- 1 TITLE
- 2 Treatment interventions for hand fractures and joint injuries: a scoping review of randomized controlled
 3 trials

5 ABSTRACT

7	The aim of this study was to identify and assess all existing randomized studies on treatment interventions
8	for hand fractures and joint injuries, to inform practice and plan future research. PubMed, Cochrane
9	CENTRAL, MEDLINE and Embase were searched. We identified 78 randomized controlled trials published
10	over 35 years, covering seven anatomical areas of the hand. We report on sources of bias, sample size,
11	follow-up length and retention, outcome measures and reporting. In terms of interventions studied, the
12	trials were extremely heterogeneous, so it is difficult to draw conclusions on individual treatments. The
13	published randomized controlled clinical trial (RCT) evidence for hand fractures and joint injuries is narrow
14	in scope and of generally low methodological quality. Mapping provides a useful resource and stepping
15	stone for planning further research. There is a need for high-quality, collaborative research to guide
16	management of a much wider breadth of common hand injuries.

19 INTRODUCTION

20

21 The wide variety of hand injuries treated by different methods, and the lack of consistency in outcome

22 reporting and research methodological standards make existing evidence difficult to interpret and apply to

23 clinical decision making.

The importance of studying hand injuries and the gap in the evidence base was recently highlighted by the James Lind Alliance Priority Setting Partnership on common hand and wrist conditions, a priority-setting national consensus exercise involving patients and those providing hand surgery care (James Lind Alliance, 2017). Two of the top ten research priorities highlighted the treatment of bony or ligamentous injuries of the hand. Further work is needed to inform clinical practice and help plan future high quality clinical trials (James Lind Alliance, 2017).

30 A scoping review is a type of systematic review which identifies the nature and the extent of research 31 evidence on a topic. It is the assessment of available published research with the aim of identifying the 32 breadth of relevant evidence, as opposed to trying to answer a specific question (Grant and Booth, 2009). 33 The aim of this scoping review was to identify and assess existing randomized controlled trial (RCT) 34 evidence on treatment interventions for hand fracture and joint injuries in order to inform practice and 35 help plan future trials. The objectives were to collate and map existing RCT evidence to the anatomical 36 sites of hand fractures or joint injuries, appraise the quality of studies using a recognized risk of bias 37 assessment tool, summarize outcomes used and assess the length of follow-up and retention rates in 38 published RCTs.

- 39
- 40

41 METHODS

42

43 The study was prospectively registered on PROSPERO

44 (<u>https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=102845</u>). Preferred Reporting Items

45 for Systematic Reviews and Meta-Analyses, Extension for Scoping Reviews (PRISMA-ScR) were followed

46 (Tricco et al., 2018).

47 Scope and eligibility criteria

48 For the purposes of this review, hand fractures and joint injuries were defined as carpal fractures of the

49 scaphoid, hamate, lunate and pisiform and others; metacarpal fractures; phalangeal fractures; fractures at

50 the base of the thumb; any joint injuries, such as dislocations or fracture- dislocations; avulsion tendon and

- 51 joint ligament injuries which can be associated with a small fracture; and other ligament injuries to the
- 52 hand, carpus or wrist. Distal radial fractures were not included in this review which was focussed on the
- 53 hand and carpus.
- 54 Inclusion and exclusion criteria are outlined in Table 1. Interventions included primary treatment (e.g.
- 55 plaster or surgery for a scaphoid fracture), secondary treatment (e.g. treatment for scaphoid non-union or
- 56 deformity secondary to the injury) and/or associated therapy interventions (e.g. physiotherapy). Trials were
- 57 included without restrictions on publication time or language.

