts to is changing perspective on which brane
you are looking from.
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are four:

G00 = 3
(
ȧ2

a2 + ȧ

a

ḃ

b

)
+ 3c

2

b2

(
a′

a

b′

b
− a′′

a
− a′2

a2

)
= κ2T00 (4.36)

Gij = a2

c2 ηij

(
− ȧ

2

a2 + 2 ȧ
a

ċ

c
− 2 ȧ

a

ḃ

b
+ ḃ

b

ċ

c
− 2 ä

a
− b̈

b

)

+ a2

b2 ηij

(
a′2

a2 − 2a
′

a

b′

b
+ 2a

′

a

c′

c
− b′

b

c′

c
+ 2a

′′

a
+ c′′

c

)
= κ2Tij

(4.37)

G05 = 3
(
ȧ

a

c′

c
+ a′

a

ḃ

b
− ȧ′

a

)
= κ2T05 (4.38)

G55 = 3
(
a′2

a2 + a′

a

c′

c

)
+ 3b

2

c2

(
ȧ

a

ċ

c
− ȧ2

a2 −
ä

a

)
= κ2T55 . (4.39)

With bulk energy momentum tensor TMN = −2Λ5gMN , we immediately see that G05 = 0.
Remarkably, using this equation for G05, one can show that any set of functions a, b and c
which satisfy both G05 = 0 and(

ȧ

ac

)2
=
(
a′

ab

)2
+ κ2Λ5

3 + C

a4 . (4.40)

will solve all of Einstein’s equations, locally in the bulk [44]. The term scaling as a−4 is
the so-called ‘dark radiation’ term, which arises as a result of bulk Weyl curvature when the
bulk is not AdS but AdS-Schwarzchild [45], so we are safe to set the constant C, which is
proportional to the mass of the bulk black hole, to be 0.

If the matter on the brane (say, at y = 0) is of perfect fluid form i.e Sµν is given by
eq. (3.41), then the boundary equation eq. (4.25) allows us to substitute in for (a′/ab)2∣∣

0 to
obtain a modified Friedmann equation for the dynamics on the brane:9(

ȧ0
a0

)2
= 8πG

3 ρ0

(
1 + ρ0

2σ0

)
+ Λ4

3 + C

a4
0
, (4.41)

where Newton’s constant and the 4D effective cosmological constant are, respectively, in
terms of the 5D parameters, 8πG = 2κ4σ/3 and Λ4 = κ2(Λ5 + κ2σ2/3). Again these are
adapted from the standard RS identifications to our lack of Z2-symmetry — though the
dynamics remain the same (since ρ0 also is affected by the Z2 factor). In particular, at early
times we get a modification to the usual Friedmannn equation by a ρ2 term, but since ρ
decays, at late times the evolution is as in standard FRW cosmology.

Since we have that the energy-momentum tensor on the brane is conserved, ρ0 just
follows the usual fluid equation:

ρ̇0 + 3 ȧ0
a0

(ρ0 + p0) = 0 , (4.42)

so we have all the information we need to solve for the dynamics.
We can also extend the solution on the brane to the whole bulk, provided we take

b = 1 for all time (with some suitable radion stabilisation mechanism to allow for this, see
9We could have also obtained this equation by using the Gauss-Codazzi equations [43] to directly project

the 5D Einstein tensor onto the brane at y = 0.
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e.g. [46]). The procedure is outlined in [44], but here we will simply state the solution, which
reads (when C = 0):

a(t, y) = a0(t)(cosh ky − η sinh k|y|) (4.43)

c(t, y) = ȧ(t, y)
ȧ0(t) = cosh ky − η̃ sinh k|y| , (4.44)

where k is as in the static solution, and

η = 1 + ρ0
σ
, η̃ = η + ρ̇0a0

ȧ0
. (4.45)

The equation (4.44) for the lapse in terms of the scale factor is a direct result of the
Einstein equation G05 = 0, which tells us that there is no flow of energy along the 5th
dimension. In the discrete theory, the lapses have the same form — see eq. (3.25) — but there
it is due to the Bianchi constraint on theW -tensor interaction terms, which tells us that there
can be no energy flow across the sites of the clockwork. Clearly there is some correspondence
between these two ideas — more on this very shortly, but for now we continue on.

