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Abstract

The concept emerging from Professor David Barker’s seminal research on the developmental
origins of later life disease has progressed in many directions since first published. One critical
question is when during gestation might environment alter the developmental programme with such
enduring consequences. Here, we review the growing consensus from clinical and animal research
that the period around conception, embracing gamete maturation and early embryogenesis, might be
the most vulnerable period. We focus on four types of environmental exposure shown to modify
periconceptional reproduction and offspring development and health: maternal overnutrition and
obesity; maternal undernutrition; paternal diet and health; and assisted reproductive technology.
These conditions may act through diverse epigenetic, cellular and physiological mechanisms to alter
gene expression and cellular signalling and function in the conceptus affecting offspring growth and

metabolism and leading to increased risk for cardiometabolic and neurological disease in later life.

Key words
Embryo; sperm; parental nutrition; assisted reproductive technology (ART); epigenetics;

cardiometabolic disease.
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Introduction

The concept of the early origins of disease associated with in utero environmental factors has been
advanced in both clinical and biological directions since the pioneering and ground-breaking
epidemiological discoveries by Professor David Barker and his colleagues. Developmental
programming of disease has been tested experimentally across global populations providing
confirmation of its veracity. In addition, numerous animal models have been generated for insight
on mechanisms across physiological, cellular, molecular and epigenetic levels. Much progress on
the understanding of the hypothesis, now known as the Developmental Origins of Health and Adult
Disease (DOHaD) concept, has been achieved as evidenced by the varied reviews in this special
issue of J Endocrinology dedicated to Professor Barker’s seminal work. One critical issue and the
subject of our review is the question of when environment may interact with reproduction to initiate
a change in the developmental programme leading to DOHaD-related responses and later disease

risk.

A growing consensus has emerged that the period around conception is critical in DOHaD. This
consensus has come from both animal and human studies, ranging across different environmental
exposures from the quality of maternal and paternal nutrition to assisted reproductive technology
(ART) (Figure 1). The stages of gamete maturation, fertilisation and early embryo development are
collectively known as the periconceptional period. These are characterised by the parental
genomes being superseded by the new embryonic genome and the establishment and differentiation
of early cell lineages from a pluripotent cellular stock, required for development of the new
organism (Graham and Zernicka-Goetz 2016; Li, et al. 2013). Such processes involve significant
epigenetic, cellular and metabolic activity (Gardner and Harvey 2015; Lim, et al. 2016; White, et al.
2016) and, from fertilisation, occur within the confines of the maternal oviduct and uterine lumens,
long recognised to facilitate the stepwise progression in gamete and embryo maturation culminating

in implantation (Coy, et al. 2012; Ghersevich, et al. 2015; Matsumoto 2017).
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It has become apparent that these periconceptional stages in reproduction are vulnerable to
environmental factors that may cause changes, either through perturbation or via adaptive
compensatory responses, which may persist beyond the periconceptional period affecting phenotype
across the lifespan. We have recently reviewed the vulnerability of periconception in the context of
adverse developmental programming with a focus on the consequences of maternal and paternal
over- and under-nutrition and of ART in human and animal models (Fleming, et al. 2018). Maternal
or paternal lifestyle factors such as nutritional quality will influence parental physiology in many
ways and there is evidence that diet can modify oviduct and uterine transport activities and thereby
alter the nutrient composition of luminal compartments and the direct environment experienced by
early embryos (Eckert, et al. 2012; Jordaens, et al. 2017). A similar disturbance to the seminal
tubule and sperm microenvironment by paternal diet has also been reported (Fan, et al. 2015).
Given the clinical implications raised for next generation health from a time when many women
may not know they are pregnant, these discoveries of environmental susceptibility of
periconceptional stages have contributed to the call for preconception health of both partners to be

considered before pregnancy (Barker, et al. 2018; Stephenson, et al. 2018).

Here, we summarise the key processes, mechanisms and DOHaD-induced outcomes during the
periconceptional window with respect to maternal and paternal nutrition and ART. We focus in
particular on new understanding of themes previously presented in our earlier review (Fleming et al.

2018), reflecting the dynamic nature of this subject.

Maternal Overnutrition and Obesity
High maternal body mass index (BMI) and obesity has long been associated with reduced fertility
and the occurrence of obesity in children, mediated by raised maternal metabolites such as glucose

and insulin promoting increased placental transport of macronutrients and subsequent increased

4

joe@bioscientifica.com



Page 5 of 34 Manuscript submitted for review to Journal of Endocrinology

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

fetal growth in late gestation (Godfrey, et al. 2017; Musial, et al. 2017; Nam, et al. 2017; Nicholas,
et al. 2016). The risk of metabolic syndrome in offspring from obese mothers has been substantiated

mechanistically in animal models (Nicholas et al. 2016; Samuelsson, et al. 2008).

