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The Linear CS/WZW Bulk/Boundary
System in AQFT

Marco Benini , Alastair Grant-Stuart and Alexander Schenkel

Abstract. This paper constructs in the framework of algebraic quantum
field theory (AQFT) the linear Chern–Simons/Wess–Zumino–Witten sys-
tem on a class of 3-manifolds M whose boundary ∂M is endowed with a
Lorentzian metric. It is proven that this AQFT is equivalent to a dimen-
sionally reduced AQFT on a 2-dimensional manifold B, whose restriction
to the 1-dimensional boundary ∂B is weakly equivalent to a chiral free
boson.

Mathematics Subject Classification. 81T70, 81T13.

Contents

1. Introduction and Summary
2. Chern–Simons with (Anti-)self-dual Boundary Condition
3. Construction of Green’s Homotopies

3.1. Chiral Geometry of the Boundary
3.2. Green’s Homotopies Associated with a Proper R-Action
3.3. Boundary and Bulk Green’s Homotopies

4. The AQFT for the Bulk/Boundary System
5. Dimensional Reduction to the Base Manifold
6. Analyzing the Dimensionally Reduced AQFT
Acknowledgements
Appendix A: Technical Details

A.1 Proper R-Actions
A.2 Properties of Θ-Future/Past Sets

References

http://crossmark.crossref.org/dialog/?doi=10.1007/s00023-023-01346-6&domain=pdf
http://orcid.org/0000-0003-0192-1226
http://orcid.org/0000-0001-5031-7899
http://orcid.org/0000-0001-6790-1784


M. Benini et al. Ann. Henri Poincaré

1. Introduction and Summary

Quantum field theories (QFTs) that are defined on manifolds with bound-
ary are known to exhibit interesting phenomena that arise from a rich in-
terplay between bulk and boundary degrees of freedom. A prime example
is given by the Chern–Simons/Wess–Zumino–Witten (in short, CS/WZW)
bulk/boundary system that describes a topological QFT in the bulk, a chi-
ral conformal QFT on the boundary and their non-trivial interplay, lead-
ing to interesting phenomena such as holography. This was observed first
in [41] and subsequently studied in more detail by many authors, see, e.g.,
[18,22–24,27,33,37]. One of the main mechanisms causing an interplay be-
tween bulk and boundary degrees of freedom is gauge invariance of the com-
bined bulk/boundary system. This leads to various consistency conditions be-
tween bulk and boundary fields that can be analyzed, for instance, in the
BV/BFV formalism of Cattaneo, Mnev and Reshetikhin [16,17].

The aim of this paper is to study in detail a simple and explicit example of
such gauge-theoretic bulk/boundary system from the point of view of algebraic
QFT (AQFT) [5,29], or more precisely its homotopical refinement [9,10] that
is better suited to deal with gauge theories. The model we study is given by
(a Lorentz geometric variant of) the linear CS/WZW bulk/boundary system,
which describes linear Chern–Simons theory in the bulk of a 3-manifold M
and a chiral free boson on its boundary ∂M , together with their interplay.
More precisely, we study Chern–Simons theory with linear structure group
G = R on an oriented 3-manifold M , whose boundary ∂M is endowed with
(the conformal class of) a Lorentzian metric and a time-orientation, in the
presence of a Lorentzian version of the chiral WZW boundary condition on
∂M . A holomorphic variant of this example, where ∂M is endowed with a
complex structure, was studied recently in the context of factorization algebras
(à la Costello–Gwilliam [14,15]) by Gwilliam, Rabinovich and Williams [27].

The physics of the CS/WZW bulk/boundary system is already well-
understood, and by restricting to the linear structure group G = R we only
study a particularly simple instance of it. Of interest in this work, though,
are the mathematical techniques we use to construct and analyze the model
as an AQFT. They relate to multiple recent developments in AQFT and dif-
fer considerably from how [27] constructs the linear CS/WZW system as a
factorization algebra. Some of the key features are:

(1) While the factorization algebra for the holomorphic CS/WZW system is
constructed in [27] by linear BV quantization of a shifted Poisson struc-
ture (the antibracket), our construction of an AQFT for the Lorentzian
variant of this system uses canonical commutation relation (CCR) quan-
tization of a related unshifted Poisson structure. We will determine the
latter by using the novel concept of Green’s homotopies from [7], which
are homotopical generalizations of Green’s operators, in combination with
techniques from 2-dimensional chiral conformal Lorentzian geometry [26].
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In particular, we provide new examples of Green’s homotopies for gauge-
theoretic bulk/boundary systems, which contributes novel types of exam-
ples to the literature on Green’s operators in the presence of Lorentzian
boundaries, see e.g., [4,19,20].

(2) Our AQFT for the CS/WZW bulk/boundary system is defined on a suit-
able category of open subsets of the 3-manifold M , and it satisfies a
homotopical version of local constancy, or the time-slice axiom. Using
recent strictification theorems for the homotopy time-slice axiom [3], we
will prove that this AQFT is equivalent to an AQFT that is defined on
a 2-dimensional manifold B, playing a similar role to a Cauchy surface.
This dimensional reduction from 3 to 2 dimensions is crucial to identify
the degrees of freedom of the CS/WZW system near the boundary ∂B
with a chiral free boson, which in the context of AQFT is described on
1-manifolds (i.e., light rays).

The outline of the remainder of this paper is as follows: In Sect. 2, we
review the linear Chern–Simons complex on an oriented 3-manifold M with
boundary ∂M �= ∅ from [27] and introduce our Lorentz geometric variant of the
chiral WZW boundary condition, which we call the (anti-)self-dual boundary
condition L±, see (2.18). In Sect. 3, we define a suitable concept of chiral
Green’s homotopies for the Chern–Simons complex and prove their existence
under suitable niceness conditions, see Proposition 3.28. The main tool we use
to prove the existence of Green’s homotopies is an extension of the ±-chiral
flow Θ± [26] on the boundary Lorentzian 2-manifold ∂M to a proper R-action
̂Θ± : R×M → M on the bulk manifold. One may interpret this as an arbitrary
extension of the concepts of ±-chiral null curves from ∂M into the bulk M .
Equipped with these Green’s homotopies, we construct in Sect. 4 an AQFT
A± for the CS/WZW bulk/boundary system that assigns differential graded
∗-algebras (in short, dg-algebras) to suitable open subsets U ⊆ M . We also
prove that this AQFT satisfies a chiral variant of the Einstein causality axiom
and of the homotopy time-slice axiom, see Proposition 4.6 and Corollary 4.7.

In Sect. 5, we use the strictification theorems for the homotopy time-
slice axiom from [3] in order to prove that our 3-dimensional AQFT A± for
the CS/WZW bulk/boundary system on M is equivalent to a 2-dimensional
AQFT B± that is defined on the quotient space B± := M/∼± associated with
the proper R-action ̂Θ± : R×M → M , see Corollary 5.5. (Choosing a smooth
section of the associated principal R-bundle π̂± : M → B± allows one to think
of B± as a kind of “Cauchy surface” in M .) Using this phenomenon of dimen-
sional reduction, we also prove that, under suitable topological assumptions
on M , the AQFT A± for the CS/WZW bulk/boundary system is insensitive
to the choice of extension of the ±-chiral flow Θ± on ∂M to a proper R-action
̂Θ± on M , see Corollary 5.9. Hence, our AQFT construction is canonical in
these cases.

The aim of Sect. 6 is to analyze the dimensionally reduced AQFT B±
that is defined on the quotient 2-manifold B± := M/ ∼±. Upon restriction
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to the interior IntB± ⊆ B±, we find that this AQFT specializes to the 2-
dimensional part of linear Chern–Simons theory, which is given by canonical
quantization of the Chern–Simons phase space along the Atiyah–Bott Poisson
structure [1]. Furthermore, restricting the AQFT B± to a tubular neighbor-
hood ∂B±×[0, 1) ⊆ B± of the boundary, we obtain an AQFT that is equivalent
to the chiral free boson on the 1-manifold ∂B±, see Corollary 6.3. The inter-
play between bulk and boundary degrees of freedom is realized in our approach
through dg-algebra morphisms B±(V ) → B±(V ′) that are associated with
subset inclusions V ⊆ V ′ ⊆ B± from interior regions V ⊆ IntB± into regions
V ′ ⊆ B± that intersect the boundary, i.e., V ′ ∩ ∂B± �= ∅. This allows us to
describe certain Chern–Simons observables in the bulk in terms of equivalent
chiral boson observables on the boundary, which is illustrated in Example 6.4
by studying the boundary observable corresponding to the Chern–Simons ob-
servable that measures the holonomy of flat connections. Appendix A contains
some technical details that are required in the main part of the paper.
Notation and Conventions for Cochain Complexes: Let us fix a field K of
characteristic 0, e.g., the real numbers R or the complex numbers C. A cochain
complex V consists a family of K-vector spaces {V i}i∈Z and a family of degree
increasing linear maps {d : V i → V i+1}i∈Z (called the differential) that squares
to zero d2 = 0. A cochain map f : V → W between two cochain complexes is a
family of linear maps {f : V i → W i}i∈Z that commutes with the differentials
f ◦d = d◦f . We denote by ChK the category of cochain complexes and cochain
maps.

Given any cochain complex V and integer p ∈ Z, we define the p-shifted
cochain complex V [p] by V [p]i := V i+p, for all i ∈ Z, and the differential
d[p] := (−1)p d.

To each cochain complex V , one can assign its cohomology, which is the
graded vector space defined by Hi(V ) := Ker(d : V i → V i+1)

/

Im(d : V i−1 →
V i), for all i ∈ Z. The assignment of cohomology defines a functor H• from
ChK to the category of Z-graded vector spaces. A morphism f : V → W
in ChK is called a quasi-isomorphism if it induces an isomorphism H•(f) :
H•(V ) → H•(W ) in cohomology.

The category ChK is closed symmetric monoidal. The monoidal product
V ⊗ W of two cochain complexes is given by the family of vector spaces

(V ⊗ W )i :=
⊕

j∈Z

(

V j ⊗ W i−j
)

, (1.1a)

for all i ∈ Z, and the differential d⊗ that is defined by the graded Leibniz rule

d⊗(v ⊗ w) := (dv) ⊗ w + (−1)|v| v ⊗ (dw), (1.1b)

for all homogeneous v ∈ V and w ∈ W , where | · | ∈ Z denotes the degree. The
monoidal unit is K, regarded as a cochain complex concentrated in degree 0
with trivial differential, and the symmetric braiding V ⊗W → W ⊗V , v⊗w �→
(−1)|v| |w| w ⊗ v is given by the Koszul sign rule. The internal hom [V,W ]
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between two cochain complexes is given by the family of vector spaces

[V,W ]i :=
∏

j∈Z

HomK

(

V j ,W j+i
)

, (1.2a)

for all i ∈ Z, where HomK denotes the vector space of linear maps, and the
differential ∂ that is defined by the graded commutator

∂L := d ◦ L − (−1)|L| L ◦ d, (1.2b)

for all homogeneous L ∈ [V,W ].
Observe that a cochain map f : V → W is the same datum as a 0-

cocycle in the internal hom complex [V,W ], i.e., f ∈ [V,W ]0 such that ∂f =
0. Furthermore, a cochain homotopy between two cochain maps f, g : V →
W is an element h ∈ [V,W ]−1 of degree −1 such that ∂h = g − f . Higher
cochain homotopies admit a similar interpretation in terms of the internal
hom complex.

2. Chern–Simons with (Anti-)self-dual Boundary Condition

In this section, we describe the cochain complex that encodes linear Chern–
Simons theory on an oriented 3-dimensional manifold M and its (−1)-shifted
symplectic structure. The case where the boundary ∂M = ∅ is empty is quite
standard, and details can be found, e.g., in the book of Costello and Gwilliam
[14, Chapter 4.5]. The case where the boundary ∂M �= ∅ is non-empty is more
involved as it requires the choice of a boundary condition to obtain a well-
defined (−1)-shifted symplectic structure. These aspects, including particular
choices of boundary conditions, have been studied systematically in the recent
work [27] of Gwilliam, Rabinovich and Williams, which serves as our main
reference for this section.
Empty Boundary: ∂M = ∅: Consider an oriented 3-manifold M without
boundary ∂M = ∅. The Chern–Simons complex is defined as the 1-shifted
de Rham complex

F(M) := Ω•(M)[1] =
( (−1)

Ω0(M)
−d

��

(0)

Ω1(M)
−d

��

(1)

Ω2(M)
−d

��

(2)

Ω3(M)
)

,

(2.1)

where d denotes the de Rham differential and round brackets indicate the
cohomological degree. It is important to note that the latter differs by 1 from
the de Rham degree, i.e., |α|dR = |α| + 1 for all homogeneous α ∈ F(M).
The physical interpretation of the complex F(M) is as follows: An element
A ∈ F(M)0 = Ω1(M) in degree 0 is a gauge field (principal R-connection), and
an element c ∈ F(M)−1 = Ω0(M) in degree −1 is a ghost field (infinitesimal
gauge transformation). The elements in positive degrees are the antifields A‡ ∈
F(M)1 = Ω2(M) and the antifields for ghosts c‡ ∈ F(M)2 = Ω3(M). As
typical for the BV formalism, the differential encodes both the action of gauge
symmetries and the equation of motion, which in the case of linear Chern–
Simons theory is the flatness condition dA = 0.
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Using the wedge product of differential forms, we can define a cochain
map

( · , · ) : F(M) ⊗ F(M) −→ Ω•(M)[2] , α ⊗ β �−→ (α, β) = (−1)|α| α ∧ β
(2.2)

to the 2-shifted de Rham complex. Observe that this map is graded antisym-
metric, i.e.,

(α, β) = −(−1)|α| |β| (β, α), (2.3)

for all homogeneous α, β ∈ F(M). Since by hypothesis the boundary ∂M = ∅
is empty, integration of compactly supported forms defines a cochain map
∫

M
: Ω•

c(M)[2] → R[−1], which allows us to define a (−1)-shifted symplectic
structure

ω(−1) : Fc(M) ⊗ Fc(M)
( · , · )

�� Ω•
c(M)[2]

∫

M �� R[−1] (2.4)

on the subcomplex Fc(M) ⊆ F(M) of compactly supported sections.
Non-empty Boundary: ∂M �= ∅: Consider an oriented 3-manifold M with
non-empty boundary ∂M �= ∅. As field complex we take again the 1-shifted
de Rham complex (2.1), but now on a manifold with boundary. The (−1)-
shifted symplectic structure (2.4) does not directly generalize to the present
case because the map ω(−1) fails to be a cochain map. Indeed, as a consequence
of Stokes’ theorem, one has that

−∂ω(−1)(α ⊗ β) = ω(−1) ◦ d⊗(α ⊗ β) =

∫

M
d(α, β) = (−1)|α|

∫

∂M
ι∗(α) ∧ ι∗(β), (2.5)

for all homogeneous α, β ∈ Fc(M), where ι∗ denotes the pullback of differential
forms along the boundary inclusion ι : ∂M → M .