5 Example models

The upshot to all of the work in the previous section is that in RS1 we have a fully solvable
system in the continuum limit which we can use as a consistency check for our discrete
clockwork gravity formalism. We shall show now explicitly how the discrete results map
exactly to the RS results after taking the appropriate limit, and then go on to examine the
solutions to the clockwork equations for the gravitational version of the toy quartic model
introduced in section 2.2.2.

5.1 Randall-Sundrum (discrete)

Here we shall use the formalism developed in section 3 to reproduce the results of section 4
in the continuum limit. Recall that RS1 is the simplest possible continuum theory, with the
continuum α parameters, which determine the size of the extrinsic curvature contributions
to the bulk action, all set to 0. Using the dictionary of eqs. (4.16)–(4.19) for going between
the discrete potential coefficients Tijkl and the continuum parameters, we see that the RS1
case corresponds to following choice of clockwork couplings (setting all discrete αn = 1):

24β0 = −
6M3

(5)
δy

, 24β1 =
3M3

(5)
δy

, 24β2 = −
M3

(5)
δy

, β3 = 0 , 24β4 = 2Λ5δy . (5.1)

This choice for the β’s completely specifies the discrete theory.
We shall consider the static and dynamical solutions in turn.

5.1.1 Static vacuum solution
Comparison of our H = 0 clockwork vacuum solution from section 3 with the RS1 warped
metric eq. (4.28) tells us that we should identify q = ekδy, so that we have the dictionary for
going between clockwork and RS1 parameters:

q = ekδy , M2
(4) = M3

(5)δy , L = (N − 1)δy . (5.2)
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The continuum limit is achieved, as we said, by taking the limit N → ∞ and δy → 0 while
keeping L = (N − 1)δy fixed. In terms of the clockwork parameters, this is equivalent to
taking N →∞, q → 1 and M2

(4) → 0 while keeping (N − 1)M2
(4) and (N − 1) ln q fixed.

Substituting the RS β’s into the cosmological-constant-modified vacuum condition
eq. (3.37), and then taking the appropriate limit described above, to first order in δy we
find that in order for the vacuum condition to be satisfied (in the bulk) we require:

− Λ5 = 3k2M3
(5) + 6k3M3

(5)δy , (5.3)

and so we recover k2 = −Λ5/3M3
(5), as we wanted, once we send δy → 0.

The brane tensions, also to first order in δy, and utilising the above eq. (5.3), are:

σ0 = 3kM3
(5) + 3

2k
2M3

(5)δy (5.4)

σL = −3kM3
(5) −

3
2k

2M3
(5)δy , (5.5)

also in agreement with our continuum solution.
The zero-mode coupling eq. (3.35), in this limit, becomes:

M2
Pl = 1

2k
(
e2kL − 1

)
M3

(5) , (5.6)

which again is the usual association one would make between the 4D and 5D Planck masses
in static RS1.

5.1.2 Matter solution
We now wish to add matter to the brane at y = 0, corresponding to the first site of the
clockwork. While in the context of a clockwork model we would normally couple to the end
site, to engineer the smallest coupling to the zero-mode, brane cosmology literature typically
puts matter on the y = 0 brane, so we do this too here for comparative purposes. In
appendix B, we show explicitly that, in the continuum limit, our discrete Einstein equations
from section 3 become the continuum Einstein equations from section 4. To be more precise,
for sites in the bulk, the discrete equations (3.42) and (3.43) for G0

0 and Gij become the
continuum G0

0 and Gij equations (4.36) and (4.37), respectively, while for the two end sites
the discrete equations for G0

0 and Gij respectively become the continuum Gibbons-Hawking
equations (4.25) for K0

0 and Ki
j , corresponding to the component of ∂M in question. The

Bianchi constraint (3.16) also maps directly to the continuum G0
5 equation, solidifying the

correspondence eluded to at the end of section 4.
However, since the discrete theory is 4 dimensional, we have no notion of the G5

5 equa-
tion, which was important when solving the continuum equations. Therefore, we need to
check that the solutions to the discrete Einstein equations coincide with the solutions to the
continuum Einstein equations, in the appropriate limit.