58 Search strategy

- 59 The search strategies were compiled with guidance from an information specialist with hand surgery
- 60 expertise. The search strategy was constructed in four parts:
- 61 (1) names of bones, joints and ligaments of the hand (e.g. phalanx, scaphoid, collateral),
- 62 (2) general terms for fractures and joint injuries (e.g. fracture, dislocation),
- 63 (3) specific terms about hand fractures and joint injuries (e.g. boxer's, Stener, gamekeeper's thumb), and
- 64 (4) the sensitivity-maximizing version of the Cochrane RCT filter;
- 65 (1) and (2) were combined using the Boolean 'AND' which was then combined with (3) using the Boolean
- 66 'OR'. The findings were then combined with the RCT filer (4) using the Boolean 'AND'. The search terms are
- 67 detailed in Appendix 1 (available online).
- 68 The databases searched were PubMed, Cochrane CENTRAL, Ovid MEDLINE, and Ovid Embase. The details of
- 69 coverage and the interfaces used are shown in Table 2. The search was carried out on 27 of December
- 70 2017.
- 71 Data management, quality assessment and data extraction

72 Records identified via the searches were imported into EndNote X7 (Thompson Reuters, New York, NY) and duplicates removed. Two review authors (CM and DG) independently screened all titles and abstracts for 73 74 potentially eligible studies, for which full-text reports were obtained where appropriate. The quality (risk of 75 bias) of included studies was assessed independently by two assessors (CM and SD) using the Cochrane 76 Risk of Bias tool for randomized controlled trials and quasi-random studies (Higgins et al., 2017). 77 Disagreements were resolved by consulting a third review author (AK) and discussion. One review author 78 (CM) extracted the data, using a pre-piloted standard data collection form. Data extraction included details 79 of the population, intervention, comparator and outcomes (PICO) for all included trials, external funding 80 source, registration with a trial repository, sample size, sample size calculation, method of randomization, 81 RCT study design (single or multi-centre), and whether intention-to-treat analysis was performed. Length of 82 follow up, losses to follow-up and the outcomes (primary, secondary) were also extracted. 83 Mapping and data synthesis 84 The studies were mapped according to the anatomical site of the fracture or joint injury. A narrative

85 descriptive synthesis of the findings, structured around the anatomical site of the hand fracture or joint

86 injury, is presented. Descriptive statistics (proportions, median with range, mean with standard deviation)

87 were used to report study characteristics. Linear regression was used to test the association between

88 length of study follow-up and study retention rates.

89

91 **RESULTS**

92 The study selection process is demonstrated via a Preferred Reporting Items for Systematic Reviews and 93 Meta-Analyses (PRISMA) flowchart (Moher et al., 2009) (Figure 1). Seventy eight RCTs fulfilled the eligibility 94 criteria and were included. The authors of three studies were contacted as it was unclear whether they 95 were randomized. One confirmed that the study was an RCT (Sourmelis et al., 1995), one that the study 96 was a cohort study (Gabler et al., 2001) and no reply was received from the third (Toker et al., 2015), so 97 the study was excluded. Details of the included studies, mapped by anatomical region, are presented in 98 Appendix 2 (Tables A-H) (available online), including report identifiers and the PICO outline for each trial. 99 Trial publication dates ranged from 1982 to 2017 (Figure 2). Most trials were from European institutions 100 [51/78, 65%], with fewer studies from North America (USA and Canada) [9/78 (12%)] and the rest from 101 other parts of the world [18/78 (23%)]. The five countries which reported the highest number of trials were 102 the United Kingdom [14/78 (18%)], the United States [8/78 (10%)], Denmark [7/78, (9%)], Netherlands 103 [5/78 (6%)] and Sweden [6/78 (8%)]. Of the included trials, 46 (59%) were published after 1 July 2005, 104 when the registration requirement for trials was implemented by the International Committee of Medical 105 Journal Editors (ICMJE) (De Angelis et al., 2004); of those, only 8/46 (17%) indicated compliance by 106 reporting registration in a clinical trial repository. Few trials reported a sample size calculation or intention-107 to-treat analysis, studies were generally small (under 100 participants) and single-centre (Table 3); median 108 sample size was 54 (range 8-352). Only 14 of 33 (42%) trials that looked at operative treatment 109 interventions reported the training/experience of surgeons.

