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Abstract—The UK offshore wind industry is rapidly growing
to meet CO2 emission targets. However, the main drawback of
the offshore environment is the increased cost of maintenance.
Artificial Neural Networks (ANN) show great potential to reduce
this cost. Long Short-Term Memory (LSTM) is a form of
Recurrent Neural Network (RNN) that shows promising results
in solving time series-based problems, making them ideally suited
for wind turbine condition monitoring. A dedicated circuit for
a LSTM-based ANN that uses memristors will allow for more
power efficient and faster computation, whilst being able to
overcome the von Neumann bottleneck.

Index Terms—LSTM, Long-Short Term Memory, ANN, Off-
shore wind, Memristor.

I. INTRODUCTION

Offshore wind farms in the United Kingdom are expected
to produce a total of 40 GW by 2030 [1] and have ambitious
goals of reaching 90 GW by 2050 [2]. Wind farms are often
placed offshore due to the more stable and strong wind condi-
tions. [3]. The offshore environment however has its downfalls,
the main of which is the increased cost of maintenance for
the turbines. This can cost around 25% of the total cost of the
turbine. [4]. One of the ways in which this cost can be reduced
is through the use of Condition Monitoring (CM). CM for a
wind turbine is the process of observing the components of
the turbine to identify any changes in the operation that would
be indicative of a fault developing. Robust CM methods can
lead to a reduction of costs in maintenance due to a reduction
in down time [5] [6].

Recently, the use of Artificial Neural Networks (ANN’s) for
CM has been gaining significant interest due to their ability
to solve highly complex nonlinear problems [7]. The future
expansion of ANN’s depends on the expansion of network
depth, which will require a vast amount of vector-matrix mul-
tiplications. Large and deep neural networks have been able
to handle complex tasks using extensive amount of data with
the advent of vector-matrix multiplication acceleration based
on the use of graphics processing using (GPU’s) [8]. Despite
the advantage that GPU’s offer of highly parallel computing
that is suitable for ANN’s, the high power consumption of a
GPU is an obstacle that needs to be improved upon, [9]–[12]
which prohibits the use for offshore wind.

The memristor (or memory-resistor) was first proposed in
1971 [13] as a two-terminal device that exhibits non-volatile

memory whilst also being able to be scaled down to the
nanometer range [14]. The use of a memristor as an in-memory
compute unit for making smaller and more power efficient
circuits that are dedicated hardware for ANN’s [15] has
recently been gaining significant interest [16]. Such systems
are particularly required in remote sensing applications, where
there is a need for high performance computing with low
energy usage. In the case of wind turbine blades, there is a
substantial cost benefit in not having to source energy from the
main turbine, so a low-power computing engine, either battery
or solar-powered would be advantageous.

II. BACKGROUND INFORMATION

A. Long Short-Term Memory (LSTM)

The recent rapid increase in volume of data from areas
such as the Internet of Things (IoT) has led to the need
for a more sophisticated form of near-edge smart memory
and information processing. [17] One commonly used and
efficient tool that is used for real-time contextualisation of
information is the recurrent neural network (RNN). Unlike
the classical feed-forward networks, a RNN has a feedback
connection between nodes and layers that allow for the input of
sequences and to predict the future of said sequence. However,
the training of a simple RNN can become a difficult task due to
this feedback connection. The algorithms used for the weight
updates in RNN’s are typically gradient descent based, which
for these networks can give rise to an exploding or vanishing
gradient during the training process. One way in which this
issue has been overcome is through the use of gates to control
this feedback loop, which has lead to the development of the
Long Short-Term Memory (LSTM) cell.