To do this, we used Python to solve the discrete Friedmann equations (3.44) using
the framework set out at the end of section 3, i.e. we set the lapse on the first site to 1
and evolve the one dynamical equation for ȧ0 via 4th order Runge-Kutta, ensuring that the
algebraic conditions (3.45) are satisfied at every time step of the evolution. To simplify things
numerically, we choose units such that the parameters M3

(5) = 1, Λ5 = −1, and the size of
the 5th dimension is also L = 1. We use these parameters also in the continuum Friedmann
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Figure 2. In black: solutions to the discrete Friedmann equations with potential couplings given by
the RS β’s (5.1); in red: solution to the continuum RS equations. Since the discrete system involves
very many scale factors, whose solutions sit on top of one another sequentially, we only show explicitly
the evolution of the first (solid line) and last (dashed line) sites and shade the region in between where
the other scale factors lie. We see that as the number of sites is increased, the solution to the discrete
equations indeed approaches that of the continuum — this convergence is better seen in figure 3.

equation on the brane, eq. (4.41), and solve it using a standard numerical ODE integrator,
the hope being that the solutions to the continuum and discrete equations match in the limit
where N →∞ and δy = L/(N − 1)→ 0.

In figure 2 we show in black the solutions to the discrete equations when we add pres-
sureless dust (i.e. with ρ0 = 1/a3

0 and p0 = 0) to the first site of the clockwork, for N = 50,
N = 500 and N = 5000 sites, with the RS continuum solution overlaid in red with presureless
dust on the brane at y = 0.

Indeed, we see that the solutions begin to overlap as we get closer to the continuum
limit, so we can be confident that our formalism works as intended, and that while we have no
analogue for G5

5 in the discrete system, the solutions are nevertheless equivalent. In figure 3
we show the convergence as the number of sites increases explicitly.
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Figure 3. Difference between the continuum and discrete solutions displayed for the increasing
number of sites as plotted in figure 2, showing more clearly the convergence as we approach the
continuum limit. Solid/dashed lines and the shaded regions have the same meaning as in figure 2.

We note that while the solution for small N deviates markedly from the continuum
solution, it is nevertheless a real, physical solution to the multi-gravity theory specified by
the RS β’s. It is simply that this theory does not constitute a clockwork when one is away
from the continuum limit. We can see this as follows: recall that the defining feature of clock-
work gravity is that there exists a static vacuum solution where all metrics are conformally
flat, and the corresponding conformal factors are asymmetrically distributed throughout the
clockwork lattice, the canonical choice being ai,0 = a0,0/q

i. For this solution to exist, the
potential coefficients must satisfy the (in this case cosmological-constant-modified) vacuum
condition (3.37), and for the RS β’s this is only true in the limit δy → 0. We stress this
point to make clear the fact that our formalism is entirely general, and can in principle be
used to determine cosmological solutions to any theory of gravity involving multiple pairwise
interacting metrics — in this case (i.e. for the theory with the RS β’s but away from the
continuum limit) the solution is an accelerating one at late times. The novelty of clockwork
gravity models, as a subclass of these general theories, is of course their potential to solve
the hierarchy problem, so we pay them special attention.

As an example unstudied clockwork scenario, we now return to the quartic model in-
troduced in section 2.2.2 for scalars, and construct its gravitational equivalent.

5.2 Quartic clockwork gravity

We introduced this model in section 2.2.2 as a simple deg = 4 clockwork theory with the nice
feature of having the smallest possible hierarchy in the potential coefficients, with βm ∝ q±1

only, where q > 1 is O(1). The potential coefficients specifying the theory are:

24β0 = 6q−1 , 24β1 = −3 , 24β2 = q , β3 = 0 , β4 = 0 , (5.7)
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with all of the nonzero αn = 1 ∀n 6= 0, N−1. We rescale the β’s here by a factor 24 compared
with those stated in section 2.2.2, in order to force them in line with the Einstein equations.
We are allowed to do this since we already showed that the β’s from section 2.2.2 indeed
satisfy the vacuum condition (now without the need to include any σ’s on the end sites), so
multiplying through by a common factor will not affect this. This time, in accordance with
our clockwork philosophy, we will eventually place our matter on the end (i = N − 1) site
— as this produces the greatest suppression of scales — so we choose to fix the initial lapse
and scale factor on that site to 1, which means we must have ci = ȧi/ȧN−1 (see eq. (3.25)
and appendix A).