One way to resolve this incompatibility between the differential and ω(−1)

is to impose a suitable boundary condition on the field complex F(M). A par-
ticularly interesting approach to boundary conditions, which draws inspiration
from the intersection theory of Lagrangians in derived algebraic geometry [38],
has been recently developed in [27,39,40]. Without going into the technical de-
tails, which are nicely explained in these papers, the key idea of this approach
is to introduce a cochain complex FL(M) of boundary conditioned fields by
forming a fiber product

FL(M)

��
�
�
�

����� F(M)

ι∗

��

L ⊆
�� F(∂M)

(2.6)

in the category of cochain complexes.1 Let us explain the ingredients of this
diagram, as well as their interpretation, in the context of our example: The

1The ordinary fiber product (2.6) provides a model for the homotopy fiber product whenever
the right vertical map ι∗ is a fibration of cochain complexes, which is the case in our example
given by linear Chern–Simons theory.
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boundary field complex F(∂M) is the 1-shifted de Rham complex of the bound-
ary manifold ∂M , i.e.,

F(∂M) := Ω•(∂M)[1] =
( (−1)

Ω0(∂M)
−d

��

(0)

Ω1(∂M)
−d

��

(1)

Ω2(∂M)
)

, (2.7)

and the cochain map ι∗ is given by pullback of differential forms along ι :
∂M → M . Using an analogous construction as in (2.4), together with the fact
that ∂M is 2-dimensional, one obtains an unshifted symplectic structure

ω(0) : Fc(∂M) ⊗ Fc(∂M)
( · , · )

�� Ω•
c(∂M)[2]

∫

∂M �� R (2.8)

on the subcomplex Fc(∂M) ⊆ F(∂M) of compactly supported sections. This
allows us to rewrite Eq. (2.5) in the following more conceptual form

−∂ω(−1) = ω(0) ◦ (ι∗ ⊗ ι∗), (2.9)

which means that ω(−1) defines a derived isotropic structure for the cochain
map ι∗ in (2.6). As a consequence of the non-degeneracy condition proven in
[39, Lemma 2.20], ω(−1) is further (a field theoretic analogue of) a derived
Lagrangian structure on ι∗.

The subcomplex L ⊆ F(∂M) in (2.6), which we call the boundary con-
dition, is the choice of a local and strict Lagrangian in

(

F(∂M), ω(0)

)

. Local
means that L = Γ∞(L) is given by the sections of a subbundle L → ∂M of the
boundary field bundle ∧•T ∗∂M [1] → ∂M , and strict Lagrangian means that
L ⊆ F(∂M) is strictly isotropic, i.e., the restriction

ω(0)

∣

∣

Lc⊗Lc
= 0 (2.10)

of the unshifted symplectic structure to the subcomplex Lc ⊆ L of compactly
supported sections vanishes, and maximal in the sense that the total rank of
L is half that of ∧•T ∗∂M [1].

An explicit model for the cochain complex FL(M) defined by the fiber
product in (2.6) is given by the subcomplex FL(M) ⊆ F(M) of the field com-
plex consisting of all fields α ∈ F(M) that satisfy the boundary condition
ι∗(α) ∈ L. We denote the individual components of this subcomplex by

FL(M) = Ω•
L(M)[1] =

( (−1)

Ω0
L(M)

−d
��

(0)

Ω1
L(M)

−d
��

(1)

Ω2
L(M)

−d
��

(2)

Ω3
L(M)

)

.

(2.11)

Due to the strict isotropy condition (2.10) for L, one immediately observes that
the boundary terms in (2.5) and (2.9) vanish for fields that satisfy the boundary
condition; hence, ω(−1) restricts to a (−1)-shifted symplectic structure

ω(−1) : FL,c(M) ⊗ FL,c(M) −→ R[−1] (2.12)

on the subcomplex FL,c(M) ⊆ FL(M) of compactly supported sections.
Note that, when the boundary ∂M = ∅ is empty, the boundary field

complex F(∂M) = 0 is trivial and so is any boundary condition L = 0. Hence,
the cochain complex FL(M) and its (−1)-shifted symplectic structure ω(−1)

specialize to the ones we have described in the previous paragraph.
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Linear Observables and (-1)-Shifted Poisson Structure: We describe the linear
observables for the complex FL(M) of boundary conditioned fields by the 1-
shifted cochain complex

FL,c(M)[1] = Ω•
L,c(M)[2] =

( (−2)

Ω0
L,c(M)

d ��
(−1)

Ω1
L,c(M)

d ��
(0)

Ω2
L,c(M)

d ��
(1)

Ω3
L,c(M)

)

(2.13)

of compactly supported sections. The evaluation of linear observables on fields
is given by the cochain map

ev : FL,c(M)[1] ⊗ FL(M)
( · , · )

�� Ω•
c(M)[3]

∫

M �� R (2.14a)

that is obtained from (2.2) and the integration map. Explicitly,

ev(ϕ ⊗ α) = (−1)|ϕ|+1

∫

M

ϕ ∧ α, (2.14b)

for all homogeneous ϕ ∈ FL,c(M)[1] and α ∈ FL(M). The complex of linear
observables can be endowed with the (−1)-shifted Poisson structure

τ(−1) : FL,c(M)[1] ⊗ FL,c(M)[1]
∼= �� FL,c(M)[2] ⊗ FL,c(M)

ω(−1)
�� R[1],
(2.15)

where the first cochain isomorphism is constructed from the symmetric braid-
ing on the category of cochain complexes, i.e., it involves Koszul signs. These
Koszul signs cancel the minus signs entering ω(−1) through (2.2), such that

τ(−1)(ϕ ⊗ ψ) =
∫

M

ϕ ∧ ψ (2.16)

is simply given by the forming the wedge product followed by integration over
M , for all linear observables ϕ,ψ ∈ FL,c(M)[1].
(Anti-)self-dual Boundary Condition: Of particular interest to us are Lorentzian
geometric variants of the so-called chiral and anti-chiral WZW boundary con-
ditions, which were introduced in [27, Example 2.3] through the choice of a
complex structure on ∂M and the corresponding Dolbeault decomposition of
Ω•(∂M). To describe a Lorentzian analogue of these boundary conditions, we
assume that ∂M comes endowed with (the conformal class of) a Lorentzian
metric g and a time orientation. As orientation on ∂M we take the one induced
from the orientation of the bulk M . From these data, we can define a Hodge
operator ∗ : Ωk(∂M) → Ω2−k(∂M), which due to the Lorentzian signature
of the metric squares to the identity ∗2 = id on 1-forms. This allows us to
decompose the vector space of 1-forms

Ω1(∂M) = Ω+(∂M) ⊕ Ω−(∂M) (2.17)

into the self-dual Ω+(∂M) and anti-self-dual Ω−(∂M) forms, i.e., α ∈
Ω±(∂M) ⊆ Ω1(∂M) if and only if ∗α = ±α. Let us note that, since the
Hodge operator is C∞(∂M)-linear, this decomposition is also a direct sum
decomposition of C∞(∂M)-modules. In particular, Ω±(∂M) ⊆ Ω1(∂M) are
submodules.
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Example 2.1. In order to illustrate these concepts, let us consider the 3-manifold
M = R

2 × R
≥0 with orientation o = [−dt ∧ dx ∧ dr] determined by a choice

of global coordinates (t, x, r). Let us further endow the boundary ∂M = R
2

with the standard Minkowski metric g = −dt2 + dx2 and the time-orientation
t = [∂t]. The induced orientation of the boundary is o∂M = [dt∧dx]. Taking the
standard basis (dt,dx) of Ω1(∂M), one has that ∗dt = −dx and ∗dx = −dt.
Introducing the standard light cone coordinates x± := t ± x, the Hodge op-
erator acts on dx± ∈ Ω1(∂M) according to ∗(dx±) = ∓dx±, i.e., dx− defines
a module basis for the self-dual forms Ω+(∂M) and dx+ defines one for the
anti-self-dual forms Ω−(∂M). Note the flip of sign.

We define the self-dual boundary condition as the subcomplex

L+ :=
( (−1)

0
0 ��

(0)

Ω+(∂M)
−d

��

(1)

Ω2(∂M)
)

⊆ F(∂M) (2.18a)

of the boundary field complex (2.7). The anti-self-dual boundary condition L−

is similarly defined with Ω−(∂M) in place of Ω+(∂M), i.e.,

L− :=
( (−1)

0
0 ��

(0)

Ω−(∂M)
−d

��

(1)

Ω2(∂M)
)

⊆ F(∂M). (2.18b)

It is easy to check that both L+ and L− are local and strict Lagrangians in
(

F(∂M), ω(0)

)

.
Throughout the whole paper, we impose either L+ or L− as boundary

condition on the Chern–Simons theory on M .2 For a uniform notation, we
denote the chosen boundary condition as L±. The corresponding boundary
conditioned fields introduced in (2.6) then satisfy the following boundary con-
ditions: The pullback to the boundary ι∗(c) = 0 of the ghost field vanishes,
and the pullback to the boundary ι∗(A) ∈ Ω±(∂M) of the gauge field is an
(anti-)self-dual 1-form. Note that the antifields A‡ and c‡ are not restricted by
the (anti-)self-dual boundary condition.

3. Construction of Green’s Homotopies

The data presented in Sect. 2 are sufficient to quantize linear Chern–Simons
theory with the chosen (anti-)self-dual boundary condition in terms of a factor-
ization algebra. The relevant construction is given by linear BV quantization
of the complex of linear observables (2.13) along its (−1)-shifted Poisson struc-
ture (2.15), see, e.g., [14, Chapter 4] or [27, Section 3] for the details.

In the present paper, we shall take a different approach and study the
quantization of this theory in terms of an AQFT. This requires additional
structure, given by so-called Green’s homotopies [7], which generalize the con-
cept of retarded/advanced Green’s operators to a homotopical context. Using

2In cases where ∂M has multiple components, one may choose a more general mixed-type
boundary condition by using self-dual forms on some components of ∂M and anti-self-dual
forms on the others. While much of the discussion below may be adapted to this case, we
give it no further consideration here.
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these Green’s homotopies, one can determine as in [7] an unshifted Poisson
structure on the complex of linear observables (2.13), which then can be quan-
tized by constructing canonical commutation relation (CCR) dg-algebras as in
[2].

Example 3.1. Green’s homotopies provide a natural homotopical generaliza-
tion of the usual retarded/advanced Green’s operators for normally hyperbolic
partial differential equations. To illustrate the main idea, let us briefly sketch
the concept of Green’s homotopies in the simplest example given by Klein–
Gordon theory on a globally hyperbolic Lorentzian manifold N . We refer the
reader to [7] and also [2, Section 4.1] for more details. The field complex of the
Klein–Gordon field is given by:

FKG(N) :=
( (0)

Ω0(N)
�+m2

��

(1)

Ω0(N)
)

, (3.1)

where � denotes the d’Alembertian and m2 ≥ 0 is a mass term. Elements
Φ ∈ Ω0(N) in degree 0 are interpreted as fields and elements Φ‡ ∈ Ω0(N) in
degree 1 as antifields. Note that the cohomology of this complex is concentrated
in degree 0 and it is given by the usual solution space of the Klein–Gordon
equation Sol(N) = {Φ ∈ Ω0(N) | (� + m2)Φ = 0}.

A retarded/advanced Green’s operator for Klein–Gordon theory is de-
fined as a linear map G± : Ω0

c(N) → Ω0(N) that satisfies, for all compactly
supported ϕ ∈ Ω0

c(N),
(i) G±(� + m2)ϕ = ϕ and (� + m2)G±ϕ = ϕ,
(ii) supp(G±ϕ) ⊆ J±

N (supp ϕ), where J±
N (S) ⊆ N denotes the causal fu-

ture/past of S ⊆ N .
The first property can be easily described in the language of cochain complexes:
The retarded/advanced Green’s operator determines via

(-1) (0) (1) (2)

0

��

�� Ω0
c(N)

j

��

�+m2
��

���
�
�
�
�
�

Ω0
c(N)

j

��

��

G±�
��

����
�

0

�����
�
�
�
�
�

0 �� Ω0(N)
�+m2

�� Ω0(N) �� 0

(3.2)

a (−1)-cochain G± ∈ [FKG
c (N),FKG(N)

]−1 which defines a cochain homotopy
∂G± = j from the zero map to the cochain map j : FKG

c (N) ↪→ FKG(N)
that includes compactly supported 0-forms into all 0-forms. The second prop-
erty of Green’s operators states that this homotopy must have suitable sup-
port properties, which can be formalized in a homotopically meaningful way
as in [7]. Taking the difference G := G+ − G− ∈ [FKG

c (N),FKG(N)
]−1 of

the retarded and the advanced Green’s homotopy defines a cochain map G :
FKG

c (N)[1] → FKG(N), i.e., ∂G = 0, from which one constructs an unshifted
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Poisson structure τ(0) : FKG
c (N)[1] ⊗ FKG

c (N)[1] → R via integration τ(0)(ϕ ⊗
ψ) :=

∫

N
ϕ G(ψ) volN , where volN denotes the volume form.

The advantage of Green’s homotopies is that they exist also in gauge-
theoretic examples, which are described by complexes that encode also ghosts
and their antifields, and hence are longer than (3.1), while ordinary Green’s op-
erators cannot exist in a gauge theory (before gauge fixing) due to degeneracy
of the equation of motion.

Our strategy in this section is as follows: In Sect. 3.1, we use relevant chi-
ral geometry (in the sense of [26]) of the boundary Lorentzian manifold ∂M to
define a notion of Green’s homotopies for the (anti-)self-dual boundary condi-
tion L± in (2.18). A key feature of this chiral geometry is the so-called chiral
flows. In Sect. 3.2, we abstract to Green’s homotopies for the de Rham complex
on a manifold that is endowed with a smooth R-action (i.e., a flow) and give
an explicit construction of such Green’s homotopies under suitable niceness
conditions on the R-action. Finally, in Sect. 3.3 we specialize this construction
to produce compatible Green’s homotopies for the boundary condition L± and
the complex FL±(M) of boundary conditioned fields, under the hypothesis that
the bulk M may be equipped with suitable extensions of a chiral flow on ∂M .

3.1. Chiral Geometry of the Boundary

To motivate our notion of Green’s homotopies for Chern–Simons theory sub-
ject to an (anti-)self-dual boundary condition, we first consider the analogous
notion of Green’s homotopies for the boundary condition complex L± itself.
In so doing, we will encounter relevant chiral features of the 2-dimensional
boundary spacetime ∂M , which will inform our construction in the bulk M .

In this subsection, we will work on the 2-dimensional boundary mani-
fold ∂M , which by our hypotheses is endowed with a Lorentzian metric g,
an orientation o∂M and a time-orientation t. In the following definition, we
represent the latter two data by a non-vanishing 2-form ω ∈ Ω2(∂M) and a
non-vanishing time-like vector field τ ∈ Γ∞(T∂M).