The periconceptional period is critical in the transmission of disease risk from maternal obesity to
offspring. Women with high BMI transfer excess metabolites and hormones such as insulin,
triglycerides, leptin and lactate from the circulation into ovarian tissue and especially the follicular
fluid of maturing follicles (Robker, et al. 2009). These metabolites subsequently accumulate within
oocytes, affecting their metabolic function and leading to diminished embryo developmental
potential after fertilisation (Yang, et al. 2012). Interestingly, increased lipid accumulation within
human follicular fluid coincides with increased inflammatory mediators that may contribute to the
reduced potential of embryos from obese mothers (Gonzalez, et al. 2018). Notably, the size of
human oocytes is reduced by high maternal BMI and lead to poorer quality embryos with excess

triglycerides and diminished glucose consumption (Leary, et al. 2015).

Animal models have been used to identify the metabolic defects in oocytes and early embryos
caused by maternal overnutrition. Mitochondria become severely affected in their structure and
organisation of cristae, in their cellular distribution and rate of biogenesis, and critically in their
capacity for generating energy in response to maternal overnutrition (Igosheva, et al. 2010; Luzzo,
et al. 2012). These defective mitochondria are more likely to be preserved in embryos since obesity
further reduced mitophagy (Boudoures, et al. 2017). Moreover, accumulating lipids in oocytes
induces endoplasmic reticulum and oxidative stress, impairing developmental potential and
increasing aneuploidy (Hou, et al. 2016; Igosheva et al. 2010; Luzzo et al. 2012). Maternal diabetes
may similarly modulate embryo metabolism, recently investigated in a rabbit model of
developmental programming. Here, significant remodelling of several metabolic pathways occurred

with a critical role identified for adiponectin in generating lipid accumulation leading to oxidative

5

joe@bioscientifica.com



Manuscript submitted for review to Journal of Endocrinology Page 6 of 34

114  metabolic stress (Fischer, et al. 2017). Further evidence of periconceptional metabolic induction of
115  programming from maternal overnutrition has come from supplementing the diet of obese mice

116  with coenzyme Q10 injection which restored mitochondrial functioning (Boots, et al. 2016). Animal
117  invitro studies have also confirmed that increased levels of fatty acids impairs follicular maturation
118  and oocyte potential leading to blastocysts with altered transcription and epigenome profiles

119  (Desmet, et al. 2016; Van Hoeck, et al. 2013). Such studies also demonstrate fatty acid modulation
120  of oviductal barrier function to influence embryo exposure to nutrient levels (Jordaens et al. 2017).
121 Epigenetic effects have also been demonstrated in the oocytes from obese mouse dams with altered
122 levels of DNA and histone methylation regulators (Hou et al. 2016). Epigenetic change associated
123 with genes regulating metabolic health in offspring has also been shown in an ovine model of

124  maternal overnutrition (Nicholas, et al. 2013).

125

126  Recent mouse studies have identified a role for PGC7/Stella protein in mediating maternal obesity
127  effects on adverse programming of embryos (Han, et al. 2018). Stella is known to regulate the

128  asymmetry in global DNA demethylation between paternal and maternal genomes and protect

129  imprinted genes from demethylation (Nakamura, et al. 2007) and becomes depleted in oocytes from
130  obese mothers coinciding with global hypomethylation of the embryonic genome (Han et al. 2018).
131 Notably, restoring Stella expression reverses both the epigenetic status of embryos from obese dams
132 and their developmental defects (Han et al. 2018). A further study has identified reduced expression
133 of TIGAR (TP53-induced glycolysis and apoptosis regulator) in oocytes from obese mothers which
134  may contribute to the increased oxidative stress and meiotic spindle defects in such oocytes (Wang,
135  etal. 2018).

136

137  These metabolic perturbations induced in oocytes and embryos by maternal overnutrition persist
138  during later development. Mouse fetuses from obese mothers exhibit an altered growth trajectory

139  and give rise to offspring with increased adiposity and metabolic dysfunction such as glucose
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intolerance (Jungheim, et al. 2010). Such physiological responses also coincides with underlying
transcriptional and epigenetic changes both in the fetus and placenta (Mahany, et al. 2018).
Moreover, metabolic dysfunction in offspring from maternal obesity has been shown to persist over
three mouse generations, likely reflecting the inheritance of defective maternally-derived

mitochondria (Saben, et al. 2016).

The importance of the periconceptional origin of adverse programming from maternal obesity has
been demonstrated using embryo transfer to healthy recipients in mouse and sheep models with the
persistence of fetal and postnatal metabolic dysfunction despite a normal uterine environment
(Luzzo et al. 2012; Nicholas et al. 2013). A similar periconceptional origin of adverse programming
in response to maternal diabetes has been shown by mouse transfer of zygotes to healthy recipients
(Wyman, et al. 2008). Lastly, consistent with the above, in assisted conception practice, there is
some evidence that the maternal BMI of oocyte donors negatively influences reproductive outcomes

despite not carrying the pregnancy (Cardozo, et al. 2016).