With this choice of potential coefficients and lapse, the modified Friedmann equations
take the form:

3M2
(4)

(
ȧN−1
ai

)2
= αi

6
q

(
1− q

2
ai+1
ai

)(
1− qai+1

ai

)
−3αi−1

(
ai−1
ai

)3 (
1− q ai

ai−1

)
+ρi . (5.8)

Written in this form, the presence of the H = 0 clockwork vacuum is manifest — if ρi = 0
on all sites then the r.h.s. vanishes when ai+1,0 = ai,0/q. In general we cannot find analytic
forms for the dS vacua for more than 2 sites, as increasing the number of sites increases the
order of the polynomial equation, eq. (3.28), which one must solve to determine the conformal
factors. Indeed, we find numerically that the number of distinct (i.e. with different values
for H) physical dS vacua increases with the number of sites, although the high degree of
nonlinearity in the system prevents us from determining the exact quantity.

To solve for the dynamics when we add pressureless dust to the (N − 1)-th site, we
follow our usual procedure and evolve the one dynamical equation for ȧN−1 while ensuring
that the algebraic conditions (3.45) are satisfied at all time steps. Since the theory possesses
multiple vacua, this process is numerically sensitive to initial data — indeed, if we set up
the initial set of scale factors we feed into Python to be close to one of the dS vacua, then
the addition of matter essentially acts as a perturbation to the system which quickly dilutes
away (scaling as a−3) as the system returns to the corresponding vacuum. However, if we
choose initial scale factors close to the clockwork H = 0 vacuum, then we do get interesting
cosmological evolution.

In figure 4, the background evolution of the scale factors, with presureless dust on the
end site, is displayed for N = 10 sites, starting off at the clockwork vacuum, and for simplicity
taking the parameters as M2

(4) = 1/3, q = 1.2, and ρN−1 = 1/a3
N−1. We are free to make

these choices for M2
(4) and ρN−1 as these are essentially unit choices which correspond to a

rescaling of aN−1, so long as one also rescales the other scale factors in a consistent manner
(taken care of by the algebraic equations). For comparison, we also plot in dashed black the
effective evolution of a Universe whose gravity is described by GR with only a single FRW
metric, with effective Planck mass Meff given by the zero-mode coupling eq. (3.35). That is,
the solution to the standard Friedmann equation:

3M2
eff

(
ȧ

a

)2
= ρ , (5.9)

with ρ = 1/a3 as before.
We see that the system is solved by a bunch of successive scale factors undergoing de-

celerated expansions, but more importantly that the dynamics of the metric to which matter
couples minimally are completely dominated by the contribution of the zero-mode. For the
parameter choices given above — numerically it appears that the following statement depends
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Figure 4. Solutions to the discrete Friedmann equations for N = 10 sites with potential couplings
given by the set of β’s (5.7). The dashed black line is the effective evolution of the clockwork zero-
mode (i.e. the solution to eq. (5.9)) which we see matches almost exactly the evolution of aN−1.

on the value of q, but it is certainly true here — the effect of the clockwork interactions is
such that, as far as the matter on the end site is concerned, the evolution is equivalent to
that of a single copy of GR, whose strength is characterised by the Planck mass of the zero-
mode (with some small corrections from the massive modes). This Planck mass, as we have
seen, can be made much larger than the fundamental scale M(4) depending on one’s choice
for q and N (keeping in mind that we would like to avoid large hierarchies in the potential
coefficients), and so in principle we see the potential route to solving the hierarchy problem
— in [6], the authors showed that with M(4) ∼ O(TeV) one can generate a Planck scale
coupling to the zero-mode with q = 4 and N = 26 sites. This result should not be surprising,
of course, since we are looking for cosmological solutions, and it is clear that the massless
mode should dominate over large distance scales. The mass gap to the heavier modes is
in general dependent on the choice of potential, but typically the mass gap to the lightest
massive mode is roughly of order qM(4),10 with the heavier modes distributed exponentially
above this. The strengths of their couplings to matter, determined by the components of
the orthogonal matrix in eq. (3.34), are also generally model-dependent; for this model we
find that the heaviest modes are even more weakly coupled than the zero-mode, which is
favourable experimentally as their effects will not show up until above the Planck scale.