Definition 3.2. (a) A nonzero null vector 0 �= v ∈ Tp∂M at a point p ∈ ∂M ,
i.e., g(v, v) = 0, is called ↗-pointing if g(τ, v) < 0 and ω(τ, v) > 0, ↖-
pointing if g(τ, v) < 0 and ω(τ, v) < 0, ↙-pointing if g(τ, v) > 0 and
ω(τ, v) < 0, and ↘-pointing if g(τ, v) > 0 and ω(τ, v) > 0.

(b) A null curve γ : [0, 1] → ∂M is called ↗-pointing if all its tangent vectors
are ↗-pointing. The other three cases ↖, ↙ and ↘ are defined similarly.

Evidently, any ↗-pointing curve γ produces a ↙-pointing curve s �→
γ(1− s) by reversing its parameterization, and vice versa. ↖- and ↘-pointing
curves are similarly related.

Example 3.3. The terminology in Definition 3.2 is motivated by the graphical
representation of such tangent vectors in the standard Minkowski spacetime
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(see Example 2.1):

t

x

x+x−

(3.3)

Indeed, by a quick calculation one checks that the tangent vector ∂+ := ∂
∂x+

is ↗-pointing and the tangent vector ∂− := ∂
∂x− is ↖-pointing. The additive

inverses −∂+ and −∂− are, respectively, ↙-pointing and ↘-pointing.

Remark 3.4. In [26, Section 4], a null curve γ : [0, 1] → ∂M that is either ↗-
pointing or ↙-pointing is called right-chiral, and one that is either ↖-pointing
or ↘-pointing is called left-chiral. In the present paper, we prefer to use the
finer distinction from Definition 3.2.

Our concept of pointings for tangent vectors is related to (anti-)self-
duality of 1-forms.

Lemma 3.5. A 1-form α ∈ Ω1(∂M) is self-dual if and only if, at every point
p ∈ ∂M , the contraction α(v) = 0 vanishes for all ↗-pointing and all ↙-
pointing null vectors v ∈ Tp∂M . Similarly, a 1-form α ∈ Ω1(∂M) is anti-self-
dual if and only if, at every point p ∈ ∂M , the contraction α(v) = 0 vanishes
for all ↖-pointing and all ↘-pointing null vectors v ∈ Tp∂M .

Proof. Since every 2-dimensional Lorentzian manifold is locally conformally
equivalent to the Minkowski spacetime, and since (anti-)self-duality and the
pointings from Definition 3.2 depend only on the conformal structure, it is
sufficient to prove the claim for the Minkowski spacetime. The latter follows
immediately from our explicit descriptions in Examples 2.1 and 3.3. �

Making use of the pointings from Definition 3.2, we can introduce for
each point p ∈ ∂M the following subset

J↗(p) :=
{

q ∈ ∂M

∣

∣

∣

∣

q = p or ∃ ↗ −pointing curve
γ : [0, 1] → ∂M s.t. γ(0) = p and γ(1) = q

}

⊆ ∂M,

(3.4a)

and similar subsets for the other three cases ↖, ↙ and ↘. These subsets
characterize the four null components of the light cone at p ∈ ∂M . Given any
subset S ⊆ ∂M , we further define

J↗(S) :=
⋃

p∈S

J↗(p) ⊆ ∂M, (3.4b)

and similar in the other three cases.
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Remark 3.6. Since reversing the parameterization changes a ↗-pointing curve
into a ↙-pointing curve, it follows that p ∈ J↗(q) if and only if q ∈ J↙(p).
In fact, J↗(p) and J↙(p) arise, respectively, as the sets of successors and
predecessors of p under the binary relation ≤+ on ∂M defined by p ≤+ q if
either p = q or there exists a ↗-pointing curve in ∂M from p to q. Similarly,
J↖(p) and J↘(p) arise, respectively, as the sets of successors and predecessors
of p under the binary relation ≤− on ∂M defined by p ≤− q if either p = q or
there exists a ↖-pointing curve in ∂M from p to q.

In the next definition, we introduce the variants of Green’s homotopies
that are relevant for the present paper. See also Remark 3.8 for some addi-
tional comments on the relationship to the framework of Green’s homotopies
developed in [7].

Definition 3.7. A ↗-pointed Green’s homotopy for the boundary condition L±

in (2.18) is a (−1)-cochain G↗ ∈ [L±
c ,L±]−1 in the internal hom complex

from the complex of compactly supported sections L±
c to L± that satisfies the

following properties:
(i) ∂G↗ = j, where j : L±

c → L± is the canonical inclusion cochain map
from compactly supported sections to all sections;

(ii) supp
(

G↗α
) ⊆ J↗

(

suppα
)

, for all α ∈ L±
c .

The definition of Green’s homotopies for the other three pointings ↖, ↙ and
↘ is similar.

Remark 3.8. The following remarks are in order:
1. There are four types of Green’s homotopies referring to the four different

components of the light cone in 2-dimensional conformal Lorentzian ge-
ometry. These refine the two types of Green’s homotopies (retarded and
advanced) in standard m-dimensional Lorentzian geometry.

2. The definition of Green’s homotopies in [7, Definition 3.5] is more general
as it allows for pseudo-naturality under inclusions K ⊆ K ′ of compact
subsets of ∂M . From a conceptual perspective, this generality is needed to
prove a uniqueness theorem for Green’s homotopies stating that the space
of Green’s homotopies is either empty or contractible, see [7, Proposition
3.9]. This level of generality is not needed in the present paper since
all of our Green’s homotopies will be of the strict type as defined in
Definition 3.7.

Later in Proposition 3.22 we will show that, under suitable chiral niceness prop-
erties of ∂M , the self-dual boundary condition L+ admits ↗- and ↙-pointed
Green’s homotopies and the anti-self-dual boundary condition L− admits ↖-
and ↘-pointed ones.

As a preparation for our construction of Green’s homotopies, let us recall
from [26, Proposition 4.14] that on each oriented and time-oriented Lorentzian
2-manifold ∂M there exists a so-called chiral frame (n−, n+) for the tangent
bundle T∂M , i.e., n− ∈ Γ∞(T∂M) is an everywhere ↖-pointing null vector
field and n+ ∈ Γ∞(T∂M) is an everywhere ↗-pointing vector field. The choice
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of chiral frame is canonical up to rescalings n− ∼ f− n− and n+ ∼ f+ n+ by
positive smooth functions f∓ ∈ C∞(∂M,R>0). Furthermore, by [26, Lemma
4.19], one may assume without loss of generality that both n− and n+ are
complete vector fields. This allows us to define the +- and −-chiral flows

Θ+,Θ− : R × ∂M −→ ∂M (3.5)

as the global flows of the complete vector fields n+ and n−, respectively.

Example 3.9. Coming back to the Minkowski spacetime from Examples 2.1
and 3.3, a complete chiral frame is given by (∂−, ∂+). The associated chiral
flows read in light cone coordinates as Θ+(s, (x−, x+)) = (x−, x+ + s) and
Θ−(s, (x−x+)) = (x− + s, x+), i.e., they are simply translations along the
light cone coordinates.

Chiral flows provide a useful technical tool to handle the variously-pointed
null curves of Definition 3.2. By [26, Lemma 4.21], any ↗- or ↙-pointing null
curve in ∂M is, up to reparameterization, an integral curve associated with the
+-chiral flow Θ+. Similarly, the ↖- and ↘-pointing null curves are described
by the −-chiral flow Θ−.

Remark 3.10. There exists no canonical choice of the chiral flows Θ+ and
Θ− on ∂M , owing to the freedom to rescale n+ and n− by positive smooth
functions. However, the orbits of any two +-chiral flows Θ+ and Θ′

+ coincide,
being the images of inextendable ↗-pointing null curves in ∂M . Thus, the
quotient π+ : ∂M → ∂M/∼+ is canonical on a given 2-dimensional spacetime
∂M , for ∼+ the orbit relation of any +-chiral flow. Similarly, the quotient
π− : ∂M → ∂M/∼− by any −-chiral flow is canonical.

Remark 3.11. One may describe the sets J↗(p) and J↙(p) from (3.4a) in terms
of the +-chiral flow only. Indeed, by [26, Proposition 4.22], a point q ∈ ∂M lies
in J↗(p) (or equivalently, p ∈ ∂M lies in J↙(q)) if and only if q = Θ+(s, p) for
some s ≥ 0. The sets J↖(p) and J↘(p) may be characterized similarly using
the −-chiral flow.

Just as we denote by L± our choice of self-dual or anti-self-dual boundary
condition, we henceforth denote by Θ± a corresponding choice of +- or −-chiral
flow on ∂M (+-chiral if the chosen boundary condition is self-dual, −-chiral if
the boundary condition is anti-self-dual).

3.2. Green’s Homotopies Associated with a Proper R-Action

Our construction of Green’s homotopies for L± will use only the chiral flow Θ±
on ∂M , without directly referring to any of the other available data, e.g., the
Lorentzian metric, orientation or time-orientation. To simplify notation during
this construction, we temporarily abstract to the k-shifted de Rham complex
Ω•(N)[k] of an arbitrary smooth manifold N (with or without boundary)
that is endowed with a smooth R-action (i.e., flow) Θ : R × N → N . Our
general construction can be specialized in the case of (N, Θ) = (∂M,Θ±) to
provide appropriately-pointed Green’s homotopies for L± ⊆ Ω•(∂M)[1]. This
abstraction will also be of use later in Proposition 3.28, when we will take
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N = M to build appropriate Green’s homotopies for the complex FL±(M) ⊆
Ω•(M)[1] of boundary conditioned Chern–Simons fields.

Given any manifold N that is endowed with an R-action Θ : R×N → N ,
we can define analogues of the subsets J↗(S) from (3.4) and their ↖, ↙, ↘
variants. We define the Θ-future of a point p ∈ N as the subset

J↑
Θ(p) :=

{

q ∈ N
∣

∣∃s ≥ 0 s.t. q = Θ(s, p)
} ⊆ N (3.6a)

and the Θ-past of p ∈ N as the subset

J↓
Θ(p) :=

{

q ∈ N
∣

∣∃s ≤ 0 s.t. q = Θ(s, p)
} ⊆ N. (3.6b)

Recalling Remark 3.11, we observe that J↑
Θ+

(p) = J↗(p) and J↓
Θ+

(p) = J↙(p)

for Θ+ a +-chiral flow on N = ∂M , and J↑
Θ−(p) = J↖(p) and J↓

Θ−(p) = J↘(p)
for Θ− a −-chiral flow. We also define for any subset S ⊆ N the Θ-future/past
of S to be

J
↑/↓
Θ (S) :=

⋃

p∈S

J
↑/↓
Θ (p) ⊆ N. (3.7)

With this we can generalize Definition 3.7 of Green’s homotopies for L± to the
k-shifted de Rham complex Ω•(N)[k] on N .

Definition 3.12. Let N be a smooth manifold (with or without boundary) that
is endowed with an R-action Θ : R × N → N . A forward/backward Green’s
homotopy for the k-shifted de Rham complex Ω•(N)[k] is a (−1)-cochain
G↑/↓ ∈ [Ω•

c(N)[k],Ω•(N)[k]
]−1 in the internal hom complex that satisfies the

following properties:
(i) ∂G↑/↓ = j, where j : Ω•

c(N)[k] → Ω•(N)[k] is the canonical inclusion
cochain map from compactly supported forms to all forms;

(ii) supp
(

G↑/↓α
) ⊆ J

↑/↓
Θ

(

suppα
)

, for all α ∈ Ω•
c(N)[k].

Remark 3.13. Note that a forward/backward Green’s homotopy G↑/↓ ∈
[

Ω•
c(N),Ω•(N)

]−1 for the unshifted de Rham complex induces correspond-
ing forward/backward Green’s homotopies G

↑/↓
[k] := (−1)k G↑/↓ ∈ [Ω•

c(N)[k],

Ω•(N)[k]
]−1 for each k-shifted de Rham complex. The sign factor ensures that

property (i), i.e., ∂G
↑/↓
[k] = j, holds true for the internal hom differential ∂ asso-

ciated with the k-shifted de Rham differential d[k] = (−1)k d. For this reason,
we construct our candidate Green’s homotopies below only for the unshifted
de Rham complex.

Let us consider the following span of smooth maps

R × N
pr

����
��
��
��
�

Θ

���
��

��
��

��

N N

(3.8)

where pr denotes the projection onto the second factor. We will construct
Green’s homotopies in the sense of Definition 3.12 by first pulling forms back
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along Θ and then integrating over (suitable subsets of) the fibers of pr. The
latter is a trivial bundle with oriented fiber, and so is oriented as a bundle. To
ensure that the composite operation is well-defined on compactly supported
forms, we have to impose a niceness condition on the R-action Θ, namely that
it is proper. Let us start by recalling that, for a smooth fiber bundle π : E → B
with fibers of dimension r, fiber integration π∗ : Ωk

vc(E) → Ωk−r(B) is gener-
ally only well-defined on forms α ∈ Ωk

vc(E) ⊆ Ωk(E) with vertically compact
support. This support condition means that, given any compact subset K ⊆ B
in the base, the subset π−1(K) ∩ suppα ⊆ E is compact in the total space.
For standard references on fiber integration, see [25, Chapter VII] as well as
[12, Section 6] and [36, Section 3.4.5].3

Lemma 3.14. Suppose that the R-action Θ : R × N → N is proper. Then,
for each compactly supported form α ∈ Ωk

c(N), the pulled back form Θ∗α ∈
Ωk(R × N) has vertically compact support with respect to the trivial R-bundle
pr : R × N → N .