Maternal Undernutrition

The original datasets revealing adverse adult health outcomes derived from in utero experience by
David Barker and colleagues implicated maternal undernutrition during pregnancy followed by
accelerated ‘catch-up’ growth postnatally as causative (Barker and Thornburg 2013). Supporting
human evidence linking maternal undernutrition and subsequent adult health risks linked to
cardiometabolic and neurological dysfunction have come from well-researched historical famines,
particularly the Dutch Hunger Winter of 1944-45 and the Chinese Great Famine over 1959-61 (Liu,
et al. 2018; Roseboom, et al. 2011; van den Broek and Fleischmann 2017). Whilst such human
epidemiological studies are complex and wide-ranging, it has been possible to identify early
gestation and the periconceptional period as a vulnerable window for adverse programming. Thus,

those individuals conceived during the 5-month Dutch famine exhibit poorer cardiometabolic and
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neurological outcomes in adulthood, including accelerated aging that those where the famine
experience occurred later in their gestation (Franke, et al. 2018; Roseboom et al. 2011; Tobi, et al.
2014). A similar increased risk of first trimester exposure has also been shown in the Chinese
famine (Wang, et al. 2012; Zimmet, et al. 2018). In addition, the Dutch famine research has shown
that periconceptional exposure leads to epigenetic dysregulation of genes involved in growth and
metabolism such as conserved hypomethylation of the imprinted /GF2 gene into adulthood (Tobi et

al. 2014).

A further critical human dataset linking maternal periconceptional undernutrition with later adult
disease has come from studies on populations in The Gambia. Here, nutritional quality is seasonal
and associated with later life mortality and health risk. The quality of maternal nutrition at
conception has been shown to alter the pre-gastrulation epigenome at metastable epialleles, domains
characterised by inter-individual variation in DNA methylation, in a manner that persists into
childhood and adolescence (Waterland, et al. 2010). Such alterations in epigenetic signatures further
associate with genomic regions predictive of immune status, obesity risk and tumorigenesis
(Kuhnen, et al. 2016; Silver, et al. 2015). Indeed, metastable epialleles are present in human early
embryos and may provide a suitable epigenetic basis for environment to induce persistent

phenotypic change during developmental programming (Kessler, et al. 2018).

Animal DOHaD studies involving rodents, sheep and cattle have further demonstrated the close
association between maternal undernutrition and later-life risk of poor health and again underscore
the criticality of the periconceptional period (Fleming et al. 2018; Hansen, et al. 2016; Sinclair and
Watkins 2013). From our own work, a maternal low protein diet, effectively 50% of normal protein
recommendation, targeted exclusively to the mouse and rat preimplantation period of embryo
development (Emb-LPD) has been shown sufficient to cause adult offspring cardiovascular,

metabolic and behavioural dysfunction, especially in female progeny (Gould, et al. 2018; Kwong, et
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al. 2000; Watkins, et al. 2008). The stepwise mechanistic pathway responsible for Emb-LPD
adverse programming has been closely examined. The diet results in reduced concentrations of
circulating insulin and amino acids (especially the branched-chain amino acids (BCAAs), leucine,
isoleucine and valine) within dams that, through analysis of uterine luminal fluids, also changed the
metabolite milieu of the immediate environment of embryos (Eckert et al. 2012). Insulin and
BCAAs are potent activators of the mTOR signalling pathway regulating cellular growth (Wang
and Proud 2009) and, as a consequence of dietary-induced reduction in these metabolites, blastocyst
mTOR activity is reduced by Emb-LPD (Eckert et al. 2012). This early maternal-embryo interaction
is critical since it activates later adverse programming as shown both by an in vitro culture model in
medium reduced in insulin and BCAAs (Velazquez, et al. 2018) and by embryo transfer of Emb-

LPD blastocysts into control, normal-fed, recipients (Watkins et al. 2008).

The subsequent development of the Emb-LPD blastocyst after maternal dietary induction is altered
and in distinct ways for extra-embryonic (trophectoderm, TE; primitive endoderm, PrE) and
embryonic (epiblast) cell lineages. These phenotypic modulations impact on the growth trajectory
of the fetus which in turn positively correlates with later adult disease risk (Watkins et al. 2008).
Both TE and PrE cell lineages, in response to maternal Emb-LPD, undergo cellular changes that
collectively are compensatory, likely to augment nutrient delivery to the developing embryo and
fetus. These include increased proliferation of the lineages and their capacity for endocytosis of
extracellular fluids, thought to increase nutrient supply (Eckert et al. 2012; Sun, et al. 2014). The
TE also adopts a more invasive migratory phenotype likely to enhance endometrial implantation
(Eckert et al. 2012; Watkins, et al. 2015). Extra-embryonic adaptations induced by maternal protein
restriction persist through pregnancy with evidence of improved nutrient delivery via the
chorioallantoic placenta (Coan, et al. 2011) and visceral yolk sac (Watkins et al. 2008), the latter
coinciding with altered epigenetic regulation of the Gata6 transcription factor that has a central role