10Remember from section 1, masses are products of scales (M(4)) with couplings (q).
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Of course, as mentioned at the end of the original clockwork gravity paper [6], we still
cannot yet present this as a robust solution to the hierarchy problem without considering
radiative corrections to the potential. In the original quadratic scalar theory, as we mentioned
in section 2, there was a shift symmetry which protected the theory from such corrections.
The quartic scalar model we introduced was special because it had a scaling symmetry in D =
4 dimensions, which gave rise to the zero-mode. In the corresponding gravitational theory,
the situation is more complicated; graviton loops, for example, could generate non-nearest
neighbour interactions, which would resurrect the undesirable Boulware-Deser ghost [26, 28].
Matter loops would not have this problem, since we chose to couple to only one site. We
would naively expect that loops involving the graviton zero-mode would be safe due to
the surviving diffeomorphism invariance, though loops involving the heavier modes could
prove more dangerous, and a fuller analysis is required. Indeed, this discussion speaks to
a more general question regarding the radiative stability of ghost-free multigravity theories
(see [47, 48] for work regarding this in the context of dRGT massive gravity and bigravity,
to 1-loop level), which is outside the scope of the present work but important for future
investigations.

6 Conclusion

To summarise, the clockwork mechanism provides an efficient means to generate exponen-
tially suppressed couplings from a fundamental theory containing only O(1) parameters, and
as a result obtain exponentially large interaction scales without new physics appearing at
these large energies. Applied to gravitational physics, one can naively solve the electroweak
hierarchy problem through a higher order generalisation of the standard clockwork mecha-
nism, involving nearest-neighbour interactions in the ghost free multi-gravity theory, where
although the N copies of diffeomorphism invariance are broken to the diagonal subgroup, an
exponential suppression of the coupling to the graviton zero-mode is nevertheless achieved
thanks to an asymmetric distribution of conformal factors in the background vacua.

In this work, we have done two main things. Firstly: we have developed a formalism by
which one is able to construct potentials for which the general multi-gravity theory necessarily
possesses the desired clockwork vacuum as a solution. To achieve this, we started with
a general theory with nearest-neighbour interactions and used symmetric polynomials to
constrain the choices of coefficients which are allowed in the potential. As an added bonus,
we also get the matrix encoding the masses of the higher mass modes for free, and we used
the formalism to reproduce some standard results in the clockwork literature, as well as to
introduce a new model which has the nice feature of possessing the smallest possible hierarchy
between the parameters of the fundamental theory.

Secondly: we derived the Einstein equations of the general ghost free multi-gravity
theory, using the results from the symmetric polynomial formalism regarding the potential
coefficients to aid in making them tractable. With the help of energy conservation consider-
ations, we are able to solve the equations for a bunch of pairwise interacting FRW metrics
whose lapse and scale factor are site-dependent. In vacuum, we can do this analytically, and
find that there are a number of deSitter vacua where all scale factors evolve exponentially
with time and every site shares the same Hubble parameter, the number of such solutions be-
ing in general dependent on the number of sites and a choice for the potential coefficients. In
particular, if one imposes that there should be an asymmetrically distributed static vacuum
solution with H = 0, as required by the clockwork, then one recovers the condition on the
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allowed potential coefficients from the symmetric polynomials. When we add a minimally
coupled perfect fluid to one of the sites, we must solve the equations numerically, and we
provide a means to do this in an entirely general manner which works for any multi-gravity
theory devoid of the Boulware-Deser ghost, although we focus ourselves on clockwork theo-
ries i.e. those with the desired vacuum structure. We solved the equations explicitly for the
new model constructed from the symmetric polynomial machinery and found that there is a
cosmological solution where the evolution of the scale factor, as seen by a minimally coupled
observer on the end site, looks like a single copy of GR whose strength is characterised by
the exponentially enhanced Planck mass of the zero-mode.