Proof. Recall the definition of the shear map

θ : R × N −→ N × N , (s, p) �−→ (

p,Θ(s, p)
)

(3.9)

associated with the R-action Θ and observe that θ−1(A × B) = pr−1(A) ∩
Θ−1(B) for any two subsets A,B ⊆ N . Consider any compact subset K ⊆ N .
Since supp(Θ∗α) ⊆ Θ−1

(

suppα
)

and supports are closed sets, it follows that

pr−1(K) ∩ supp(Θ∗α) ⊆ pr−1(K) ∩ Θ−1
(

suppα
)

= θ−1
(

K × suppα
)

(3.10)

is a closed subset. Using now that Θ is a proper R-action, i.e., its shear map
θ is a proper map, it follows that pr−1(K) ∩ supp(Θ∗α) ⊆ θ−1

(

K × supp α
)

is
a closed subset of a compact set and hence is compact. �

To propose a candidate for a forward Green’s homotopy, we restrict the
R-action to non-positive parameters R

≤0 ⊆ R and consider the corresponding
restriction N

pr←− R
≤0 × N

Θ−→ N of the span (3.8). By an obvious corollary
of Lemma 3.14, if Θ is a proper R-action, we obtain a family of linear maps

Ωk
c (N) Θ∗

�� Ωk
vc(R

≤0 × N)
∫

R≤0
�� Ωk−1(N) (3.11)

by composing the pullback of forms along Θ with the fiber integration
∫

R≤0 :=
pr∗ along pr. These components define the (−1)-cochain

G↑
Θ :=

∫

R≤0
Θ∗ ∈ [Ω•

c(N),Ω•(N)
]−1

. (3.12)

3We use the fiber-first orientation convention for fiber integration, as in [36] but in contrast
to [12,25]. In particular, fiber integration and the de Rham differential commute up to a
sign π∗ ◦ d = (−1)r d ◦ π∗ when the fibers have empty boundary.
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Restricting to nonnegative parameters, we obtain again a restricted span N
pr←−

R
≥0 × N

Θ−→ N and a family of linear maps

Ωk
c (N) Θ∗

�� Ωk
vc(R

≥0 × N)
∫

R≥0
�� Ωk−1(N). (3.13)

Taking the additive inverses of these components defines the (−1)-cochain

G↓
Θ := −

∫

R≥0
Θ∗ ∈ [Ω•

c(N),Ω•(N)
]−1

. (3.14)

Beyond well-definedness of (3.12) and (3.14), the assumption that Θ is proper
gives some further technical consequences described in Appendix A. These
enter the proof of the following

Proposition 3.15. Suppose that the R-action Θ : R × N → N is proper. Then
G↑

Θ in (3.12) defines a forward Green’s homotopy and G↓
Θ in (3.14) defines a

backward Green’s homotopy.

Proof. We have to verify the two properties (i) and (ii) from Definition 3.12.
Item (i) is a simple consequence of the fiber-wise Stokes theorem, see,

e.g., [36, Theorem 3.4.54]. For the (−1)-cochain G↑
Θ ∈ [Ω•

c(N),Ω•(N)
]−1, we

compute

∂G↑
Θ = d

∫

R≤0
Θ∗ +

∫

R≤0
Θ∗ d =

(

d
∫

R≤0
+
∫

R≤0
d
)

Θ∗ =
∫

∂R≤0
Θ∗, (3.15)

where in the second step we used that the de Rham differential commutes
with pullbacks of differential forms and in the third step we used the fiber-
wise Stokes theorem. Since the boundary ∂R≤0 = {0} is a singleton, the fiber
integration

∫

∂R≤0 is given by the pullback of forms along N → R
≤0 × N , p �→

(0, p). Since Θ(0, · ) = idN yields the identity, this shows that ∂G↑
Θ = j :

Ω•
c(N) → Ω•(N) is the canonical inclusion. The proof for ∂G↓

Θ = j is similar
and uses that the boundary ∂R≥0 = {0} is negatively oriented, which accounts
for the minus sign in (3.14).

To prove item (ii), let us first note that the subset J
↑/↓
Θ (K) ⊆ N is

closed for each compact subset K ⊆ N because the R-action Θ is proper,
see Corollary A.7. Let us take any compactly supported form α ∈ Ωk

c (N)
and consider G↑

Θα ∈ Ωk−1(N). Recall that supp
(

G↑
Θα
) ⊆ N is defined as the

closure of the set of points p ∈ N for which the evaluation
(

G↑
Θα
)

(p) �= 0 is
non-vanishing. It suffices to show that each such point satisfies p ∈ J↑

Θ

(

suppα
)

as the latter set is closed. From
(

G↑
Θα
)

(p) =
( ∫

R≤0 Θ∗α
)

(p) �= 0, it follows that
there exists a parameter s ≤ 0 such that

(

Θ∗α
)

(s, p) �= 0; hence, one finds a
point (s, p) ∈ supp(Θ∗α) ⊆ Θ−1(supp α). Since Θ(s, p) ∈ supp α for non-
positive s ≤ 0, we conclude that p ∈ J↑

Θ

(

suppα
)

. By a similar argument, one
shows that supp

(

G↓
Θα
) ⊆ J↓

Θ

(

suppα
)

. �

G
↑/↓
Θ as restricted fiber integrations: Our Green’s homotopies G

↑/↓
Θ ∈ [Ω•

c(N),Ω•(N)]−1

may be understood as integration over “backward”/“forward” halves of the
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fibers of the quotient π : N → N/R of N by the R-action Θ. The latter is
a principal R-bundle by Corollary A.2 because the R-action Θ is proper. We
now demonstrate this interpretation using appropriate coordinate expressions.

Denote B := N/R. We work in a trivialization N ∼= R × B, which exists
since principal R-bundles are trivializable owing to the contractibility of R.
Forms on the product space decompose Ωk

c (R×B) = Ω1,k−1
c (R×B)⊕Ω0,k

c (R×
B) into forms with one leg along the R-factor and forms with no legs along
R. Pick a global coordinate τ on the R-factor. Since trivializations of principal
bundles are equivariant, the R-action Θ becomes translation along the R-
factor Θ(s, (τ, p)) = (τ + s, p), for p ∈ B and group element s ∈ R. Forms
φ ∈ Ω1,k−1

c (R × B) and ψ ∈ Ω0,k
c (R × B) may be written as

φ(τ, p) = f(τ, p) dτ ∧ ˜φ(p) and ψ(τ, p) = g(τ, p) ˜ψ(p), (3.16)

for ˜φ ∈ Ωk−1(B) and ˜ψ ∈ Ωk(B), respectively, with f, g ∈ C∞
c (R × B). We

leave implicit the pullbacks along the projections out of the product R× B. It
follows that

(Θ∗φ)(s, (τ, p)) = f(τ + s, p) (dτ + ds) ∧ ˜φ(p)

(Θ∗ψ)(s, (τ, p)) = g(τ + s, p) ˜ψ(p). (3.17)

Since the fiber integrations in G↑
Θ =

∫

R≤0 Θ∗ and G↓
Θ = − ∫

R≥0 Θ∗ are along
the fiber direction ds only, it is immediate that G

↑/↓
Θ ψ = 0 for ψ ∈ Ω0,k

c (R×B)
of the second type. For forms φ ∈ Ω1,k−1

c (R × B) of the first type, we find

(G↑
Θφ)(τ, p) =

(∫ 0

−∞
f(τ + s, p) ds

)

˜φ(p) =
(∫ τ

−∞
f(τ ′, p) dτ ′

)

˜φ(p),

(3.18a)

and similarly

(G↓
Θφ)(τ, p) = −

(∫ ∞

0

f(τ + s, p) ds

)

˜φ(p) = −
(∫ ∞

τ

f(τ ′, p) dτ ′
)

˜φ(p).

(3.18b)

Recall that the fiber integration π∗ : Ω•
vc(N) → Ω•−1(B) over the bundle

π : N → B (canonically oriented as per Lemma A.3) has a similar expression

(π∗φ)(p) =
(∫ ∞

−∞
f(τ ′, p) dτ ′

)

˜φ(p), (3.19)

for φ ∈ Ω1,k−1
c (R × B) of the first type and π∗ψ = 0 for ψ ∈ Ω0,k

c (R × B) of
the second type. The Green’s homotopies G

↑/↓
Θ are thus appropriately signed

restricted fiber integrations along the orbits of Θ. The following is an immediate
consequence.

Proposition 3.16. The Green’s homotopies G
↑/↓
Θ ∈ [Ω•

c(N),Ω•(N)]−1 of (3.12)
and (3.14) satisfy

G↑
Θ − G↓

Θ = π∗ π∗ : Ω•
c(N) −→ Ω•−1(N), (3.20)

where π : N → N/R is the quotient by the proper R-action Θ.
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3.3. Boundary and Bulk Green’s Homotopies

We now specialize the Green’s homotopies from Sect. 3.2, first to the self-dual
and anti-self-dual boundary condition complexes L+ and L− and finally to
the complex FL±(M) of boundary conditioned fields of linear Chern–Simons
theory on M .

Boundary Green’s homotopies: For our construction of the Green’s homotopies
(3.12) and (3.14) for the de Rham complex, it was crucial to assume that the
R-action is proper. Since the chiral flows Θ+,Θ− : R × ∂M → ∂M on a 2-
dimensional oriented and time-oriented Lorentzian manifold ∂M are in general
not proper, we have to assume the following strong chiral niceness condition.

Assumption 3.17. The boundary Lorentzian manifold ∂M admits a proper
chiral flow Θ±.

Remark 3.18. If Θ± is proper, then the associated quotient map π± : ∂M →
∂M/∼± has the structure of a smooth principal R-bundle, see Corollary A.2.
Because R is contractible, the quotient map π± admits smooth global sec-
tions, which can be used to define a chiral analogue of Cauchy surfaces in ∂M
[26, Section 4.2]. Properness of the chosen chiral flow Θ± may therefore be
understood as a chiral analogue of global hyperbolicity.

Example 3.19. If ∂M is globally hyperbolic (in the usual sense), then any +-
or −-chiral flow on it is proper. Hence, Assumption 3.17 holds true whenever
∂M is globally hyperbolic. This gives a large class of examples satisfying our
hypotheses.

In order to prove that the Green’s homotopies from Proposition 3.15
restrict to the boundary condition L± ⊆ Ω•(∂M)[1], we require the following
technical lemma.

Lemma 3.20. Suppose that Θ+ : R × ∂M → ∂M is a proper +-chiral flow.
Then there exists a nowhere-vanishing self-dual form β+ ∈ Ω+(∂M) that is
invariant under Θ+ in the sense that

Θ∗
+β+ = pr∗β+ ∈ Ω1(R × ∂M), (3.21)

where pr : R × ∂M → ∂M denotes the projection map.
Similarly, if Θ− : R×∂M → ∂M is a proper −-chiral flow, then there ex-

ists a nowhere-vanishing anti-self-dual form β− ∈ Ω−(∂M) satisfying Θ∗
−β− =

pr∗β−.

Proof. It suffices to prove the statement for Θ+ and self-dual forms because the
other case is similar. Using Corollary A.2, one has that the quotient π+ : ∂M →
∂M/ ∼+ associated with the R-action Θ+ carries the structure of a smooth
principal R-bundle. Choosing any nowhere-vanishing 1-form λ ∈ Ω1(∂M/∼+)
on the base, which exists because ∂M/∼+ is a 1-manifold and hence orientable,
we define the 1-form β+ := π∗

+λ ∈ Ω1(∂M). This form satisfies Θ∗
+β+ =

pr∗β+ because the R-action Θ+ preserves the fibers of π+ : ∂M → ∂M/∼+,
i.e., π+ ◦ Θ+ = π+ ◦ pr. By construction, the 1-form β+ = π∗

+λ annihilates
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all vertical tangent vectors of the bundle π+ : ∂M → ∂M/∼+, which include
all ↗- and ↙-pointing tangent vectors on ∂M . Hence, β+ is self-dual by
Lemma 3.5. �

Example 3.21. Consider the 2-dimensional Minkowski spacetime with +- and
−-chiral flows given by Θ+ (s, (x−, x+)) = (x−, x+ +s) and Θ− (s, (x−, x+)) =
(x− + s, x+) in light cone coordinates, as per Examples 2.1, 3.3 and 3.9. Then
β+ = dx− is a Θ+-invariant self-dual form and β− = dx+ is a Θ−-invariant
anti-self-dual form. As remarked already in Example 2.1, note the sign flip.

Proposition 3.22. Suppose that ∂M has a proper +-chiral flow Θ+. Then the
self-dual boundary condition L+ admits a ↗-pointed Green’s homotopy G↗ and
a ↙-pointed Green’s homotopy G↙ in the sense of Definition 3.7. An explicit
choice is given by restricting the Green’s homotopies

G
↑/↓
Θ+[1] = −G

↑/↓
Θ+

∈ [Ω•
c(∂M)[1],Ω•(∂M)[1]

]−1 (3.22)

from Proposition 3.15 and Remark 3.13 to the boundary condition L+ ⊆
Ω•(∂M)[1].

Similarly, if ∂M has a proper −-chiral flow Θ− then the anti-self-dual
boundary condition L− admits a ↖-pointed Green’s homotopy G↖ and a ↘-
pointed Green’s homotopy G↘, with an explicit choice given by restricting

G
↑/↓
Θ−[1] = −G

↑/↓
Θ− ∈ [Ω•

c(∂M)[1],Ω•(∂M)[1]
]−1 (3.23)

to the boundary condition L− ⊆ Ω•(∂M)[1].

Proof. The only non-trivial step is to show that the restrictions exist. We
only spell out the proof for the case of L+ and G↑

Θ+[1] since all other cases
are similar. Recalling the explicit form of the boundary condition complex
(2.18), we have to show that, for every compactly supported self-dual 1-form
α ∈ Ω+

c (∂M), the 0-form −G↑
Θ+

(α) ∈ Ω0(∂M) is zero and that, for every

compactly supported 2-form α ∈ Ω2
c(∂M), the 1-form −G↑

Θ+
(α) ∈ Ω1(∂M)

is self-dual. Using the Θ+-invariant module basis from Lemma 3.20, we can
write α = φ ∧ β+ where φ ∈ C∞

c (∂M) is a compactly supported function in
the first case and φ ∈ Ω−

c (∂M) is a compactly supported anti-self-dual form
in the second case. Using (3.12), we compute

−G↑
Θ+

(α) = −
∫

R≤0
Θ∗

+(φ ∧ β+) = −
∫

R≤0

(

Θ∗
+(φ) ∧ pr∗(β+)

)

= −
(∫

R≤0
Θ∗

+(φ)

)

∧ β+,

(3.24)

where in the second step we used that β+ is Θ+-invariant (see Lemma 3.20)
and the last step is an application of the projection formula for fiber integration
[36, Equation (3.4.11)]. In the first case, φ is a 0-form, so its fiber integral over
1-dimensional fibers vanishes. It follows that −G↑

Θ+
(α) = 0. In the second

case φ is a 1-form, so its fiber integral is a function. Since β+ is self-dual, it
follows that −G↑

Θ+
(α) ∈ Ω+(∂M). This proves that −G↑

Θ+
restricts to G↗ :=

−G↑
Θ+

∈ [L+
c ,L+]−1. �
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Bulk Green’s homotopies: We would like to extend the boundary Green’s ho-
motopies from Proposition 3.22 to the complex FL±(M) ⊆ Ω•(M)[1] of bound-
ary conditioned Chern–Simons fields on M . Such extensions can be obtained
from the techniques developed in Sect. 3.2, provided that the following as-
sumption holds true.

Assumption 3.23. The bulk manifold M admits a proper R-action ̂Θ± : R ×
M → M that extends the chosen chiral flow Θ± on the boundary ∂M , i.e.,
the diagram

R × M
̂Θ±

�� M

R × ∂M

id×ι

��

Θ±
�� ∂M

ι

�� (3.25)

commutes, where ι : ∂M → M denotes the boundary inclusion.