110 Mapping

The trials were mapped according to the anatomical site of injury treated; this is presented visually in Figure 3. The four most common injuries studied were scaphoid fractures (28 trials), followed by metacarpal (23 trials), mallet fingers (ten trials) and proximal phalangeal fracture (five trials). One trial reported a mixed population of 'closed hand bone fractures'.

115 RCTs investigated the effects of a wide range of treatments, including Kirschner-wires, different types of 116 splints, casts, or orthoses and exercise/ rehabilitation programmes. An equal number of studies compared 117 two different types of surgical treatment, and a type of surgical treatment compared to a type of

118 conservative treatment, with the remaining comparing two conservative treatments (Table 3). Of the

119 conservative treatments compared, 35/78 (45%) studies assessed different splints/casts/orthoses, 2/78

120 (3%) studies compared rehabilitation regimes, 4/78 (5%) electrical stimulation to no treatment, 2/78 (3%)

121 ultrasound therapy to no therapy, 1/78 (1%), laser therapy to no therapy, and 2/78 (3%) studies compared

122 pharmacological interventions. Appendix 2 (available online) presents details of all included RCT

123 intervention comparisons, mapped by anatomical site of injury.

124 **Quality assessment**

125 The quality assessment of included trials is visually summarized in the risk of bias graph (Figure 4). Figure 5

126 (Supplementary Material, available online) details the quality assessment for each individual study. A

127 common finding was that most of the studies which claimed to be "randomised" did not actually specify

128 how the randomization was done (i.e. coin toss, sealed envelopes, computer generated sequence or other)

or whether or how the allocation sequence was concealed. Only 24/78 (31%) scored "low risk of bias" for

130 random sequence generation and 14/78 (18%) for allocation concealment.

Only a small proportion of studies reported blinding, with 8/78 (10%) studies blinding the participants and/or the study personnel and 20/78 (26%) blinding the outcome assessors. Most studies did not report on 'blinding' status. Very few studies [5/78 (6%)] referenced a study protocol. Studies published before 2003 generally tended to score "unclear" for many risk of bias domains, whereas those published after 2003 tended to report more of the information required for bias assessment, therefore scoring either "low" or "high" more often in the domains (Figure 4).

137 Outcomes and follow-up

Only 13/78 (17%) trials specified the primary outcome measure in full, including what was measured and when. The median time point for the assessment of the primary outcome out of 13 studies was 6 weeks (range 1-16). A further 4/78 (5%) trials specified the primary outcome, but this was incomplete, i.e. they did not report the time point of interest. The primary outcome was "blinded" in 10/78 (13%) trials. Only two trials selected a recognized standardized Patient Reported Outcome Measure (PROM) as primary outcome measure (the QuickDASH). Table 4 shows the outcomes assessed in included trials.

144 The maximum length of individual study follow-up was highly variable (median 24 weeks, range 1 to 624 145 weeks). Twenty-two studies (28%) had a maximum follow-up of 1 year or more. Follow-up (retention) data 146 were reported in 50/78 (64%) of trials; in these trials retention was over 80% in 37/50 (74%) at the end of 147 the study. This translates to reported follow-up over 80% for only 37/78 (47%) of trials. Retention rates of 148 70-80% were reported by 6/78 (8%) and 50-69% by 7/78 (9%) trials, with the rest providing no retention 149 information at all. The median follow-up retention was 89% (range 55-100%) at the end of each study. 150 Retention did not show an association with the maximum length of study follow-up (regression coefficient 151 -0.008; *p*=0.63; 95% CI: -0.39 to 0.023).

152

154 DISCUSSION

155

This comprehensive scoping review identified and assessed published RCTs on the treatment of hand fractures and joint injuries. It was guided by a search of publications developed with support from an experienced information specialist and used sound methodology informed by the PRISMA-SCR guidelines (Tricco et al., 2018). It has highlighted issues with design and reporting, informed by a recognized assessment tool (Cochrane Methods, 2018). It provides a reference for the planning of future studies as well a repository of the included trials, mapped by topic (Appendix 2). It highlights the paucity of high-level evidence to guide the clinical management of people with hand injuries.