We also revisited the continuum limit of the ghost free multi-gravity theory, which has a
natural interpretation as a braneworld model, and made some clarifications about the nature
of the extra dimension. Namely, the extra dimension cannot live on S1/Z2, as is usually the
case in braneworld literature, but rather, it must live on an interval, and so one must invoke
a Gibbons-Hawking term to deal properly with the system boundaries. We paid special
attention to the original Randall-Sundrum model (RS1) as a special case of the continuum
theory, using it as a consistency check for our work on the discrete theory, and found that
as one approaches the continuum limit, the solutions to the corresponding discrete theory
(which is only a clockwork in this limit, otherwise it is just some generic multi-gravity theory)
do indeed match up with the continuum results.

However, we cannot present this as a full resolution to the hierarchy problem just yet,
as we still need to compute the radiative corrections, including those arising from graviton
loops. We also need to investigate more of the cosmological phenomenology associated to the
theory, in regards to perturbations and structure growth, black holes, gravitational waves etc.
Since we only studied the explicit FRW solutions to a single model, these phenomenological
considerations could be highly model-dependent. We have, however, provided a general
framework within which one can work if one wishes to study such interesting questions; we
certainly intend to do so in the near future.
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A Satisfying the Bianchi constraint

We would like to see what the Bianchi constraint, eq. (3.16), looks like explicitly with our
FRW+lapse ansatz (3.17) for the gear metrics.

Recall that the Bianchi constraint is
N−1∑
i=0

∣∣∣e(i)
∣∣∣∇(i)

µ W
(i)µ

ν = 0 . (A.1)

The index structure is written slightly differently to eq. (3.16), but we are free to write it in
this way since we use the Levi-Civita connection on each site, which is metric-compatible.
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The covariant divergence of the i-th W -tensor is

∇(i)
µ W

(i)µ
ν = ∂µW

(i)µ
ν + Γ(i)µ

µλW
(i)λ

ν − Γ(i)λ
µνW

(i)µ
λ . (A.2)

The only non-vanishing Christoffel symbols for our metrics are:

Γ(i)0
00 = ċi

ci
(A.3)

Γ(i)0
jk = aiȧi

c2
i

ηjk (A.4)

Γ(i)j
k0 = ȧi

ai
δjk , (A.5)

and the only non-vanishing components of the W -tensors are W (i)0
0 and W

(i)j
k, given re-

spectively by eqs. (3.22) and (3.23). Substituting into eq. (A.2), we get

∇(i)
µ W

(i)µ
0 = ∂0W

(i)0
0 + 3 ȧi

ai
W

(i)0
0 −

ȧi
ai
W

(i)k
k (A.6)

∇(i)
µ W

(i)µ
j = 0 , (A.7)

so we only need to consider the ν = 0 component.
Substituting in our explicit expressions for the W -tensor components yields (after some

enjoyable algebra) the following final expression for the covariant divergence:

∇(i)
µ W

(i)µ
0 = 3× 24

[
αi(ȧi+1a

−1
i − ci+1ȧia

−1
i c−1

i )(β1 + 2β2ai+1a
−1
i + β3a

2
i+1a

−2
i )

+ αi−1(ȧi−1a
−1
i − ci−1ȧia

−1
i c−1

i )(β1a
2
i−1a

−2
i + 2β2ai−1a

−1
i + β3)

]
.