Remark 3.24. The extension ̂Θ± of the chosen chiral flow Θ± required by
Assumption 3.23 is clearly not unique. In Sect. 4, we will construct an AQFT
for the Chern–Simons/Wess–Zumino–Witten bulk/boundary system out of ̂Θ±
and the associated Green’s homotopies from Proposition 3.28. This prompts
the question: How canonical is our AQFT construction?

As we will show in Sect. 5, the AQFT for this bulk/boundary system is (up
to weak equivalence) only sensitive to the base manifold of the quotient map
π̂± : M → M/∼± associated with the R-action ̂Θ±. Under certain additional
topological assumptions on M , we show in Proposition 5.6 that any two such
base manifolds arising from different choices of ̂Θ± must be diffeomorphic.
From this, it follows that any two proper extensions of the chiral flow Θ± to
M yield weakly equivalent AQFTs.

Remark 3.25. Commutativity of (3.25) implies in particular that ∂M is a ̂Θ±-
invariant subspace of M . It is a general fact of continuous group actions that
if ̂Θ± is proper, then its restriction to any invariant subspace is also proper.
Consequently, Assumption 3.23 implies Assumption 3.17 that the chosen chiral
flow Θ± on the boundary is proper.

Example 3.26. Continuing Examples 2.1, 3.3 and 3.9, consider M = R
2 ×R

≥0

with boundary given by the standard Minkowski spacetime. Then the proper
R-action

R × M −→ M,
(

s, (t, x, r)
) �−→ (

t + s
2 , x + ε s

2 , r
)

(3.26)

provides an extension of the chiral flows Θ+ and Θ− from Example 3.9 when
ε = +1 and ε = −1, respectively.

Example 3.27. As a second more interesting example, consider the filled cylin-
der M = R × D

2 with D
2 := {(x, y) ∈ R

2 |x2 + y2 ≤ 1} the closed unit disk.
Working in polar coordinates (r, φ) ∈ (0, 1] × R/Z on the disk, we endow M
with the orientation o = [dt ∧ dφ ∧ dr] and its boundary cylinder ∂M (defined
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by r = 1) with the flat metric g = −dt2 + dφ2 and time-orientation t = [∂t].
The proper R-action

R × M −→ M ,
(

s, (t, φ, r)
) �−→ (

t + s
2 , φ + ε r s

2 , r
)

(3.27)

provides an extension of the flow (s, (t, φ)) �→ (

t + s
2 , φ + ε s

2

)

on the flat
Lorentzian cylinder. The latter is +-chiral when ε = +1 and −-chiral when
ε = −1.

Proposition 3.28. Suppose that Assumption 3.23 holds. Then the forward/
backward Green’s homotopies

G
↑/↓
̂Θ±[1]

= −G
↑/↓
̂Θ±

∈ [Ω•
c(M)[1],Ω•(M)[1]

]−1 (3.28)

from Proposition 3.15 and Remark 3.13 restrict to the complex FL±(M) ⊆
Ω•(M)[1] of boundary conditioned fields. These bulk Green’s homotopies are
compatible with the boundary ones from Proposition 3.22 in the sense that

ι∗ G
↑/↓
̂Θ±[1]

= G
↑/↓
Θ±[1] ι

∗, (3.29)

where ι : ∂M → M denotes the boundary inclusion.

Proof. Recalling the definition of FL±(M) ⊆ Ω•(M)[1] from (2.6), we observe
that the compatibility conditions (3.29) together with Proposition 3.22 would
imply that the desired restrictions exist. Indeed, we would have to show that
ι∗G↑/↓

̂Θ±[1]
(α) ∈ L±, for all α ∈ FL±,c(M) ⊆ Ω•

c(M)[1], i.e., ι∗α ∈ L±
c . Com-

patibility gives that ι∗G↑/↓
̂Θ±[1]

(α) = G
↑/↓
Θ±[1]

(

ι∗α
)

, which then lies in L± by
Proposition 3.22.

It thus remains to prove (3.29), for which it suffices to consider the case of
G↑
̂Θ±

since the other case of G↓
̂Θ±

is similar. The boundary inclusion ι : ∂M →
M extends to a bundle morphism

R
≤0 × ∂M

pr

��

id×ι
�� R

≤0 × M

pr

��

∂M
ι

�� M

(3.30)

which is fiber-wise a diffeomorphism. Recalling (3.12), we compute

ι∗ G↑
̂Θ±[1]

= −ι∗
∫

R≤0

̂Θ∗
± = −

∫

R≤0
(id × ι)∗

̂Θ∗
± = −

∫

R≤0
Θ∗

± ι∗ = G↑
Θ±[1] ι

∗,

(3.31)

where in the second step we used [25, Section 7.12, Proposition VIII] and in
the third step we used the commutative diagram (3.25). �
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4. The AQFT for the Bulk/Boundary System

For M an oriented 3-manifold whose boundary ∂M is endowed with a
Lorentzian metric and a time-orientation, we have defined in (2.18) a boundary
condition L± for linear Chern–Simons theory on M . This boundary condition is
associated with a choice of self-dual or anti-self-dual forms on ∂M , and in turn
to a choice of +- or −-chiral flow Θ±. In Assumption 3.23, we have assumed
the existence, and made a choice, of a proper R-action ̂Θ± : R × M → M on
the whole of M , which restricts to the chosen chiral flow Θ± on the boundary.
In the preceding section, we demonstrated the existence of Green’s homotopies
associated with the chosen R-action ̂Θ±.

The goal of this section is to describe a suitable type of AQFT on M that
quantizes the boundary conditioned Chern–Simons fields FL±(M) from (2.6)
for the chosen (anti-)self-dual boundary condition L±.
The Relevant Orthogonal Category: Recall that an AQFT can be defined
in the very broad context where an orthogonal category [10,11] is used to
model a category of “spacetime regions” with a notion of “independence” of
such. The prime example for relativistic AQFT is the category COpen(N)
of all non-empty causally convex open subsets U ⊆ N of an oriented and
time-oriented globally hyperbolic Lorentzian manifold N , with orthogonality
relation determined by causal disjointness. However, this choice is not suitable
for our boundary conditioned Chern–Simons theory, because the bulk M does
not come equipped with a Lorentzian metric. Using our choice of proper R-
action ̂Θ± : R × M → M that extends a chiral flow on the boundary ∂M , we
propose the following more suitable category.

Definition 4.1. We denote by ̂Θ±-Open(M) the category whose objects are
all non-empty open subsets U ⊆ M that are ̂Θ±-convex, in the sense that

J↑
̂Θ±

(U) ∩ J↓
̂Θ±

(U) ⊆ U, (4.1)

and whose morphisms ιU
′

U : U → U ′ are subset inclusions U ⊆ U ′ ⊆ M . We
endow this category with the orthogonality relation defined by (U1 ⊆ U) ⊥
(U2 ⊆ U) if and only if U1 and U2 are ̂Θ±-disjoint, in the sense that

(

J↑
̂Θ±

(U1) ∪ J↓
̂Θ±

(U1)
) ∩ U2 = ∅. (4.2)

Remark 4.2. The concepts of ̂Θ±-convexity and ̂Θ±-disjointness are analogues
of causal convexity and causal disjointness in relativistic AQFT. It is sometimes
useful to rephrase these definitions in the following equivalent ways. A subset
U ⊆ M is ̂Θ±-convex if and only if the orbit of each point p ∈ U under the
R-action ̂Θ± : R × M → M does not exit and re-enter U ⊆ M . Two subsets
(U1 ⊆ U) ⊥ (U2 ⊆ U) are ̂Θ±-disjoint if and only if the orbit of U1 under the
R-action ̂Θ± : R × M → M does not intersect U2.

The concept of Cauchy morphisms from relativistic AQFT also finds
an analogue in our context. Recall that one of the many equivalent char-
acterizations for a morphism ιU

′
U : U → U ′ between two causally convex
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subsets U ⊆ U ′ ⊆ N in an oriented and time-oriented globally hyperbolic
Lorentzian manifold N to be Cauchy is to require that the Cauchy develop-
ments D(U) = D(U ′) ⊆ N in N agree. This easily generalizes to our frame-
work.

Definition 4.3. A morphism ιU
′

U : U → U ′ in ̂Θ±-Open(M) is called ̂Θ±-
Cauchy if

π̂±(U) = π̂±(U ′), (4.3)

where π̂± : M → M/∼± is the quotient of M by ̂Θ±.

Remark 4.4. Observe that (4.3) says equivalently that π̂−1
± (π̂±(U)) = π̂−1

±
(π̂±(U ′)). Viewing the orbit π̂−1

± (π̂±(U)) of U under the R-action ̂Θ± as the
analogue in our context of the Cauchy development of U , Definition 4.3 says
that ιU

′
U is ̂Θ±-Cauchy if the (chiral analogues of) Cauchy developments of U

and U ′ coincide.
Recalling also Remark 3.18, we may regard smooth global sections of

the quotient map π̂± : M → M/ ∼± (which is a smooth principal R-bundle
by Corollary A.2) as appropriate analogues of Cauchy surfaces in our chiral
geometric context. Then, ιU

′
U : U → U ′ is a ̂Θ±-Cauchy morphism if and

only if U contains (the image of) a smooth section of the restriction π̂±|U ′ :
π̂−1

± (π̂±(U ′)) → π̂±(U ′). Informally, this says that a morphism is ̂Θ±-Cauchy
if its source contains (the chiral analogue of) a Cauchy surface for its target.

An AQFT on this orthogonal category is then defined as a functor

A : ̂Θ±-Open(M) −→ dg∗Alg
C

(4.4)

to the category of associative and unital differential graded ∗-algebras (in short,
dg-algebras) over C that satisfies the Einstein causality axiom for ⊥: For each
orthogonal pair (U1 ⊆ U) ⊥ (U2 ⊆ U) in ̂Θ±-Open(M), the diagram

A(U1) ⊗ A(U2)

A(ιU
U1

)⊗A(ιU
U2

)

��

A(ιU
U1

)⊗A(ιU
U2

)
�� A(U) ⊗ A(U)

μop
U

��

A(U) ⊗ A(U)
μU

�� A(U)

(4.5)

of cochain maps commutes, where μ
(op)
U : A(U) ⊗ A(U) → A(U) denotes the

(opposite) multiplication on the dg-algebra A(U) ∈ dg∗Alg
C
. Such AQFT is

said to satisfy the time-slice axiom if, for each ̂Θ±-Cauchy morphism ιU
′

U : U →
U ′ in ̂Θ±-Open(M), the cochain map underlying the dg∗Alg

C
-morphism

A(ιU
′

U ) : A(U) ∼−→ A(U ′) (4.6)

is a quasi-isomorphism.
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Poisson Cochain Complexes: Using the Green’s homotopies from Proposi-
tion 3.28, we define the (−1)-cocycle

G
̂Θ±[1] := G↑

̂Θ±[1]
− G↓

̂Θ±[1]
∈ [FL±,c(M),FL±(M)

]−1
, ∂G

̂Θ±[1] = 0,

(4.7a)

which equivalently can be regarded as a cochain map

G
̂Θ±[1] : FL±,c(M)[1] −→ FL±(M) , ϕ �−→ G

̂Θ±[1](ϕ) = −
∫

R

Θ∗
±(ϕ)

(4.7b)

from the 1-shift of the complex of compactly supported sections. (Recall that
these are the linear observables from (2.13).) The role played by G

̂Θ±[1] is
analogous to the causal propagator (or retarded-minus-advanced Green’s op-
erator) in relativistic AQFT. In particular, we can define, for each object
U ∈ ̂Θ±-Open(M), a cochain map

τ
U
(0) : FL±,c(U)[1]⊗2

extM
U

⊗2

�� FL±,c(M)[1]⊗2
id⊗G

̂Θ± [1]
�� FL±,c(M)[1] ⊗ FL± (M)

ev �� R ,

(4.8)

where ext denotes extension by zero of compactly supported sections and ev
was defined in (2.14) in terms of integration over M . Note that, by construc-
tion, this family of cochain maps is natural on the category ̂Θ±-Open(M) in
the sense that, given any morphism U ⊆ U ′ in this category, we have that

τU ′
(0) ◦ (extU ′

U ⊗ extU ′
U

)

= τU
(0). (4.9)

To ease notation, we shall often drop the superscript U and simply write τ(0)

for every member of the family {τU
(0)} of cochain maps.

To show that (4.8) defines indeed an unshifted linear Poisson structure,
i.e., τ(0) is graded antisymmetric, we make use of the following result that
allows us to rewrite this map in terms of an integral over the base manifold
B± of the quotient map π̂± : M → M/ ∼± =: B±. Recall that the latter is
a smooth principal R-bundle by Corollary A.2, and that this induces on B±
an orientation that is appropriately compatible with the orientation of M , see
Corollary A.4.

Lemma 4.5. The cochain map (4.8) can be written as:

τ(0)(ϕ ⊗ ψ) = (−1)|ϕ|
∫

B±
(π̂±)∗(ϕ) ∧ (π̂±)∗(ψ), (4.10)

for all homogeneous ϕ,ψ ∈ FL±,c(U)[1]. Here, (π̂±)∗ : FL±,c(M)[1] ⊆ Ω•
c(M)

[2] → Ω•
c(B±)[1] denotes fiber integration along the quotient map π̂± : M →

M/∼± =: B±.
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Proof. From Proposition 3.16, we have G
̂Θ±[1] = −G

̂Θ±
= −(π̂±)∗(π̂±)∗. Then

τ(0)(ϕ ⊗ ψ) = (−1)|ϕ|+1

∫

M

ϕ ∧ G
̂Θ±[1](ψ) = (−1)|ϕ|

∫

M

ϕ ∧ (π̂±)∗(π̂±)∗(ψ)

= (−1)|ϕ|
∫

B±
(π̂±)∗(ϕ) ∧ (π̂±)∗(ψ), (4.11)

for all homogeneous ϕ,ψ ∈ FL±,c(U)[1]. The last equality uses the Fubini
theorem for fiber integration, see [36, Proposition 3.4.48]. �

From this equivalent description, it is immediate to see that the cochain
maps (4.8) are graded antisymmetric; hence, they define unshifted linear Pois-
son structures. Using the naturality observed in (4.9), we further obtain that
the assignment U �→ (

FL±,c(U)[1], τU
(0)

)

extends to a functor
(

FL±,c[1], τ(0)

)

: ̂Θ±-Open(M) −→ PoChR (4.12)

taking values in the category of Poisson cochain complexes.

Proposition 4.6. The functor (4.12) satisfies the following classical analogues
of the Einstein causality and time-slice axioms:
(a) For each orthogonal pair (U1 ⊆ U) ⊥ (U2 ⊆ U) in ̂Θ±-Open(M),

τU
(0) ◦ (extUU1

⊗ extUU2

)

= 0 (4.13)

vanishes.
(b) For each ̂Θ±-Cauchy morphism ιU

′
U : U → U ′ in ̂Θ±-Open(M), the

cochain map

extU
′

U : FL±,c(U)[1] ∼−→ FL±,c(U ′)[1] (4.14)

is a quasi-isomorphism.