in PrE differentiation (Sun, et al. 2015).
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In contrast to extra-embryonic lineages, the somatic tissues of the fetus derived from the epiblast,
such as liver and kidney, alter their growth trajectory to match prevailing maternal nutrient
availability. This is achieved via the rate of ribosome biogenesis, the fundamental unit of
biosynthesis, and specifically ribosomal RNA (rRNA) transcription, which is reduced if the
maternal dietary restriction is maintained, but increased beyond control levels, if the dietary
challenge is lifted as in Emb-LPD. The manipulation of ribosome biogenesis is regulated
epigenetically through the level of DNA methylation at the rDNA gene promotor and coincides
with altered expression of the ribosome factor Rrn3, known to link ribosome biogenesis with
mTOR nutrient signalling (Denisenko, et al. 2016). Thus, the combination of extra-embryonic and
embryonic lineage adaptations to maternal Emb-LPD from implantation, comprising increased
extra-embryonic nutrient delivery and increased capacity for fetal biosynthesis, in addition to
improved maternal protein diet, all act to promote late fetal overgrowth as a basis for postnatal

disease derived from periconceptional environment (Fleming et al. 2018; Watkins et al. 2008).

Recent work has shown that Emb-LPD and sustained LPD treatment throughout pregnancy have a
negative influence on neurogenesis. Both treatments lead to a decline in neural stem cells (NSCs)
during fetal development through reduced proliferation and increased apoptosis. The loss of NSCs
coincides with an altered rate of neural differentiation and a postnatal phenotype of altered cortex
thickness and short-term memory loss in both males and females (Gould et al. 2018). These
findings extend earlier behavioural outcomes from the mouse Emb-LPD model (Watkins et al.
2008) and confirm periconceptional maternal undernutrition as critical in DOHaD for postnatal

health across diverse systems.

Assisted reproductive technologies
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Assisted reproductive technology (ART) refers to any technique that interferes with the normal
biological pathways of reproductive-related events and/or structures in order to contribute to the
establishment of pregnancy with the final goal of producing healthy offspring. In general, ART
manipulates events and/or structures related to ovulation, fertilization and embryo development
(Velazquez 2008). Current estimates from the International Committee Monitoring for Assisted
Reproductive Technologies (ICMART) indicate that since the first ART-derived baby in 1978 over
8 million babies have been born through ART worldwide (De Geyter 2018). It should be
emphasised that most ART-derived babies appear healthy. But giving the adverse effects associated
to ART reported in some human and animal studies (see below), there is an active effort to ensure
an efficient and safe application of human ART, including monitoring of the health status of the

resultant offspring.

Data from Finland indicated that children up to 4 years of age whose mothers were subjected to
ovulation induction with or without intrauterine insemination (IUT) showed an increased risk of
cerebral palsy, allergy and asthma, along with longer periods of hospitalization (Klemetti, et al.
2010). A Danish study found that the risk of developing type 1 diabetes during childhood was
increased in children conceived through the use of FSH in ovulation induction protocols or in
combination with IUI (Kettner, et al. 2016). Analysis of UK data revealed that babies derived from
ARTs such as in vitro fertilization (IVF), intracytoplasmic sperm injection (ICSI), IUI, gamete
intra-fallopian transfer (GIFT) and ovulation induction had an increased risk of developing
respiratory distress and infection during the first week of life when compared to naturally conceived
counterparts (Waynforth 2018). Similarly, a meta-analysis of 45 studies suggested that the risk of
developing birth defects can be increased by IVF and ICSI (Hansen, et al. 2013), something that has

been confirmed in a more recent meta-analysis (Zhao, et al. 2018).
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Another recent meta-analysis indicated that children conceived by IVF and ICSI showed a lower
weight during the first 4 years of age, with the difference disappearing afterwards (Bay, et al. 2018),
indicating an enhanced growth velocity during early development. Rapid growth during early
childhood can increase the risk of developing obesity and hypertension later in life (Lei, et al. 2015;
Mihrshahi, et al. 2011). Indeed, IVF children with rapid growth during early childhood (1-3 years of
age) showed higher blood pressure levels compared to spontaneously conceived counterparts at 8-
18 years of age (Ceelen, et al. 2009). Increases in blood pressure in I[IVF/ICSI-derived children has
been detected in several studies (Meister, et al. 2018; Sakka, et al. 2010; Scherrer, et al. 2012;
Valenzuela-Alcaraz, et al. 2013; Valenzuela-Alcaraz, et al. 2018). Reproductive potential seems to
be affected as well, especially in males. Young adults conceived through ICSI showed low sperm
concentration and motile sperm count compared to men born after spontaneous conception (Belva,
et al. 2016). Interestingly, the impaired sperm production was not associated with significant

changes in reproductive hormones (Belva, et al. 2017).