(A.8)

Clearly, the Bianchi constraint will be automatically satisfied when all of these covariant
divergences vanish individually; in fact, we showed in section 3 that this has to be the situation
when matter only couples to one site (or when there is no matter at all). Since we want (A.8)
to vanish for every site, it must in particular vanish on the boundary sites (i = 0, N − 1),
where one of the α’s is 0. This means that both terms inside the square brackets must vanish
individually, which tells us that we must have (both the (i + 1) and (i − 1) term give the
same result),

ci+1
ci

= ȧi+1
ȧi

=⇒ ci = ȧi
f(t) . (A.9)

To determine what the function of time f(t) must be, we need only use the freedom to rescale
our coordinates to fix the lapse on one of the sites. For example, if we want to set c0 = 1,
then we have c1/c0 = ȧ1/ȧ0, and so f(t) = ȧ0. If we wish to work in conformal time and
set c0 = a0, then we get f(t) = ȧ0/a0. If we wish to fix the lapse on the other end, i.e. take
cN−1 = 1, then we get f(t) = ȧN−1.

If matter couples to more than one site, there are of course in principle other non-trivial
solutions to eq. (A.1), involving more complicated cancellations across the sums depending
on the specific choice of β coefficients. However, these will not help us to do anything about
the unknown lapses in our Einstein equations, and we only place matter on one of the sites
anyway, so we use the solution (A.9) going forward. In fact, in appendix B we show that the
situation in eq. (A.9) is the discrete analogue of the continuum G0

5 Einstein equation (see
section 4), so it is probably a good choice to make.
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B RS continuum equations from the discrete equations

We wish to show that, for the RS β’s, when we take the continuum limit, the discrete Einstein
equations for the bulk scale factors become the corresponding 5D Einstein equations, the
discrete equations for the boundary scale factors become the Gibbons-Hawking equations,
and the Bianchi constraint becomes the G0

5 equation.
Starting with G0

0 for one of the bulk equations, and substituting in the RS β’s, we have
explicitly:

−3M2
(4)

(
ȧi
aici

)2
+
[(
−

6M3
(5)

δy
+

9M3
(5)

δy
ai+1a

−1
i −

3M3
(5)

δy
a2
i+1a

−2
i

)

+
(3M3

(5)
δy

a3
i−1a

−3
i −

3M3
(5)

δy
a2
i−1a

−2
i + 2Λ5δy

)]
= 0 ,

(B.1)

and we can Taylor expand the nearest neighbour scale factors to second order in δy:

ai−1 = ai − δya′i + 1
2δy

2a′′i (B.2)

ai+1 = ai + δya′i + 1
2δy

2a′′i . (B.3)

From now on we will suppress the (i) indices for brevity. Substituting in the expansions, the
first term in brackets becomes, to first order in δy,

(Bracket 1) ' 3M3
(5)
a′

a
− 3M3

(5)δy
a′2

a2 + 3
2M

3
(5)δy

a′′

a
, (B.4)

and the second term becomes:

(Bracket 2) ' −3M3
(5)
a′

a
+ 6M3

(5)δy
a′2

a2 + 3
2M

3
(5)δy

a′′

a
+ 2Λ5δy . (B.5)

Adding the two together, and taking δy → 0, we get the continuum equation:

3
(
ȧ

ac

)2
− 3

(
a′2

a2 + a′′

a

)
= 2Λ5
M3

(5)
, (B.6)

which is exactly G0
0 = κ2T 0

0.
On the boundaries, only one of the brackets is present, and the other is compensated

for by a (σ + ρ)-type term. At y = 0, we get

− 3M3
(5)δy

(
ȧ0
a0c0

)2
+ 3M3

(5)
a′

a
− 3M3

(5)δy
a′2

a2 + 3
2M

3
(5)δy

a′′

a
+ (σ0 + ρ0) = 0 , (B.7)

which in the limit yields:
a′

a

∣∣∣∣
0

= −σ0 + ρ0
3M3

(5)
, (B.8)

which is, as expected, K0
0 −Kh0

0 = −κ2S0
0.

On the opposite boundary, we get

−3M3
(5)δy

(
ȧN−1

aN−1cN−1

)2
−3M3

(5)
a′

a
+6M3

(5)δy
a′2

a2 + 3
2M

3
(5)δy

a′′

a
+2Λ5δy+(σN−1 +ρN−1) = 0 ,

(B.9)
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which in the limit yields:
a′

a

∣∣∣∣
N−1

= +σN−1 + ρN−1
3M3

(5)
, (B.10)

which is, as expected, K0
0 −Kh0

0 = +κ2S0
0. All is well thus far.