Proof. Item (a) follows immediately from the support properties of Green’s
homotopies in Definition 3.12. (Recall that the map ev in (4.8) is given by
integration over M , see (2.14).) The proof of item (b) is analogous to the
proof of the corresponding statement in the relativistic case, see [8, Theorem
3.10]. Where in the relativistic case one uses Cauchy surfaces to construct a
quasi-inverse, we use sections of the quotient map π̂± : M → B±, recalling
Remarks 3.18 and 4.4. The compactness property used in the relativistic case
may be substituted by Lemma A.8. �

The AQFT: The quantization of our bulk/boundary system is easy to carry out
by using the cochain complex-valued canonical commutation relations functor
CCR : PoChR → dg∗Alg

C
from [2, Section 5]. Post-composing the functor

(4.12) with CCR defines the dg∗Alg
C
-valued functor

A± := CCR
(

FL±,c[1], τ(0)

)

: ̂Θ±-Open(M) −→ dg∗Alg
C

(4.15)

that assigns to U ∈ ̂Θ±-Open(M) the dg-algebra

A±(U) = CCR
(

FL±,c(U)[1], τU
(0)

)

= T⊗
C

(

FL±,c(U)[1]
) / IτU

(0)
∈ dg∗Alg

C

(4.16a)
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constructed as the complexified tensor algebra over the cochain complex
FL±,c(U)[1] of linear observables, modulo the two-sided differential graded ∗-
ideal IτU

(0)
that is generated by the canonical commutation relations

ϕ ⊗ ψ − (−1)|ϕ| |ψ| ψ ⊗ ϕ = i τU
(0)

(

ϕ ⊗ ψ
)

1, (4.16b)

for all homogeneous generators ϕ,ψ ∈ FL±,c(U)[1]. The functorial structure is
given by extending to dg-algebra morphisms the extension-by-zero maps ext.
As a consequence of Proposition 4.6 and standard arguments, see [2, Lemma
6.18], it follows that (4.15) satisfies the AQFT axioms. Let us record this result.

Corollary 4.7. The functor A± : ̂Θ±-Open(M) → dg∗Alg
C

given in (4.15)
satisfies the Einstein causality axiom (4.5) and the time-slice axiom (4.6).

5. Dimensional Reduction to the Base Manifold

As a consequence of the weak variant of the time-slice axiom (4.6) in terms of
quasi-isomorphisms, which is sometimes called the homotopy time-slice axiom,
it is difficult to analyze the AQFT A± constructed in Corollary 4.7 directly. The
goal of this section is to replace A± by a weakly equivalent model B± living on
the base space of the quotient map π̂± : M → M/∼±=: B± associated with
the proper R-action ̂Θ± : R × M → M . This base space B± is an oriented,
smooth 2-manifold, see Corollaries A.2 and A.4, so one achieves a dimensional
reduction from the 3-dimensional manifold M to the 2-dimensional manifold
B±. Note that the base manifold B± := M/ ∼± has a non-empty boundary
∂B± = ∂M/ ∼± since ∂M is a ̂Θ±-invariant subspace of M as per (3.29).
Hence, our dimensional reduction allows us to analyze boundary features of our
bulk/boundary system by working in a simpler but equivalent 2-dimensional
setup.

It is important to stress that this dimensional reduction is not to the
boundary ∂M of M and is therefore not itself exhibiting a CS/WZW corre-
spondence. (The latter will be studied in Sect. 6.) The present dimensional
reduction should be compared to the description of chiral CFTs by conformal
nets. In that case, a chiral conformal theory on a 2-dimensional spacetime
(say Minkowski R1+1 or an appropriate compactification thereof) is equiva-
lently described by data on a 1-dimensional light ray in that spacetime. This
is possible because the fields in a chiral theory are independent of the position
along the transverse light ray. The analogous independence exploited by our
dimensional reduction is exactly that expressed by the time-slice axiom (4.6).

To construct this dimensionally reduced model, we begin by replacing
A± by a weakly equivalent model that satisfies the time-slice axiom strictly in
terms of isomorphisms. The relevant mathematical framework for such stric-
tification constructions has been developed in [3], in the context of model
category theory.
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Orthogonal Localization: We describe an explicit model for the localization
of the orthogonal category ̂Θ±-Open(M) from Sect. 4 at all ̂Θ±-Cauchy mor-
phisms. We also will show that this localization is reflective; hence, [3, Theorem
3.6] provides the desired strictification construction. Let us start by defining
the orthogonal categories that we will identify later as the desired localizations.

Definition 5.1. We denote by Open(B±) the category whose objects are all
non-empty open subsets V ⊆ B± of the base manifold of the quotient map π̂± :
M → M/∼±=: B± and whose morphisms ιV

′
V : V → V ′ are subset inclusions

V ⊆ V ′ ⊆ B±. We endow this category with the disjointness orthogonality
relation, i.e., (V1 ⊆ V ) ⊥ (V2 ⊆ V ) if and only if V1 ∩ V2 = ∅.

Taking preimages under π̂± : M → B± defines a functor

π̂−1
± : Open(B±) −→ ̂Θ±-Open(M) (5.1)

to the category introduced in Definition 4.1 since the preimage π̂−1
± (V ) ⊆ M of

any non-empty open subset V ⊆ B± is non-empty, open and ̂Θ±-convex. This
functor preserves the orthogonality relations on the respective categories, i.e.,
it defines an orthogonal functor in the sense of [3,11]. Since the fiber bundle
projection π̂± : M → B± is an open map, we can also take images and define
another functor

π̂± : ̂Θ±-Open(M) −→ Open(B±) (5.2)

that goes in the opposite direction. Also this functor is easily seen to pre-
serve the orthogonality relations. We now observe that these two (orthogonal)
functors define an adjunction π̂± � π̂−1

± with counit ε : π̂±π̂−1
± ⇒ id de-

fined component-wise by the identity morphisms π̂±π̂−1
± (V ) = V and unit

η : id ⇒ π̂−1
± π̂± defined component-wise by the inclusions U ⊆ π̂−1

± (π̂±(U)).

Proposition 5.2. The functor (5.2) defines an orthogonal localization of ̂Θ±-
Open(M) at the set of all ̂Θ±-Cauchy morphisms. This orthogonal localization
is reflective with reflector (5.1)

Proof. A morphism ιU
′

U : U → U ′ in ̂Θ±-Open(M) is ̂Θ±-Cauchy according to
Definition 4.3 exactly when the functor π̂± sends it to an identity morphism.
Since the right adjoint functor (5.1) is fully faithful, the statement then follows
from [3, Proposition 3.3] and the fact that the only isomorphisms in Open(B±)
are identities. �

From [3, Theorem 3.6], we obtain an AQFT Ast
± : ̂Θ±-Open(M) →

dg∗Alg
C

that is weakly equivalent to the AQFT A± from Corollary 4.7 but
has the technical advantage that it satisfies the strict time-slice axiom, i.e., to
any ̂Θ±-Cauchy morphism ιU

′
U : U → U ′ it assigns an isomorphism Ast

±(ιU
′

U ) :

Ast
±(U)

∼=−→ Ast
±(U ′) in contrast to a quasi-isomorphism. Using also [3, Corol-

lary 3.7], one can construct this AQFT very explicitly as the pullback Ast
± =

(π̂±)∗(π̂−1
± )∗(A±) of the original A± along the two orthogonal functors (5.1)
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and (5.2). Observe that the intermediate AQFT (π̂−1
± )∗(A±) : Open(B±) →

dg∗Alg
C

in this construction is defined on the base manifold B±. By [3, Theo-
rem 3.6], this AQFT carries equivalent information to A± and hence also to its
strictification Ast

±, which means that we have achieved a dimensional reduction
from the 3-manifold M to the 2-dimensional base manifold B±.
Simplification: Even though the AQFT (π̂−1

± )∗(A±) : Open(B±) → dg∗Alg
C

is defined on the category of non-empty opens of the 2-dimensional manifold
B±, the dg-algebras

A±
(

π̂−1
± (V )

)

= CCR
(

FL±,c

(

π̂−1
± (V )

)

[1], τ(0)

)

(5.3)

it assigns to objects (V ⊆ B±) ∈ Open(B±) are determined from 3-dimensional
data on (π̂−1

± (V ) ⊆ M) ∈ ̂Θ±-Open(M). The aim of this paragraph is to con-
struct a weakly equivalent model for the AQFT (π̂−1

± )∗(A±) that is determined
only from 2-dimensional data on B±. Inspired by Lemma 4.5, we consider the
fiber integration

(π̂±)∗ : FL±,c

(

π̂−1
± (V )

)

[1] ⊆ Ω•
c

(

π̂−1
± (V )

)

[2] −→ Ω•
c(V )[1] (5.4)

along the quotient map π̂± : π̂−1
± (V ) ⊆ M → V ⊆ B±.

Lemma 5.3. The cochain map (5.4) factors through the subcomplex

Ω•
∂,c(V )[1] :=

( (−1)

Ω0
∂,c(V )

−d
��

(0)

Ω1
c(V )

−d
��

(1)

Ω2
c(V )

)

⊆ Ω•
c(V )[1], (5.5)

where Ω0
∂,c(V ) ⊆ Ω0

c(V ) denotes the subspace of all compactly supported 0-
forms on V whose pullback to the boundary ∂V vanishes. (In the case of ∂V =
∅, this boundary condition becomes void.) Moreover, the corestriction

(π̂±)∗ : FL±,c

(

π̂−1
± (V )

)

[1] ∼−→ Ω•
∂,c(V )[1] (5.6)

is a quasi-isomorphism for each (V ⊆ B±) ∈ Open(B±).

Proof. To simplify this proof, we pick a trivialization π̂−1
± (V ) ∼= R × V of

the principal R-bundle π̂± : π̂−1
± (V ) ⊆ M → V ⊆ B± and denote by τ a

choice of global coordinate on R. The vector space of (compactly supported)
k-forms on the product manifold R× V admits a decomposition Ωk

c (R× V ) =
Ω1,k−1

c (R× V ) ⊕ Ω0,k
c (R× V ) into forms that do have a leg along R and forms

that do not have a leg along R. (See also (3.16) and the discussion preceding it.)
Note that forms of the first type look like dτ∧φ, with φ ∈ Ωk−1

c (R×V ) a (k−1)-
form with trivial contraction ι∂τ

φ = 0 along the vector field ∂τ . Forms of the
second type are ψ ∈ Ωk

c (R× V ) satisfying ι∂τ
ψ = 0. Recall that the boundary

condition L± determining FL±,c(R×V )[1] ⊆ Ω•
c(R×V )[2] only affects 0-forms

and 1-forms, cf. (2.18). Concretely, we have that a 0-form ψ ∈ Ω0
c(R × V )

satisfies the boundary condition if and only if its restriction to R×∂V vanishes,
a 1-form of the first type dτ ∧ φ ∈ Ω1

c(R× V ) satisfies the boundary condition
if and only if the restriction of φ ∈ Ω0

c(R × V ) to R × ∂V vanishes, and every
1-form of the second type ψ ∈ Ω1

c(R × V ) satisfies the boundary condition as
a consequence of Lemma 3.5.
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To prove the statement about the factorization, we have to show that,
for every 1-form ϕ ∈ FL±,c(R× V )[1]−1 ⊆ Ω1

c(R× V ) satisfying the boundary
condition, the restriction of (π̂±)∗(ϕ) ∈ Ω0

c(V ) to the boundary ∂V vanishes.
For 1-forms of the second type this is trivial since (π̂±)∗(ψ) = 0 and for 1-forms
of the first type dτ∧φ ∈ Ω1

c(R×V ) this follows from the fact that φ ∈ Ω0
c(R×V )

vanishes on R × ∂V as a consequence of the boundary condition.
To prove that (5.6) is a quasi-isomorphism, we construct an explicit quasi-

inverse by adapting the standard proof of the compactly supported Poincaré
lemma, see [12, Proposition 4.6]. Let us pick a compactly supported 1-form
ω ∈ Ω1

c(R) with unit integral
∫

R
ω = 1 and define the cochain map

ω∗ : Ω•
∂,c(V )[1] −→ FL±,c(R × V )[1] ⊆ Ω•

c

(

R × V
)

[2],

α �−→ pr∗
R
(ω) ∧ pr∗

V (α) =: ω ∧ α. (5.7)

To simplify notation, we will always suppress pullbacks along the projection
maps pr

R
and prV on the two factors of R×V . The composition (π̂±)∗◦ω∗ = id

is the identity since the integral of ω ∈ Ω1
c(R) is 1. The other composition is

homotopic to the identity, i.e., id−ω∗ ◦(π̂±)∗ = ∂K, for the cochain homotopy
K ∈ [FL±,c(R × V )[1],FL±,c(R × V )[1]

]−1 defined by

K(ϕ) :=
∫ τ

−∞
ϕ −

(∫ τ

−∞
ω

)

∧ (π̂±)∗(ϕ), (5.8)

for all homogeneous ϕ ∈ FL±,c(R × V )[1], where
∫ τ

−∞ denote restricted fiber
integrations. It is easy to check that K is compatible with the boundary con-
ditions by using their explicit description from the beginning of this proof.