Current evidence seems to indicate that the incidence of certain diseases and some developmental
features might not be strongly affected by ART. For instance, the available data indicate that the
overall cancer risk does not seem to be increased in ART-derived children, although some studies
found a small increased risk for specific types of cancer (Chen and Heilbronn 2017; Wainstock, et
al. 2017; Williams, et al. 2018). Studies in the Netherlands reported that behavioural and cognitive
performance was not affected in ICSI-derived children at 5 years of age when compared to the
general Dutch population (Meijerink, et al. 2016) and that subfertility rather than ART per se seems
to be the underlying cause of impaired cognitive and behavioural development during childhood
observed in some ART-derived children (Schendelaar, et al. 2016). A recent study from the UK also
found that IVF and ICSI do not seem to impair children's early cognitive outcomes up to age 11
years (Barbuscia and Mills 2017). Similarly, a recent systematic review revealed that ART

treatments such as preimplantation genetic diagnosis/screening do not seem to affect cognitive and
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behavioural development, but they can mildly affect psychomotor development (e.g. dysregulation
in posture, muscle tone) of children in their first two years of life. However this subtle psychomotor
dysfunction was not detected in follow up studies in children up to 9 years of age (Natsuaki and

Dimler 2018).

Although these results have been taken as reassuring for ART outcomes affecting offspring mental
health (Meijerink et al. 2016), these studies were carried out during early childhood and the truly
long-term consequences (i.e. in adulthood) for mental health remain to be determined. Furthermore,
there is more uncertainty with some neurodevelopmental disorders. For instance, the occurrence of
autism and cerebral palsy in IVF/ICSI-derived children was found to be increased in some
(Goldsmith, et al. 2018; Kamowski-Shakibai, et al. 2015; Lehti, et al. 2013; Sandin, et al. 2013;
Schieve, et al. 2017; Stromberg, et al. 2002) but not all studies (Fountain, et al. 2015; Kallen, et al.
2010; Kissin, et al. 2015; Reid, et al. 2010). Both autism (Fountain et al. 2015) and cerebral palsy
(Goldsmith et al. 2018) has been strongly associated with multiple births in ART pregnancies

highlighting the need to reduce multiple pregnancies in women undergoing ART (Pinborg 2018).

Most of the above-discussed studies used as comparison group children naturally conceived by
fertile couples, which has been suggested not to be the best control group. Instead, naturally
conceived children from sub-fertile parents that managed to achieve pregnancy while waiting for
ART treatment will be a more appropriate comparison group (Zhao et al. 2018). Although studies
using this control group are available, a substantial proportion of human ART studies still have
methodological limitations that hamper the ability to provide reliable conclusions (Guo, et al. 2017;
Liu, et al. 2017; Rumbold, et al. 2017), to the point that some authors believe their findings (e.g.
increased risk of type diabetes due to ovulation induction protocols) are a statistical artefact

(Kettner et al. 2016).
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Nevertheless, animal models have provided experimental evidence supporting the notion that
cardiovascular (Rexhaj, et al. 2013; Watkins, et al. 2007), metabolic (Cerny, et al. 2017; Chen, et al.
2014; Feuer, et al. 2014), immunological (Karimi, et al. 2017), reproductive (Calle, et al. 2012), and
behavioural (Lopez-Cardona, et al. 2015) activity during postnatal development can be affected by
ART. These postnatal alterations can be induced by the microenvironment to which embryos are
exposed to during in vitro procedures. For example, mice and bovine models have demonstrated
that in vitro exposure during the preimplantation period to specific constituents of culture media
such as metabolic hormones (e.g. insulin), amino acids, pyruvate, lactate, and growth factors can
induced alterations in birth weight, body growth rate, and cardiovascular function (Banrezes, et al.
2011; Kannampuzha-Francis, et al. 2015; Velazquez et al. 2018). A similar situation has been
found in humans, where the culture medium composition induced changes in birth weight
(Kleijkers, et al. 2016) and body weight and body mass index examined at 9 years of age (Zandstra,
et al. 2018). Importantly, animal models have revealed that culture media modification (e.g.
melatonin supplementation) can reverse some of these altered phenotypes (e.g. cardiovascular

dysfunction) (Rexhaj et al, 2015).