163 The review identified 78 trials published over a period of 35 years, which is a surprisingly small number. To 164 put this number into context, a systematic review on the treatment of distal radial fractures identified 90 165 RCTs published over 5 years from 2010 to 2015 (Lee et al., 2018). The trials identified in the present 166 review covered only seven anatomical areas of the hand. This may be because the injuries studied are 167 common or have potential for poor outcomes. For example, metacarpal fractures are common and 168 scaphoid fractures can have poor outcomes if not properly treated. In terms of the interventions studied, 169 the trials were extremely heterogeneous, and compared various types of operative and non-operative 170 treatments, so it is difficult to draw any conclusions on individual treatments. There are further issues with 171 the design, conduct and reporting of these trials, suggesting potential for bias.

Mandatory prospective trial registration came into effect in July 2005 (De Angelis et al., 2004). Of the RCTs published after this time, very few studies had been registered with a trial registry. Only a few studies referenced a study protocol and for the rest it is unknown whether a study protocol was available, but not reported. It was therefore not possible to assess for selective outcome reporting in studies without a protocol. In terms of quality assessment, most assessed bias domains were graded as unclear, reflecting the pressing need for greater clarity in trial reporting via the enforcement of adherence to CONSORT guidelines by researchers and journals (Nagendran et al., 2013).

179 Selection bias refers to systematic baseline differences between the two groups (Cochrane Methods, 2018).

180 Randomization helps to control for known and unknown confounders and minimizes selection bias. Even

though all studies were reported as randomized trials, the randomization and allocation concealment
methods were not described in many trials.

183 Very few studies were blinded, which introduces performance and detection biases. Performance bias 184 refers to the introduction of differences between the two groups other than the intervention (Cochrane 185 Methods, 2018). Knowing which intervention a patient has received can affect the care provided by 186 clinicians and the perception of recovery by the patients. Detection bias refers to systematic differences 187 between groups in how outcomes are determined (Cochrane Methods, 2018). Knowing which intervention 188 a patient has received can affect outcome assessment, especially of subjective outcomes such as pain. 189 Though it is impossible to achieve blinding in many surgical trials, assessors should be independent and 190 blinded whenever possible. When it is not possible to blind, this should be stated. Most of the included 191 trials did not discuss the blinding, or explained why they did not blind.

192 Though most trials assessed outcomes likely to be reported directly by patients, such as pain and measures 193 of satisfaction, only a small proportion of trials measured this in a standardized way that can be compared 194 across studies, such as a standardized scale or patient-reported questionnaire. Only 24% used Patient 195 Reported Outcome Measures (PROMs). The most frequently used PROMs were the DASH and QuickDASH, 196 reflecting their prominence in orthopaedic publications. Furthermore, very few trials in this review specified their primary outcome, whereas they measured a wide range of heterogeneous secondary 197 198 outcomes at differing time points (Table 4), precluding future meta-analysis in systematic reviews. Most 199 studies also failed to report a sample size calculation and had a sample size of less than 100 participants, 200 which is likely to be too low to draw meaningful conclusions with narrow confidence intervals (Corty and 201 Corty, 2011).

Length of follow-up was variable and participant retention at the final follow-up point was often not
reported. Only 22/78 (28%) of trials had duration of follow-up of 1 year or more. Participant retention did
not show an association with follow-up length, suggesting that either most studies reporting the
percentages of follow-up at the last attendance were relatively short (median follow-up 24 weeks) or
possibly that those which had high percentages of losses failed to report it.

Few trials of operative treatments reported the training/experience of surgeons. Those that did said that the authors carried out the surgery. The authors were senior, likely to be enthusiasts with specialist knowledge, which would make the results less generalizable.

The low number of multi-centre studies and the lack of external funding shows that hand surgery needs tofollow other specialties in conducting larger, collaborative studies.