�

Remark 5.4. The quasi-isomorphism (π̂±)∗ in (5.6) describes how the linear
observables FL±,c

(

π̂−1
± (V )

)

[1] of our 3-dimensional theory are identified with
the linear observables Ω•

∂,c(V )[1] of a 2-dimensional theory. As some readers
might prefer thinking in terms of fields instead of observables, let us dual-
ize this construction using the evaluation pairings between linear observables
and fields. The 3-dimensional fields are described by the boundary conditioned
Chern–Simons complex FL±

(

π̂−1
± (V )

)

from (2.11) and the 2-dimensional fields
by the boundary conditioned 1-shifted de Rham complex Ω•

∂(V )[1], for the
boundary condition demanding that the pullback of 0-forms to the boundary
∂V vanishes. (Note that there are no support restrictions in the field com-
plexes.) The evaluation pairings are given by (2.14) in the 3-dimensional case
and the analogous integration pairing in 2 dimensions. The dual of (5.6) is
then given by the pullback map (π̂±)∗ : Ω•

∂(V )[1] → FL±
(

π̂−1
± (V )

)

on field
complexes. Choosing any section of the principal R-bundle π̂± : π̂−1

± (V ) → V ,
we obtain an analogue of a Cauchy surface as per Remark 3.18 and can inter-
pret this map as the constant evolution of initial data in Ω•

∂(V )[1] along the
fibers of π̂−1

± (V ). Hence, the origin of the quasi-isomorphism (5.6) lies in the
fact that Chern–Simons theory is locally constant (i.e., topological) along the
fibers of π̂± : π̂−1

± (V ) → V .
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Using Corollary A.4, we choose the orientation of B± to be compatible
with the orientation of M . With the induced orientation on V ⊆ B±, the
cochain complexes (5.5) can be endowed with the following unshifted linear
Poisson structures

σV
(0) : Ω•

∂,c(V )[1] ⊗ Ω•
∂,c(V )[1] −→ R , α ⊗ β �−→ (−1)|α|

∫

V

α ∧ β, (5.9)

which are natural with respect to the extension-by-zero maps extV ′
V :

Ω•
∂,c(V )[1] → Ω•

∂,c(V
′)[1]. This defines a functor

(

Ω•
∂,c[1], σ(0)

)

: Open(B±) −→ PoChR (5.10)

and we observe that fiber integration (5.6) defines a natural transformation

(π̂±)∗ :
(

FL±,c[1], τ(0)

) ◦ π̂−1
± =⇒ (

Ω•
∂,c[1], σ(0)

)

(5.11)

between functors from Open(B±) to PoChR. Indeed, the component cochain
maps (π̂±)∗ are PoChR-morphisms by Lemma 4.5. This allows us to obtain our
desired weakly equivalent model for the AQFT (π̂−1

± )∗(A±) that is defined only
in terms of geometric data on the 2-dimensional base manifold B±. Explicitly,
consider the functor

B± := CCR
(

Ω•
∂,c[1], σ(0)

)

: Open(B±) −→ dg∗Alg
C

(5.12)

defined by post-composing the functor (5.10) with the canonical commutation
relations functor CCR : PoChR → dg∗Alg

C
from [2, Section 5]. Note that B±

satisfies the Einstein causality axiom on Open(B±) because (5.10) satisfies a
classical analogue of the Einstein causality axiom. Indeed, for each orthogonal
(i.e., disjoint) pair (V1 ⊆ V ) ⊥ (V2 ⊆ V ) in Open(B±), σV

(0)◦
(

extV
V1

⊗extV
V2

)

=
0 vanishes manifestly, see (5.9).

Corollary 5.5. The morphism (i.e., natural transformation)

CCR
(

(π̂±)∗
)

: (π̂−1
± )∗(A±) ∼=⇒ B± (5.13)

of AQFTs on Open(B±), defined by applying the CCR-functor to the natural
transformation (5.11), is a natural weak equivalence. Hence, the AQFT B±
from (5.12) provides a weakly equivalent model for (π̂−1

± )∗(A±).

Proof. The statement follows directly from Lemma 5.3 and the fact that the
CCR-functor preserves weak equivalences, see [2, Proposition 5.3]. �

Non-dependence on the Choice of Chiral Flow Extension: In order to construct
the linear Chern–Simons AQFT A± via Green’s homotopies, we have assumed
extra data on M in the form of the proper R-action ̂Θ± : R× M → M . In the
dimensionally reduced model B±, this extra data is encoded as the quotient
space B± := M/∼± on which the AQFT is defined.

We now prove, under an additional topological assumption on M , that
the dimensionally reduced theories B± and B′

± associated with two different
choices of proper R-actions ̂Θ± and ̂Θ′

± on M are equivalent in an appropriate
sense. Since A± is fully determined by its dimensionally reduced counterpart, it
follows that our construction is independent of the particular choice of proper
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R-action ̂Θ± on M . The important content of Assumption 3.23 for our con-
struction is therefore only: (a) a choice of chirality ± on ∂M and (b) the
existence of a proper R-action on M which restricts on ∂M to a chiral flow of
the chosen chirality.

Recall that the quotient space B± of M by the proper R-action ̂Θ± is a
smooth 2-manifold with orientation suitably compatible with the orientation
of M , see Corollaries A.2 and A.4.

Proposition 5.6. Suppose that ̂Θ± and ̂Θ′
± are two proper R-actions on the

oriented 3-manifold M which restrict to the boundary ∂M as per (3.25) to
give chiral flows Θ± and Θ′

± of the same chirality. If each component of M
has more than one distinct topological end, then there exists an orientation-
preserving diffeomorphism f : B± → B′

± between the quotient spaces of M by
̂Θ± and ̂Θ′

±.

Proof. We describe the case where M is connected; hence, B± and B′
± are also

connected. The result extends component-wise for disconnected M . Since any
principal R-bundle is trivializable, there exist diffeomorphisms M ∼= R×B± ∼=
R× B′

±. The hypothesis that M has more than one end implies that that B±
is compact. Indeed, if B± were non-compact, then the product M ∼= R × B±
of connected, locally connected, non-compact spaces would have exactly one
end, see [30, Theorem 5.2]. Similarly, B′

± is also compact.
Since R deformation retracts to a point, it follows that B± and B′

± are
homotopy equivalent and hence have the same genus. Since the boundary
restrictions Θ± and Θ′

± of the R-actions have the same chirality, it follows
that ∂B± = ∂M/ ∼± = ∂M/ ∼′

± = ∂B′
±, see Remark 3.10. Then by the

classification of orientable compact surfaces (see Remark 5.7), there exists an
orientation-preserving diffeomorphism f : B± → B′

±. �

Remark 5.7. The preceding proof exploits the classification of orientable com-
pact surfaces. This may be stated as follows [28, Chapter 9, Theorem 3.7]: For
a connected, compact, orientable surface B of genus g with b boundary compo-
nents, there exists a diffeomorphism B → Σg,b, where Σg,b is the g-holed torus
with b disjoint open discs removed. When B is also oriented, we may upgrade
this classification to use diffeomorphisms that preserve orientations. This is the
form of the classification theorem used in the proof of Proposition 5.6. There
always exists an orientation-reversing self-diffeomorphism r : Σg,b → Σg,b. It
is a trivial adaptation of the b = 0 case [34, Theorem A] to construct one.
Specifically, Σg,b may be embedded in R

3 reflection-symmetrically about a
plane, say z = 0 in Cartesian coordinates. Then, reflection about the plane
(x, y, z) �→ (x, y,−z) gives r. If the diffeomorphism B → Σg,b established
above does not preserve orientations, we post-compose it with r to obtain a
new diffeomorphism which does.

Remark 5.8. In Proposition 5.6, the hypothesis on topological ends of M is
precisely an R-action-agnostic way to impose that the quotient spaces B±
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and B′
± are compact.4 This compactness allows us to address the cancellation

problem (i.e., show that R × B± ∼= R × B′
± implies B± ∼= B′

±) using the
classical classification of compact surfaces. There exist analogous classification
results for non-compact surfaces [6], but their application here would require
a detailed analysis of the ends of B± and B′

±, which we avoid for simplicity.
Many spaces M of interest satisfy the hypotheses in Proposition 5.6, e.g.,

the filled cylinder R × D
2 (Example 3.27) and the annular cylinder R × A

2

where A
2 := {(x, y) ∈ R

2 | 1
2 ≤ x2 + y2 ≤ 1 } is an annulus. We note, however,

that some important examples do not, including the half-space (Example 3.26).
To complete the treatment of such an example, one should either generalize
Proposition 5.6 appropriately, or prove an analogous statement specific to the
example of interest using ad hoc methods.

Suppose that f : B± → B′
± is an orientation-preserving diffeomorphism.

Recall that the Poisson structure σ(0) of (5.9) is defined using only wedge
products and integration of forms, and so it is compatible with pullbacks along
orientation-preserving diffeomorphisms. Hence, pulling forms back along f de-
fines a natural isomorphism

f∗ :
(

Ω• ′
∂,c[1], σ′

(0)

) ◦ f
∼==⇒ (

Ω•
∂,c[1], σ(0)

)

(5.14)

between functors from Open(B±) to PoChR. By abuse of notation, we de-
note the functor f : Open(B±) → Open(B′

±) by the same symbol as the
diffeomorphism which induces it.

Corollary 5.9. Suppose that the hypothesis of Proposition 5.6 holds and denote
by f : B± → B′

± the resulting orientation-preserving diffeomorphism. There is
a natural isomorphism

CCR(f∗) : B′
± ◦ f

∼==⇒ B± (5.15)

between AQFTs on Open(B±), defined by applying the CCR-functor to the
natural isomorphism (5.14).

6. Analyzing the Dimensionally Reduced AQFT

The aim of this section is to analyze some of the physics encoded in the dimen-
sionally reduced AQFT B± : Open(B±) → dg∗Alg

C
from Corollary 5.5. In

particular, we shall show that, restricting this AQFT to the interior IntB±, one
recovers the usual linear Chern–Simons theory on surfaces without boundary
and, restricting to a tubular neighborhood of the boundary ∂B±, one finds a
chiral free boson.

4Compactness of the quotient space B± implies that each component of M ∼= R × B± has
two distinct ends. To see this in case of connected M , take the two decreasing sequences

U i
0 ⊇ U i

1 ⊇ · · · ⊇ U i
n ⊇ · · · , for i = 1, 2, of non-empty connected open sets given by

U1
n := (n, ∞)×B± and U2

n := (−∞, −n)×B±, respectively. These sets satisfy ∩n∈NU i
n = ∅

and have compact boundaries, ∂U1
n = {n} × B± and ∂U2

n = {−n} × B±. Thus, {U1
n}n∈N

and {U2
n}n∈N represent ends of M . They are distinct since U1

n ∩ U2
m = ∅ for all n, m ∈ N.
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Restriction to the Interior: IntB±: Let us denote by Open(IntB±) ⊆ Open(B±)
the full subcategory of non-empty open subsets V ⊆ B± that do not inter-
sect the boundary, i.e., V ∩ ∂B± = ∅. On such regions, the boundary con-
dition in Ω•

∂,c(V )[1] becomes void. Hence, the restricted AQFT B±|IntB± :
Open(IntB±) → dg∗Alg

C
assigns to (V ⊆ IntB±) ∈ Open(IntB±) the dg-

algebra

B±|IntB±(V ) = CCR
(

Ω•
c(V )[1], σ(0)

) ∈ dg∗Alg
C

(6.1)

given by canonical quantization of the 1-shifted compactly supported de Rham
complex along the linear Poisson structure (5.9). Observe that the latter is (a
homological refinement of) the Atiyah–Bott Poisson structure [1] for flat con-
nections on surfaces; hence, the restricted AQFT B±|IntB± can be interpreted
in terms of linear Chern–Simons theory on IntB±. A truncation of this AQFT
was previously studied in [21].
Restriction Near the Boundary: ∂B±: In order to study the induced theory on
the boundary ∂B±, we consider a smooth embedding ∂B± × [0, 1) ↪→ B± as
a tubular neighborhood of the boundary ∂B±, so its restriction to ∂B± × {0}
embeds as ∂B±.

Let us denote by Open(∂B±) the category whose objects are all non-
empty open subsets W ⊆ ∂B± of the 1-dimensional boundary manifold ∂B±
and whose morphisms ιW

′
W : W → W ′ are subset inclusions W ⊆ W ′ ⊆

∂B±. We endow this category with the disjointness orthogonality relation,
i.e., (W1 ⊆ W ) ⊥ (W2 ⊆ W ) if and only if W1 ∩ W2 = ∅, and introduce the
orthogonal functor Open(∂B±) → Open(B±) defined by W �→ W × [0, 1).
We denote by B±|∂B± : Open(∂B±) → dg∗Alg

C
the restriction of the AQFT

B± from Corollary 5.5 along this orthogonal functor. Explicitly, this theory
assigns to (W ⊆ ∂B±) ∈ Open(∂B±) the dg-algebra

B±|∂B±(W ) = CCR
(

Ω•
∂,c

(

W × [0, 1)
)

[1], σ(0)

) ∈ dg∗Alg
C
. (6.2)

We will now construct a weakly equivalent model for the AQFT B±|∂B± that
is determined only from 1-dimensional data on ∂B±.

For the following construction, we choose a global coordinate r on [0, 1)
and pick any compactly supported 1-form ω ∈ Ω1

c

(

[0, 1)
)

with unit integral
∫ 1

0
ω = 1. As before, we simply write ω := pr∗

[0,1)(ω) ∈ Ω1
(

W × [0, 1)
)

for the
form obtained via pullback along the projection map, and similar for pullbacks
of forms from W . We define, for each non-empty open subset (W ⊆ ∂B±) ∈
Open(∂B±), the map

κ : Ω0
c(W ) −→ Ω•

∂,c

(

W × [0, 1)
)

[1] , ϕ �−→ ω ∧ ϕ −
∫ 1

r

ω ∧ dϕ. (6.3)

Regarding the domain of this map as a cochain complex concentrated in degree
0 (with trivial differential), one easily checks that κ defines a cochain map.
Indeed,

−dκ(ϕ) = −d
(

ω ∧ ϕ −
∫ 1

r

ω ∧ dϕ

)

= ω ∧ dϕ − ω ∧ dϕ = 0, (6.4)
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for all ϕ ∈ Ω0
c(W ).

Lemma 6.1. For each non-empty open subset (W ⊆ ∂B±) ∈ Open(∂B±), the
cochain map (6.3) is a quasi-isomorphism.

Proof. The proof is similar to the one of [27, Theorem 4.1], so we can be
relatively brief. A quasi-inverse for κ is given by the following fiber integration

Ω•
∂,c

(

W × [0, 1)
)

[1]

λ

��

Ω0
c(W )

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

Ω0
∂,c

(

W × [0, 1)
)

0

��

−d
�� Ω1

c

(

W × [0, 1)
)

∫ 1
0

��

−d
�� Ω2

c

(

W × [0, 1)
)

0

��
0

0
�� Ω0

c(W )
0

�� 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(6.5)

which is a cochain map owing to the boundary condition on Ω0
∂,c

(

W × [0, 1)
)

.
One checks that λ ◦ κ = id since ω integrates to 1. The other composition
is homotopic to the identity, i.e., id − κ ◦ λ = ∂K, with cochain homotopy
K ∈ [Ω•

∂,c

(

W × [0, 1)
)

[1],Ω•
∂,c

(

W × [0, 1)
)

[1]
]−1 defined by

K(α) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 , for |α| = −1,
∫ 1

r
α − ∫ 1

r
ω ∧ ∫ 1

0
α , for |α| = 0,

∫ 1

r
α , for |α| = 1.

(6.6)

This cochain homotopy is compatible with the boundary condition on 0-forms
since, for all α ∈ Ω•

∂,c

(

W × [0, 1)
)

[1]0, we have that K(α)|r=0 =
∫ 1

0
α − ∫ 1

0
ω ∧

∫ 1

0
α = 0. �

Remark 6.2. Building on Remark 5.4, let us also describe the quasi-isomorphism
κ in (6.3) using the dual language of fields instead of observables. It turns
out to be simpler to interpret the quasi-inverse cochain map λ in (6.5). The
2-dimensional fields are described by the boundary conditioned 1-shifted de
Rham complex Ω•

∂

(

W × [0, 1)
)

[1] and the 1-dimensional fields by the com-
plex Ω1(W ) that is concentrated in degree 0. (One should think of elements
J ∈ Ω1(W ) as the Abelian currents of a chiral free boson.) The dual of λ is
then given by the pullback map pr∗

W : Ω1(W ) → Ω•
∂

(

W × [0, 1)
)

[1] along the
projection prW : W × [0, 1) → W . Thinking of W as the boundary W ×{0} of
W×[0, 1), one can interpret this map as the constant evolution of boundary val-
ues in Ω1(W ) along the [0, 1)-factor. Hence, the origin of the quasi-isomorphism
(6.5), and hence of (6.3), lies in the fact that Chern–Simons theory on W ×[0, 1)
is locally constant (i.e., topological) normal to the boundary.