Figure 1a shows the architecture for a generic LSTM cell
cj [18]. The heart of the memory block is a self-contained
linear unit sc also referred to as the constant error carousel
(CEC), which protects the LSTM cell from vanishing and
exploding gradient problems that are typically associated with
RNNs. The input and output gates here consist of activation
functions, along with the corresponding weight matrices. The
input gate’s with weights netin and output yin is capable
of blocking irrelevant data from entering the LSTM cell.
Similarly, the output gate with its weights netout and output
yout shapes the output of the cell yc. Finally, the forget gate



Fig. 1. a) LSTM cell with forget gate, b) Modern representation of an LSTM
cell [17], c) Network used for predicting and classifying faults in wind turbines
blade, d) Memristor crossbar array used for the neurons in an ANN

highlighted by the dashed line in Figure 1a, which allows the
cell to forget or erase information [19]. It can therefore be
concluded that the LSTM cell consists of an input layer, an
output layer and a self contained hidden layer that is controlled
by a forget gate. The mathematical description of an LSTM
cell’s output for the jth cell at time t can be given by

ycj (t) = youtj (t)h(scj (t)) (1)

where scj (t) is an internal state of the cell, and yφ is an output
for the forget gate, given by

scj (t) = sscj (t− 1) + yinj (t)g(netcj (t)) (2)

yφj (t) = fφj
(netcj (t)) (3)

Since the first proposal of the LSTM cell there have been
a variety of different configurations proposed, with other
notations for the cell description [20] [21] the most frequent
of which is shown in Figure 1b.

B. Issues with Current Computing

In general, ANN have a wide range of applications, with
their advancement depending heavily on networks becoming
larger with more neurons and layers, and an ever-increasing
number of matrix multiplications [22]. The use of graphics
processing units (GPU’s) has allowed for large and deep neural
networks to handle more complex tasks with the use of vast
amounts of data [8]. However, the GPU still follows the Von
Neumann architecture of classical computers, with separate
memory and compute units. This leads to a memory wall
problem, or Von Neumann bottle neck, which is mainly due to
three aspects [23]: (1) data movement between the processing
unit and the memory has a non-negligible latency, (2) data
movement in memory hierarchies is limited by bandwidth
and (3) a high energy consumption [24]. Furthermore, even

with GPU acceleration, a CPU is still needed which can only
fetch either data or execute new instruction at any given time,
further limiting throughput. This leads to the Von Neumann
bottleneck becoming more of a problem as processing speed
and memory size increase. One recent way of overcoming
this issue is through the use of emerging non-volatile memory
(NVM) technologies, more specifically the memristor.

C. Memristor

The memory resistor, or memristor, was first proposed by
Leon Chua in 1971 [13] to be the missing link between
flux and charge. Recently, the use of memristors for synapse
in artificial neural networks has been gaining significant at-
tention [16] [25]. Analogue neural network chips are most
commonly made from CMOS technology [15] [26], which
have their limitations. A synapse in a neural network must be
able to perform three tasks, namely store the weight associated
with the synapse, apply this weight to a signal passing through
the synapse, and update this weight. A single memristor is able
to perform all three of these tasks.

Compared to other implementation of synapses, the mem-
ristor has a significant increase in operating speeds. That is, a
memristors state can be measured by flowing a current through
the device with a low voltage such that the weight of the
memristor does not change state. When operating like this,
the memristor will appear as a simple resistor, resulting in the
device having much higher operating frequencies. It is in this
way that the memristor can act as a linear multiplier for a
synapse in a neural network [27]. Figure 1d) shows how a
memristor crossbar array will be implemented as the synapse
for the final network, with the rows correlating to the input
from the previous layer and the columns to outputs for this
layer.

III. PRELIMINARY RESULTS

To be able to make the final memristor based neuromorphic
circuit, the architecture for this specific task must first be de-
termined. An initial computational model will be investigated
to determine the optimum structure for the task of classifying
and predicting faults in a wind turbines blade. This task can
be broken down into two parts, the first being a classifier and
the second being able to predict future evolution of faults. In
order to investigate the appropriate network for these tasks, a
suitable data set is required to train and test such networks.
The computational networks in this paper were all made with
pytorch, whilst the training of these networks used the Adam
optimizer, and a Mean Squared Error loss (MSELoss) function.