There needs to be consistency by better design. A core outcome set for trials relating to the treatment of hand injuries would substantially increase the transparency and consistency of reporting (Williamson et al., 2012). A core outcome set is a consensus minimum set of outcomes that should be measured and reported in all trials relating to a specific condition and is developed with the input of all relevant stakeholders, including patients, researchers, clinicians, and policy-makers (COMET, 2018). Furthermore, issues with

217 poor design are important to highlight and address because a solution will require the endorsement and

cooperation of researchers, funders, reviewers, journal editors, and the wider clinical community.

The results of this review are compatible with other reports. Post et al. (2013) carried out an analysis of two

220 major hand surgery journals for the level of evidence of RCTs. They found that the lack of quality may be for

a number of reasons, such as economic (i.e. trials in surgery lack comparable budgets to those trials funded

by pharmaceutical companies), the relatively small and heterogeneous patient populations and the

inability to blind surgeons and patients. They suggested that there is a need for high-quality publications,

which could be achieved by the use of the CONSORT statement as a guideline to improve the quality of RCT

reporting. A systematic review of all hand surgery articles published in six journals over a 20-year period

found that the number of hand surgery articles has progressively increased over the last 20 years (Sugrue etal., 2016).

This is not a systematic review of the effectiveness of specific interventions, so we cannot draw clinically relevant conclusions about the effectiveness of treatments for a particular injury. The comparatively low number of studies, heterogeneity of interventions, deficiencies in trial design and inconsistencies in outcome assessment make this very difficult, which is why so many systematic reviews in the field of hand surgery rely on lower levels of evidence by including non-randomized studies (Sugrue et al., 2016).

233

.

- 234 Funding:
- 235 There was no external funding for this study.

- 238 **REFERENCES**
- 239

240 Cochrane Methods. Assessing risk of bias in included studies 2018. 241 http://methods.cochrane.org/bias/assessing-risk-bias-included-studies (29 June 2018).

242 COMET. Core outcome set (cos). 2018. <u>http://www.comet-initiative.org/glossary/cos/</u> (20 July 2018).

- 243 Corty E, Corty R. Setting sample size to ensure narrow confidence intervals for precise estimation of 244 population values. Nurs Res. 2011, 60: 148-53.
- De Angelis C, Drazen J, Frizelle F et al. Clinical trial registration: A statement from the international committee
 of medical journal editors. N Engl J Med. 2004, 351: 1250-1.
- 247 Gabler C, Kukla C, Breitenseher M, Trattnig S, Vecsei V. Diagnosis of occult scaphoid fractures and other wrist
- injuries. Are repeated clinical examinations and plain radiographs still state of the art? Langenbecks ArchSurg. 2001, 386: 150-4.
- Grant M, Booth A. A typology of reviews: An analysis of 14 review types and associated methodologies.
 Health Information and Libraries Journal. 2009, 26: 91-108.
- 252 Higgins J, Altman D, Sterne J. Chapter 8: Assessing risk of bias in included studies. In: Higgins J, Churchill R,
- Chandler J, Cumpston M (Eds.) Cochrane Handbook for Systematic Reviews of Interventions version 520,
 Cochrane 2017.
- James Lind Alliance. Common conditions affecting the hand and wrist, priority setting partnership. 2017.
 <u>https://www.bssh.ac.uk/_userfiles/pages/files/Patients/James%20Lind/JLA%20Final%20Summary.pdf</u> (29
 November 2017).
- Lee S, Khan T, Grindlay D, Karantana A. Registration and outcome-reporting bias in randomized controlled trials of distal radial fracture treatment. JB JS Open Access. 2018, 3: e0065.
- Moher D, Liberati A, Tetzlaff J, Altman D. Preferred reporting items for systematic reviews and meta-analyses:
 The prisma statement. BMJ. 2009, 339: b2535.
- Nagendran M, Harding D, Teo W et al. Poor adherence of randomised trials in surgery to consort guidelines for non-pharmacological treatments (npt): A cross-sectional study. BMJ Open. 2013, 3: e003898.
- 264 Sourmelis S, Platanitis G, Korakis T, Daras A, Schinas N, Papakostas C. Static splinting vs. Functional treatment 265 in extra-articular fractures of the proximal phalanges. Orthopaedic transactions. 1995, 19: 210.
- Sugrue C, Joyce C, Sugrue R, Carroll S. Trends in the level of evidence in clinical hand surgery research. Hand
 2016, 11: 211-5.
- Toker S, Turkmen F, Pekince O, Korucu I, Karalezli N. Extension block pinning versus hook plate fixation for treatment of mallet fractures. The Journal of hand surgery. 2015, 40: 1591-6.
- Tricco A, Lillie E, Zarin W et al. Prisma extension for scoping reviews (prisma-scr): Checklist and explanation.
 Ann Intern Med. 2018, 169: 467-73.
- 272 Williamson P, Altman D, Blazeby J, Clarke M, Gargon E. Driving up the quality and relevance of research
- through the use of agreed core outcomes. J Health Serv Res Policy. 2012, 17: 1-2.
- 274
- 275
- 276
- 277