Pulling back the unshifted linear Poisson structures (5.9) along the quasi-
isomorphisms (6.3) defines a family of unshifted linear Poisson structures

υW
(0) := σ

W×[0,1)
(0) ◦ (κ ⊗ κ) : Ω0

c(W ) ⊗ Ω0
c(W ) −→ R, (6.7a)
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for all (W ⊆ ∂B±) ∈ Open(∂B±). With a short calculation, one computes
explicitly the value of υW

(0) and finds

υW
(0)(ϕ ⊗ ψ) = −

(∫

W

(

ϕ ∧ dψ − ψ ∧ dϕ
)

) ∫ 1

0

ω

∫ 1

r

ω

= −1
2

∫

W

(

ϕ ∧ dψ − ψ ∧ dϕ
)

= −
∫

W

ϕ ∧ dψ, (6.7b)

for all ϕ,ψ ∈ Ω0
c(W ). Note that

(

Ω0
c(W ), υW

(0)

)

is the usual Poisson vector
space for the chiral free boson on W . The cochain maps (6.3) then define the
components of a natural transformation

κ :
(

Ω0
c , υ(0)

)

=⇒ (

Ω•
∂,c[1], σ(0)

)∣

∣

∂B±
(6.8)

of functors from Open(∂B±) to PoChR. This allows us to obtain our de-
sired weakly equivalent model for the AQFT B±|∂B± . Explicitly, consider the
functor

C± := CCR
(

Ω0
c , υ(0)

)

: Open(∂B±) −→ dg∗Alg
C

(6.9)

defined by post-composing the functor (Ω0
c , υ(0)) : Open(∂B±) → PoChR

with the canonical commutation relations functor CCR : PoChR → dg∗Alg
C

from [2, Section 5]. Note that C± satisfies the Einstein causality axiom on
Open(∂B±) because (Ω0

c , υ(0)) satisfies a classical analogue of the Einstein
causality axiom. Indeed, for each orthogonal (i.e., disjoint) pair (W1 ⊆ W ) ⊥
(W2 ⊆ W ) in Open(∂B±), υW

(0) ◦ (extW
W1

⊗ extW
W2

)

= 0 vanishes manifestly, see
(6.7).

Corollary 6.3. The morphism (i.e., natural transformation)

CCR(κ) : C±
∼=⇒ B±|∂B± (6.10)

of AQFTs on Open(∂B±), defined by applying the CCR-functor to the nat-
ural transformation (6.8), is a natural weak equivalence. Hence, the AQFT
C± from (6.9), which describes the chiral free boson, provides a weakly equiv-
alent model for the boundary restriction B±|∂B± of the dimensionally reduced
bulk/boundary AQFT from Corollary 5.5.

Proof. This follows directly from Lemma 6.1 and the fact that the CCR-functor
preserves weak equivalences, see [2, Proposition 5.3]. �

Interplay Between Bulk and Boundary: The AQFT B± : Open(B±) →
dg∗Alg

C
from Corollary 5.5 encodes also the interplay between Chern–Simons

observables in the bulk and chiral free boson observables on the boundary. For
instance, given any open subset of the form W × [0, 1) ⊆ B± in the tubular
neighborhood of the boundary, we obtain a morphism

ι : W × ( 1
2 , 1
) −→ W × [0, 1) (6.11)

in the category Open(B±) whose source is an interior region in the bulk
and whose target is a region that intersects the boundary. (The particular
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choice of the open interval (1
2 , 1) ⊆ [0, 1) is inessential and purely conven-

tional. Since Chern–Simons theory is a topological QFT in the bulk, we could
choose equally well another open interval (a, b) ∈ [0, 1).) Applying the functor
B± : Open(B±) → dg∗Alg

C
on this morphism and using the natural weak

equivalence from Corollary 6.3 yields the following zigzag

B±
(

W × ( 1
2 , 1
)) B±(ι)

�� B±
(

W × [0, 1)
)

C±(W )∼
CCR(κ)
�� (6.12)

in dg∗Alg
C
, where ∼ indicates weak equivalence. This zigzag allows us to

relate the Chern–Simons observables B±
(

W × ( 1
2 , 1
))

in the interior region to
the chiral free boson observables C±(W ) in the 1-dimensional boundary subset
W ⊆ ∂B±.

Example 6.4. Let us illustrate this relationship between bulk and boundary
observables through an example. Consider the case where the boundary re-
gion W = S

1 is a circle. Linear Chern–Simons theory on S
1 × ( 1

2 , 1) contains
observables that measure the holonomy of flat R-connections along non-trivial
cycles. A particular choice of such observable is given by the linear observable

ω := pr∗
( 1
2 ,1)(ω) ∈ Ω1

c

(

S
1 × ( 1

2 , 1
)) ⊆ B±

(

S
1 × ( 1

2 , 1
))

(6.13)

that is obtained by pulling back along the projection pr( 1
2 ,1) : S1 × ( 1

2 , 1) →
(1
2 , 1) a compactly supported 1-form ω ∈ Ω1

c

(

( 1
2 , 1)

)

with unit integral
∫ 1

1
2

ω =
1. To see that this observable indeed measures the holonomy of flat connections,
let us consider the family of flat R-connections A = α dφ ∈ Ω1

(

S
1 × ( 1

2 , 1)
)

,
where α =

∫

S1 A ∈ R characterizes the holonomy and φ is the angle coordinate
on S

1. Evaluating the observable ω on A gives
∫

S1×( 1
2 ,1)

ω ∧ A = −
(∫

S1
A

) (∫ 1

1
2

ω

)

= −
∫

S1
A = −α, (6.14)

i.e., the observable ω distinguishes between the different flat connections. Ap-
plying the morphism B±(ι) from (6.12) allows us to consider the observable
ω as an element in Ω1

c

(

S
1 × [0, 1)

)

. Using also the quasi-inverse of κ, given by
the cochain map λ in (6.5), we can assign to the latter observable the element

λ(ω) =
∫ 1

0

ω = 1 ∈ Ω0
c(S

1) ⊆ C±(S1), (6.15)

which by construction satisfies ω − κλ(ω) = −dK(ω) for K the cochain ho-
motopy displayed in (6.6). In words, this means that the linear Chern–Simons
observable (6.13), which measures the holonomy of flat connections, can be
presented (up to exact terms) by the linear observable λ(ω) = 1 ∈ C±(S1) of
the chiral free boson, which measures its zero mode.
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Appendix A: Technical Details

A.1 Proper R-Actions

Lemma A.1. Any proper smooth R-action Θ : R × N → N on a smooth man-
ifold N is also free.

Proof. For each p ∈ N , the curve Θ( · , p) : R → N is the integral curve
through p of the vector field generating the flow Θ. Assume the R-action Θ
is not free, so there exists some Δs �= 0 and p ∈ N with Θ(Δs, p) = p. Then
by uniqueness of integral curves, Θ( · , p) is periodic, i.e., Θ(nΔs, p) = p for all
n ∈ Z. It follows that R{p} := {s ∈ R |Θ(s, {p})∩{p} �= ∅} ⊇ {nΔs vert n ∈ Z}
is not compact in R. Hence, the R-action Θ is not proper. �

Corollary A.2. For any proper smooth R-action Θ : R × N → N on a smooth
manifold N , the quotient π : N → N/R by Θ is a smooth principal R-bundle
with right R-action Θ.

Lemma A.3. The canonical orientation on R induces a canonical bundle ori-
entation on any principal R-bundle π : N → B.

Proof. Recall that a bundle orientation on π : N → B can be expressed as an
orientation of the vector bundle V N ⊆ TN of vertical vectors with respect to π,
see [25, Section 7.4, Proposition II]. For any element a ∈ R in the Lie algebra of
the structure group R, there is a fundamental vector field A ∈ Γ∞(V N) on the
total space N of the principal bundle, see [13, Section A.1]. These fundamental
vector fields give R-linear isomorphisms R → VpN, a �→ Ap between the Lie
algebra and the space of vertical vectors at any p ∈ N .

The canonical orientation on the Lie group R identifies bases {a} of its Lie
algebra R as positively oriented if a > 0. The bundle orientation on π : N → B
is then induced by transporting along the isomorphisms above, i.e., {Ap} is

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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positively oriented in VpN for a > 0. This is a smooth choice of positively
oriented bases since the fundamental vector fields A are smooth. �

Consider any fiber bundle π : N → B and denote by n := dimN and
b := dimB the dimensions of, respectively, the total and base spaces. Manifold
orientations on N and B and a bundle orientation on π : N → B are called
compatible (in the fiber-first convention) if, for representative forms ωB ∈
Ωb(B) and βπ ∈ Ωn−b(N) of the base space and bundle orientations, the total
space orientation is represented by βπ ∧ π∗ωB .

Corollary A.4. For any principal R-bundle π : N → B, compatibility with the
canonical bundle orientation of Lemma A.3 defines a bijection between the set
of orientations on N and the set of orientations on B.

Proof. Consider first the case where either set of orientations is empty, i.e.,
either N or B is non-orientable. Since any principal R-bundle is trivializable
N ∼= R × B and R is orientable, N is orientable if and only B is orientable.
Hence, in this case both sets of orientations are empty and one has the claimed
bijection.

Consider now the case where both N and B are orientable. It is trivial
to produce a compatible orientation on N from any orientation on B, using
the definition of compatibility. For an inverse, when given an orientation on
N , choose an arbitrary orientation on B and transform it to a compatible one
by reversing it on those components where it is incompatible. �
A.2 Properties of Θ-Future/Past Sets

The Θ-future/past sets entering property (ii) of Definition 3.12 may be ex-
pressed in terms of a binary relation ≤Θ on N associated to the R-action
Θ : R × N → N , defined as

p ≤Θ q if ∃s ≥ 0 such that q = Θ(s, p). (A.1)

The Θ-future/past J
↑/↓
Θ (S) of a subset S ⊆ N are, respectively, the successor-

and predecessor-sets of S with respect to ≤Θ. Compare this to Remark 3.6.

Lemma A.5. For any proper smooth R-action Θ : R × N → N on a smooth
manifold N , the (graph of the) relation ≤Θ defined in (A.1) is a closed subset
of N × N .

Proof. The (graph of the) relation ≤Θ ⊆ N × N of (A.1) may be expressed as
the image

≤Θ = θ ([0,∞) × N) ⊆ N × N (A.2)

of a closed set under the shear map θ : R×N → N ×N associated to R-action
Θ as per (3.9). By hypothesis, Θ is a proper R-action i.e., θ is a proper map.
Since N × N is a manifold, so Hausdorff and locally compact, it follows by
[31, Theorem A.57] that θ is a closed map. Hence the relation ≤Θ is a closed
subset in N × N . �

The following is a general fact about binary relations on topological
spaces.
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Lemma A.6. Let X be a topological space and R ⊆ X × X a binary relation
on X. For any subset S ⊆ X, denote the successor-set of S as

R↑(S) :=
{

x ∈ X

∣

∣

∣

∣

(y, x) ∈ R for some y ∈ S

}

(A.3a)

and the predecessor-set of S as

R↓(S) :=
{

x ∈ X

∣

∣

∣

∣

(x, y) ∈ R for some y ∈ S

}

. (A.3b)

If R is a closed subset of the product space X × X, then R↑(K) and R↓(K)
are closed for K ⊆ X compact.

This is proven for partial orders R in [35, Chapter 1, Proposition 4]. A
proof applicable to general binary relations is given for [32, Theorem 4.12],
which treats the special case of the causal relation on a Lorentzian manifold.

Corollary A.7. For any proper smooth R-action Θ : R × N → N on a smooth
manifold N , the Θ-future/past sets J

↑/↓
Θ (K) of (3.7) are closed for K ⊆ N

compact.

Lemma A.8. Let N be a smooth manifold with a proper R-action Θ : R×N →
N . Let further K ⊆ N be a compact subset and σ be a smooth section of the
quotient π : N → N/R by Θ. Denote by Σ the image of σ. Then the subsets
J↑

Θ(K) ∩ J↓
Θ(Σ) and J↓

Θ(K) ∩ J↑
Θ(Σ) of N are both compact.

Proof. By Corollary A.2, π : N → N/R is a smooth principal R-bundle. Since
smooth sections are smooth embeddings, its base N/R is diffeomorphic to
Σ. Thus the trivialization induced by the section σ gives a diffeomorphism
ΘΣ : R × Σ ∼−→ N , (t, p) �→ Θ(t, p).

We see that J↑
Θ(Σ) = ΘΣ ([0,∞) × Σ) and J↓

Θ(Σ) = ΘΣ ((−∞, 0] × Σ)
are closed subsets in N , so J

↑/↓
Θ (K) ∩ J

↓/↑
Θ (Σ) are also closed in N because

J
↑/↓
Θ (K) are closed by Corollary A.7.

With projections denoted pr
R

: R × Σ → R and prΣ : R × Σ → Σ, define
x := inf pr

R
Θ−1

Σ (K) which is finite because K is compact. Then J↑
Θ(K) ⊆

ΘΣ

(

[x,∞) × prΣΘ−1
Σ (K)

)

, so that the closed set J↑
Θ(K)∩J↓

Θ(Σ) is contained in
the compact set ΘΣ

(

[x, 0] × prΣΘ−1
Σ (K)

)

and is thus also compact. Similarly,
J↓

Θ(K) ∩ J↑
Θ(Σ) is compact since it is closed and contained in the compact set

ΘΣ

(

[0, y] × prΣΘ−1
Σ (K)

)

, where y := sup pr
R
Θ−1

Σ (K). �
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(2020). https://doi.org/10.1007/s00023-020-00929-x. arXiv:1908.09504 [math-
ph]

[21] Dappiaggi, C., Murro, S., Schenkel, A.: Non-existence of natural states for
Abelian Chern–Simons theory. J. Geom. Phys. 116, 119–123 (2017). https://
doi.org/10.1016/j.geomphys.2017.01.015. arXiv:1612.04080 [math-ph]

[22] Elitzur, S., Moore, G., Schwimmer, A., Seiberg, N.: Remarks on the canonical
quantization of the Chern–Simons–Witten theory. Nucl. Phys. B 326(1), 108–134
(1989). https://doi.org/10.1016/0550-3213(89)90436-7
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