The current consensus is that the effects of ART on offspring health may have an epigenetic origin
(Huntriss, et al. 2018). Indeed, a meta-analysis revealed that the incidence of rare imprinting
disorders in IVF/ICSI-derived children is higher than in spontaneously conceived children, although
the exact underlying epigenetic mechanism is unknown (Lazaraviciute, et al. 2014). Nevertheless,
compared to methylation levels in somatic and embryonic stem cells, a perturbed methylation of
imprinted genes such as SNRPN, KCNQ1OT1 and H19 was found in ART-derived human
preimplantation embryos (White, et al. 2015). Similarly, changes in DNA methylation were
observed in the placenta (Choufani, et al. 2018; Katari, et al. 2009; Melamed, et al. 2015) and cord
blood (Katari et al. 2009; Melamed et al. 2015) from ART-derived babies when compared to

naturally conceived counterparts. A study comparing natural conception with oocyte donation (i.e.
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young fertile oocyte donors/no male infertility) also found differences in placental DNA
methylation levels between the groups, suggesting a strong effect of ART and not infertility (Song,
et al. 2015). Several regulatory regions, metastable epialleles and imprinted genes, including IGF2,
were hypomethylated in blood spots from ART-conceived newborns relative to those conceived
naturally (Estill, et al. 2016). The methylation levels of SNRPN, a paternal imprinted gene, were
increased in the buccal cells of 2 year old children conceived by ICSI, but not by IVF. This
hypermethylation is believed to be associated with the greater degree of in vitro manipulation taking

place during ICSI (Whitelaw, et al. 2014).

These epigenetic changes are partially attributed to the microenvironment in which embryos are
cultured in, as animal models have revealed that media culture composition can alter DNA
methylation profiles in preimplantation embryos (Canovas, et al. 2017; Market-Velker, et al. 2010).
Furthermore, oxygen tension (5% vs 20%) during culture and type of embryo transferred (fresh vs
frozen) have the capacity to alter placental methylation levels from ART-conceived babies when
compare to natural conception. Importantly, data from pigs indicate than modification of culture
media to resemble in vivo composition can induced methylation levels in preimplantation embryos

more similar to those of produced in vivo (Canovas et al. 2017).

In contrast, DNA methylation was not affected in blood from prepubertal children conceived
through IVF (Oliver, et al. 2012). This suggest that ART-induced changes in DNA methylation
could be gene- and/or tissue-specific or that postnatal environment masked any subtle changes in
DNA methylation induced by ART. The latter emphasises the complexity of epigenetic studies in
humans and the need to consider several methodological issues to produce useful epigenetic data
(Lazaraviciute et al. 2014). Also, a critical step in elucidating the long-term effects of ART in
human populations is the development of databases for ART surveillance (i.e. health monitoring of

ART-derived offspring), something that has been implemented just in a few countries (Pinborg
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2018). The first ART-derived baby turned 40 years just recently, hence the long-term repercussions
(or lack of) of ART for healthy aging are far from being elucidated. This highlights the current need

for more research throughout the lifespan of ART-derived offspring.

Paternal origin of periconceptional programming

In contrast to the substantial epidemiological and animal model research linking maternal well-
being with offspring programming, our understanding of how a father influences the development
and cardiometabolic health of his offspring has been largely overlooked. However, there is now a
significant body of data indicating paternal physiological status, lifestyle and environmental
exposure to a range of factors not only impact on sperm quality, but also affect the long-term health
of his offspring (Fleming et al. 2018). In line with maternal programming studies, animal models
have become critical tools for not only defining the underlying paternal mechanisms involved but
also identifying central biomarkers of paternal programming ahead of studies using human samples.
Studies from humans and animal models have revealed the complexity of both sperm and the
seminal plasma, identifying novel processes by which perturbed paternal health at the time of
conception affect a dynamic range of reproductive and developmental processes and ultimately,

long-term offspring health.

Paternal reproductive health and sperm quality are impaired in response to paternal physiological
and lifestyle factors. Mirroring changes in oocyte quality in response to maternal obesity, elevated
paternal BMI has been associated with reduced semen volume, sperm number and sperm motility
(Chavarro, et al. 2010; Ma, et al. 2018). Furthermore, sperm from overweight or obese men show
higher levels of DNA damage when compared to sperm from normal weight males (Campbell, et al.
2015; Kort, et al. 2006). As obesity is associated with multiple disturbances in metabolic profile
including elevated levels of inflammatory markers and metabolic intermediates, the detrimental

effects of increasing male BMI on sperm quality is believed to be mediated through increased
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oxidative damage. Indeed, in both men and rodents, obesity has been shown to result in increased
reactive oxygen species generation (Palmer, et al. 2011; Tunc, et al. 2011) and sperm DNA damage
(Duale, et al. 2014; Zhao, et al. 2014). Furthermore, consumption of high energy diets have also
been associated with reduced sperm morphology, motility and DNA integrity (Agbaje, et al. 2007),
perturbed testicular metabolism (Rato, et al. 2013) and reduced fertility (Bener, et al. 2009) in both
mice and men. Similar to the effects of paternal overnutrition, deficiency of specific nutrients, or
even nutritional imbalance also affect sperm quality. Many macronutrients such as zinc, vitamins
and glutathione act as antioxidants to prevent excessive damage from reactive oxygen species.
Sperm from infertile men show higher rates of DNA damage which can be reduced following
treatment with supplement of selenium and vitamin E (Moslemi and Tavanbakhsh 2011). In mice,
the negative effects of paternal undernutrition on sperm DNA damage can be prevented through

dietary supplementation with vitamins and minerals (McPherson, et al. 2016).