A. The Data

The data used to train the networks was from Ou et al [28].
In these experiments, a 1.75 m long healthy (i.e. no faults
present) wind turbine blade was secured in frame and placed
in a humidity controlled environment. The blade was then
vibrated and measurements were collected across the blade
using a range of different strain gauges and accelerometer
as shown in Figure 2. The blade was then subject to a few



Fig. 2. Sensor Layout on wind turbine blade

different conditions to simulate some different fault cases.
First, an increasing amount of mass was added to the blade at
the loading position to simulate an increasing amount of icing
on the blade. Finally, some cuts were introduced to the blade
to simulate cracking. These cracks were all 4 mm deep 1.5
mm wide, with a varying length. The summary of these faults,
along with their respective label, can be seen in Table I. This
experiment was conducted using one sine wave as the driver
for the vibration and four white noise cases for this driver.
This data, whilst not exactly operational data, is open source
and freely available to use, which allows for a controlled test
with known faults present in the blade.

TABLE I
FAULT CASE ON THE BLADE

Case Label Fault ID Description
R 0 Healthy Blade
A 1 Added mass 1x44g
B 2 Added mass 2x44g
C 3 Added mass 3x44g
D 4 Crack 1: l1 = 5cm
E 5 Crack 1: l1 = 5cm Crack 2: l2 = 5cm
F 6 Crack 1: l1 = 5cm Crack 2: l2 = 5cm Crack3: l3 = 5cm
G 7 Crack 1: l1 = 10cm Crack 2: l2 = 5cm Crack3: l3 = 5cm
H 8 Crack 1: l1 = 10cm Crack 2: l2 = 10cm Crack3: l3 = 5cm
I 9 Crack 1: l1 = 10cm Crack 2: l2 = 10cm Crack3: l3 = 10cm
J 10 Crack 1: l1 = 15cm Crack 2: l2 = 10cm Crack3: l3 = 10cm
K 11 Crack 1: l1 = 15cm Crack 2: l2 = 15cm Crack3: l3 = 10cm

B. The Classifier

To classify faults present on the blade a fully connected
network was used. This consisted of an input layer with 26
nodes (equal to the number of inputs from each time step in
the data), two hidden layers with 50 nodes each, and an output
layer with 12 nodes which corresponds to the number of fault
ID’s present in the data set. The maximum value for these
output nodes was taken to be the classification that the network
was predicting, e.g. if the 1st node was the maximum value,
this would correspond to the network predicting that the fault
ID was 0, if the 2nd node was the maximum value, this would
correspond to the network predicting that the fault ID was 1
etc. The nature of these networks means that only a single time
step can be used as an input, resulting in the training process
being different from the final networks. For this experiment,
only the four white noise cases of the data were used. Here, the
data was split into time steps such that each point contained

Fig. 3. Classifier’s training results, showing that the classifier was accurate
after less than one Epoch

the information from all the sensors at an individual time step.
This data was then scaled using Equation 4, where x is the
input data point, u is the mean of the sample, and s is the
standard deviation. This scaling was done to reduce the effect
that outliers in the data have on the training process.

z = (x− u)/s (4)

This was then further split into a test set and a train set,
containing 10% and 90% of the overall volume of the data
respectively. This data was then used to train the classifier net-
work. Here, batches of the data were fed into the network for
a prediction to be made. The error between this prediction and
the correct values were then calculated and back-propagated
through the network. The results of which can be seen in
Figure 3. For this network only a single epoch was needed
to reach an accuracy of 100%, whilst it can be confidently
concluded that the network did not over fit to the data since
the Test line on the plot followed the same trend as the train
set and did not deviate. It can therefore be concluded that a
simple linear network such as this can be used to accurately
classify the faults that are present in the data set used here.

C. The Predictor

The classifier network, whilst good at classifying faults,
had no way of taking in a time series, or being able to
make classifications/predictions on the future evolution of the
blade, and so while being a good tool to implement for
detecting faults in the blade, this network would have no use
in the predictive maintenance of the blade by itself since no
predictions of the future could be made. As such, the LSTM
cell was added to the network to allow for a time series to be
input to the network and the future of the blade to be predicted.
As previously mentioned, the training process for this network
differed from that of the simple classifying network since a
time series can now be used as an input. To allow for this,
some manipulation of the data was needed since in the data,
only static faults were present. That is, a fault was introduced
to the blade, then the vibrational analysis was done, and then
the next experiment was performed. Initially, the icing fault
was explored since one experiment will have had only a small
impact on the overall health of the blade. Here, a section of