Next, we move to the considerably more complicated Gij equation. For this, we also
need to Taylor expand the lapses, as ci+1 and ci−1 terms now appear in theW -tensor as well.
Explicitly, the equations are:

M2
(4)i
c2
i

(
ȧ2
i

a2
i

+ 2 äi
ai
− 2 ȧi

ai

ċi
ci

)

= 24
{[
−

6M3
(5)

δy
+

3M3
(5)

δy
(ci+1c

−1
i + 2ai+1a

−1
i )

−
M3

(5)
δy

(2ci+1c
−1
i ai+1a

−1
i + a2

i+1a
−2
i )
]

+
[3M3

(5)
δy

(ci−1c
−1
i a2

i−1a
−2
i )

−
M3

(5)
δy

(2ci−1c
−1
i ai−1a

−1
i + a2

i−1a
−2
i ) + 2Λ5δy

]}
.

(B.11)

Performing our Taylor expansion on both a and c, the first term in the square brackets
becomes:

(Sq. bracket 1) 'M3
(5)
c′

c
+ 2M3

(5)
a′

a
+M3

(5)δy
a′′

a
+ 1

2M
3
(5)δy

c′′

c

− 2M3
(5)δy

a′

a

c′

c
−M3

(5)δy
a′2

a2 ,

(B.12)

and the second one is:

(Sq. bracket 2) '−M3
(5)
c′

c
− 2M3

(5)
a′

a
+M3

(5)δy
a′′

a
+ 1

2M
3
(5)δy

c′′

c

+ 4M3
(5)δy

a′

a

c′

c
+ 2M3

(5)δy
a′2

a2 + 2Λ5δy .

(B.13)

Summing and taking δy → 0, we get our continuum equation:

1
c2

(
2 ȧ
a

ċ

c
− ȧ2

a2 − 2 ä
a

)
+
(

2a
′′

a
+ a′2

a2 + 2a
′

a

c′

c
+ c′′

c

)
= − 2Λ5

M3
(5)

, (B.14)

which is, of course, Gij = κ2T ij .
On the boundaries, we get the following at y = 0,(

−2a
′

a
− c′

c

)∣∣∣∣
0

= −p0 − σ0
M3

(5)
, (B.15)

which is precisely Ki
j −Khij = −κ2Sij . At the y = L boundary, we get the respective minus

sign accounting for the change in orientation. So, once again, all is well.
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Finally, we come to the Bianchi constraint. For the RS β’s, eq. (A.8) for the vanishing
of the individual covariant divergences of the W -tensors becomes:

3
[
αi
(
ȧi+1a

−1
i − ci+1ȧia

−1
i c−1

i

)(3M3
(5)

δy
− 2

M3
(5)
δy

ai+1a
−1
i

)

+αi−1
(
ȧi−1a

−1
i − ci−1ȧia

−1
i c−1

i

)(3M3
(5)

δy
a2
i−1a

−2
i − 2

M3
(5)
δy

ai−1a
−1
i

)]
= 0 .

(B.16)

Taylor expanding to first order in δy,

3
[
αi

(
ȧ′

a
− ȧ

a

c′

c

)
δy

(
M3

(5)
δy

+O(1)
)

+ αi−1

(
− ȧ
′

a
+ ȧ

a

c′

c

)
δy

(
M3

(5)
δy

+O(1)
)]

= 0 . (B.17)

Taking δy → 0, we get the continuum equation:

3M3
(5)

(
ȧ′

a
− ȧ

a

c′

c

)
(αi − αi−1) = 0 . (B.18)

Obviously this is true in the bulk where all α’s are equal, but it must also hold on the
boundaries, where one of the α’s is 0. Hence, we get (in complete analogy with the process
in appendix A)

3M3
(5)

(
ȧ′

a
− ȧ

a

c′

c

)
= 0 , (B.19)

which is precisely G0
5 = 0 — in other words, covariant conservation of the interactions

between the gears in the discrete theory is the analogue of there being no flow of energy-
momentum along the 5th dimension.
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