Poor paternal health not only impacts on sperm quality, but can also affect post-fertilisation
development and offspring well-being. In men, some studies have identified associations between
obesity and reduced rates of blastocyst development and live birth following IVF (Bakos, et al.
2011). Such observations are supported by a recent, large meta-analysis in which the link between
paternal obesity and live birth rates after ART cycles was examined in 115,158 patients (Campbell
et al. 2015). Here, the authors reported a significant negative impact of increased male BMI on non-
viable pregnancy outcomes. In mice, paternal obesity has been reported to increase rates of one-cell
block, decrease blastocyst cell number and perturb embryo carbohydrate metabolism (Binder, et al.
2012; Mitchell, et al. 2011). Our own studies have revealed that a paternal low protein diet (LPD)
decreased blastocyst expression of multiple genes involved in the 5' AMP-activated protein kinase
(AMPK) pathway including genes for metabolism, regulation of transcription and protein synthesis
(Watkins, et al. 2017). Interestingly, similar decreases in several of these AMPK pathway genes

were still evident in late gestation fetal liver tissues and associated with increased rates of fetal
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growth (Watkins et al. 2017). As in studies of poor maternal diet during pregnancy, we observed
that the enhanced fetal growth programmed by paternal LPD was associated subsequently with
increased adiposity, impaired glucose metabolism, hypotension and vascular dysfunction in adult
offspring (Watkins and Sinclair 2014). Separately, other studies have shown significant changes in
fetal (Carone, et al. 2010; Lambrot, et al. 2013) and postnatal offspring development and metabolic
health (Anderson, et al. 2006; McPherson et al. 2016; Ryan, et al. 2018) in response to paternal diet
or food intake in mice. Interestingly, recent studies have demonstrated robust transgenerational
effects of chronic paternal stress on offspring well-being and hypothalamic pituitary adrenal axis

function (Gapp, et al. 2014; Rodgers, et al. 2015).

The fact that many paternal programming studies identify consistent transgenerational programming
effects (Fullston, et al. 2013; Gapp et al. 2014) indicates changes in sperm epigenetic status as one
potential mechanism linking paternal well-being with offspring development. Over recent years the
epigenetic complexity of mammalian sperm has been revealed. In contrast to the oocyte, sperm
contain almost no cytoplasm and the DNA is packaged using protamines rather than histones.
Inappropriate protamine packaging of the sperm DNA, or perturbed histone to protamine transition
can be indicative of impairments in the fundamental process of spermatogenesis (Sakkas, et al.
2002) or damage due to excessive exposure to reactive oxygen species (Sakka et al. 2010).
Furthermore, atypical chromosome packaging and localisation within the sperm or perturbed
telomere-centromere interactions has been associated with infertility in some men (Zalensky and
Zalenskaya 2007), while sperm chromatin maturation level has been link with pregnancy
establishment rates (de Lamirande, et al. 2012). While the majority of the sperm DNA is re-
packaged with protamines, specific genomic sequences retain their histone marks. What is
interesting is that the location of these retained histones is not random, but specific to important
developmental genes (Hammoud, et al. 2009) and retrotransposable long and short interspersed

nuclear elements in both men and mice (Samans, et al. 2014). Furthermore, some of these sperm-
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specific histones have been shown to be retained within the oocyte and contribute to the zygotic

genome (van der Heijden, et al. 2008).

In addition to sperm chromatin structure, differential profiles of DNA methylation have also been
linked to sperm quality in infertile men (Hammoud, et al. 2010). In studies looking at success rates
of women undergoing I[VF, the genome-wide methylation profile of their partner’s sperm correlated
with embryo quality (Aston, et al. 2015) and was indicative of pregnancy failure (Benchaib, et al.
2005). In mice, significant changes in sperm DNA methylation profiles have also been identified in
response to paternal obesity (Fullston et al. 2013), low protein (Carone et al. 2010) or low folate
(Lambrot et al. 2013) diets. Our own studies have showed that feeding male mice a LPD results in
global sperm hypomethylation associated with reduced testicular expression of central regulators of
DNA methylation and 1-carbon metabolism (Watkins, et al. 2018). Interestingly, analysis of the
sperm DNA hypomethylation revealed significant reductions at multiple genes involved in calcium
signalling which correlated with our earlier reported impairments in cardiovascular function and
cardiac calcium signalling gene expression in adult offspring of LPD fed males (Watkins and
Sinclair 2014). In addition to histone and DNA modifications, sperm have been shown to contain a
range of RNA species including mRNA, micro-RNA, short and long non-coding RNA and small
interfering RNAs (Colaco and Sakkas 2018). The significance of sperm-derived RNAs for post-
fertilisation development has been demonstrated in animal models where the depletion of specific
sperm micro RNAs results in developmental delay of the zygote (Liu, et al. 2012). In addition,
injection of tRNA-derived small RNAs from sperm of high fat diet fed male mice into control

zygotes resulted in impaired glucose metabolism and insulin secretion in the resultant offspring

(Chen, et al. 2016).