Fig. 4. Training for the LSTM based network, showing the loss and accuracy
of the network through its training EPOCHS

the healthy blade (case R) was used at the start, then a section
of light icing (case A) was added with 86400s added to each
time step to simulate a day later where some icing had started
to form. This was then repeated with the slightly higher icing
(case B) and again with the heaviest icing (case C). A further
two samples of case C were added, then back down the levels
of icing to a blade with no ice in order to create a set of
data that consisted of a blade that undergoes a period of ice
forming on the blade and then melting, the results of which
can be seen by the black line in Figure 5. This was repeated
for each of the white noise cases, and then split with one of the
white noise cases being for testing the networks and the rest
being for training. The data was also scaled using Equation 4.

The structure of the LSTM based network can be seen in
Figure 1c. Here, an LSTM cell is used as the input for the
network, there are then two hidden layers each with 50 nodes
and an output layer with 12 nodes. Similar to the classifier,
the output node with the highest value was taken to be the
networks prediction for that time step.

The training data was then fed into the network as a whole
set, and the network was made to make a prediction. The error
was then calculated and back propagated through the network.
This was then repeated for a much higher number of epochs
than the previous example since here no batches were used.
The results of this training can be seen in Figure 4. Here, it
can be said that the network had started to learn the patterns in
the data after fifty Epochs since the accuracy in both the test
and train data sets were high. It can also be fairly confidently
said that the network was not over fitting to the data since the
validation curve was close to the train curve.

This LSTM based model was then evaluated using the test
set of data that was not used for the training process, the
results of which can be seen in Figure 5. Here, the true fault
ID has been plotted vs time in black to be able to compare the
predictions to. The network was given the first two thirds of the
data to classify (plotted in blue) and was made to predict the
future of the blade (plotted in red), and compare the the true
values. This network appears to mostly be able to accurately
classify the fault ID at each day, but appears to get the start
of each day incorrect and then correct itself to predict the
correct value. Similarly, the first day of the future prediction

Fig. 5. Prediction of the trained LSTM based network (blue/red) compared
to the true fault ID (black)

appears to get the initial value incorrect, then correctly predict
the fault ID for the rest of the day. The rest of the future
predictions however are not correct and the network appears to
get stuck predicting a fault ID of 2, i.e. the moderate icing case.
This result shows that while the network is able to make short
term accurate predictions, more work is needed to discover
the correct architecture for this task.

Such an architecture will then be replicated using a neuro-
morphic approach based on the memristor, more specifically
through the use of memristors. This will consist of using
memristor crossbar arrays to accelerate the vector matrix
multiplications in the LSTM cell [17], and to fully recreate
the linear layers of the rest of the network. Here, the biases
in the linear layers, or the weight matrix for the LSTM
cell, are mapped to the memristor states, the inputs for the
LSTM cell and the linear layers correlate to the input voltages
applied across the memristor crossbar array columns. For
the calculation to take place, the voltage is applied and a
current flows through the memrsitors, and get summed through
Kirchhoff’s law to the resulting output along each column in
the crossbar array. The result of the multiplication is therefore
a vector of currents through the columns in the array.

IV. CONCLUSION

The rapidly expanding offshore wind industry in the UK
has a dire need for a more cost effective maintenance plan that
utilises condition monitoring the enable the optimal scheduling
of repairs and general maintenance in order to reduce costs.
The use of a LSTM based ANN for this is showing promising
results in classifying and predicting the future evolution of
faults in the blade of wind turbines. These models however are
computationally made on generic computers, meaning large
and power inefficient circuits are needed. The development of
a dedicated neuromorphic circuit would greatly reduce the size
and power consumption of such a circuit, but using commonly
used CMOS based components would still encounter the Von
Neumann bottleneck. The use of a memristor in such a circuit
would allow for in memory computing, overcoming such a
bottleneck. This work highlights the promising results in the
appropriate architecture for such a circuit, and gives a suitable
application for memristors as synapses in an ANN’s.
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