Separate to the epigenetic status of the sperm, fathers may also influence the development of their

offspring via seminal plasma-specific modulations of the maternal reproductive tract environment
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476  (Robertson and Sharkey 2016). In both mice and women, deposition of seminal plasma within the
477  reproductive tract initiates a significant inflammatory and immunological response culminating in
478  uterine vascular remodelling, the recruitment of leukocytes and the priming of regulatory T cells (T-
479  regs) and the production of a myriad of cell signalling molecules such as colony stimulating factor-
480 2 (CSF2), leukemia inhibitory factor (LIF) and interleukin 6 (IL-6) (Schjenken and Robertson

481  2014). Interestingly, studies have demonstrated positive associations between a woman’s

482  unprotected exposure to her partner’s seminal plasma and a reduced risk for her developing

483  preeclampsia during pregnancy (Robillard, et al. 1994). In mice, lack of seminal plasma at the time
484  of conception has been shown to impair embryo development, fetal growth and adult offspring

485  cardiometabolic health (Bromfield, et al. 2014). Our own studies have shown that offspring growth
486  and metabolic health appear equally compromised in response to either sperm or seminal plasma
487  from male mice fed a LPD (Watkins et al. 2018).

488

489  Conclusions

490 Itis clear from the above four types of exposure during periconceptional reproduction that altered
491  developmental programming may emerge from diverse environments (summarised in Table 1).
492  Whilst here we focus on parental nutrition in vivo and embryo manipulations in vitro, the spectrum
493  of exposures with enduring consequences is undoubtedly broader. For example, periconceptional
494  maternal alcohol consumption prior to embryo implantation in a rat model resulted in abnormal
495  trophoblast placental function, altered expression of epigenetic regulators for DNA methylation in
496 the fetal liver, culminating in postnatal glucose and insulin intolerance and increased risk of

497  offspring obesity (Gardebjer, et al. 2015; Gardebjer, et al. 2018; Kalisch-Smith, et al. 2016). In

498  another example, maternal sickness and systemic inflammation at the time of conception has been
499  shown in a mouse model to alter blastocyst morphogenesis with long-term consequences for adult
500 offspring immune function (Williams, et al. 2011). Here, reproductive function and embryo

501 implantation are in part regulated by the activity of maternal immune cells and the balance of pro-
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and anti-inflammatory cytokines can have significant influence not only on embryo survival but

long-term health of offspring (Robertson, et al. 2015).

The extent to which periconceptional exposure can associate with adult DOHaD consequences is
also influenced by intrinsic processes such as maternal ageing. Whilst it is well established that
fertility declines with age, the developmental potential of oocytes with advancing age is also
affected. In a recent mouse study, preimplantation embryos from aged versus young mothers, both
sired by young males and transferred to young recipients to carry the pregnancy, gave rise to
offspring with altered growth and increased cardiometabolic dysfunction (Velazquez, et al. 2016).
Oocytes from older mothers exhibit mitochondrial dysfunction and perturbed energy homeostasis
(Dumesic, et al. 2015) which may indicate adverse programming derives from similar processes as

occurs following maternal overnutrition, although mechanisms are underexplored.

A consistent feature across the research field of periconceptional programming has been the
involvement of epigenetic dysregulation as a means by which effects on gene expression and
cellular phenotype may persist through gestation and later life (Steegers-Theunissen, et al. 2013).
Manipulation of periconception maternal diet composition to reduce the availability of methyl
donors for DNA and histone methylation via one-carbon metabolism has been shown to alter the
offspring epigenome with accompanying cardiometabolic disease outcomes (Sinclair, et al. 2007).
Provision of methyl donors can also reverse adverse programming mediated through the rat
maternal LPD model (Lillycrop, et al. 2005). Animal oocytes and early embryos are known to
express key enzymes in the methionine/folate cycles (Kwong, et al. 2010) and a role for mTOR
signalling has been identified for sensing the levels of folate available for placental development
and fetal growth (Gupta and Jansson 2018; Rosario, et al. 2017). Variability across individuals and
ethnic groups in regulatory genes involved in one-carbon metabolism may contribute to the relative

susceptibility to adverse programming (Clare, et al. 2018). What is clear is that health of both
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parents in terms of diet and physiological condition is an important factor to establish before

conception rather than later in pregnancy to protect the health of the next generation.
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Figure legends

Figure 1.
Summary diagram of the periconceptional period covering gamete maturation and early
embryogenesis with key developmental stages and events identified, shown both in vivo and during

ART, and with long-term risks for offspring health from adverse exposures listed.
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