278	Figure legends
279	
280	Figure 1. Review PRISMA flow diagram.
281	
282	Figure 2. Distribution of trials per year of publication.
283	
284	Figure 3. Mapping of the included randomized trials according to the anatomical site.
285	
286	Figure 4. Risk of bias graph: authors' judgements about each risk of bias item presented as percentages
287	across all included studies.
288	
289	Figure 5. Risk of bias summary: author's' judgements about each risk of bias item for each included study.
290	
291	
292	
293	
294	
295	
296	
297	
298	
299	
300	
301	
302	
303	
304	

Table 1. Inclusion and exclusion criteria for the scoping review.

Criteria

Inclusion criteria

Study design

- Randomized controlled trials
- Studies stated to be 'randomized' but for which there is inadequate information about sequence generation and/or allocation concealment
- Quasi randomized studies

Population

- Adults with acute hand fracture(s) and/or joint injury(ies) of the hand
- In studies of mixed populations (e.g. adults and children) a randomized controlled trial is
 - included if 90% or more of the population meet the eligibility criteria

Intervention

Any intervention for the treatment of hand fractures and joint injuries. This includes primary

, secondary treatment and/or associated therapy interventions

Comparator

• Any other intervention for the treatment of hand fractures and joint injuries as described

above

• Placebo or no intervention

Study report characteristics

- Full study reports published in peer review journals
- Abstracts of completed studies, if the full study report is not yet available
- No timeframe restrictions for trial report publication
- Studies in any language

Exclusion criteria

- Separate publications of economic evaluation of the primary trial
- Studies of treatment for distal radial fractures

•	Studies where the primary injury is trauma of nerve, vessel, tendon and/or soft tissue

deficits

•	Review articles,	unpublished	and ongoing	trials
•	Review articles,	unpublished	and ongoing	triais

306			
307			
308			
309			
310			
311			
312			
313			
314			
315			
316			
317			
318			
319			
320			
321			
322			
323			
324			
325			
326			
327			
328			
329			

_

Table 2. Databases searched

	Database	Interface	Coverage
-	PubMed	PubMed	1946-present
	Cochrane Central Register of Controlled Trials	Wiley	1999-present
	(Cochrane CENTRAL)		
	Embase	OVID	1980-present
	MEDLINE	OVID	1946-present
		(In process and non-indexed)	
331			
332			
333			
334			
335			
336			
337			
338			
339			
340			
341			
342			
43			
44			
45			
46			
47			
48			
49			

	n /N (%)
Studies published after 1 ^t July 2005	46/78 (59%)
Study report indicating registration in a trial repository	8/46 (17%)
Sample size > 100	12/78 (15%)
Studies reporting a sample size calculation	26/78 (33%)
Randomized controlled trial study design	
• Single-centre	49/78 (63%)
Multi-centre	11/78 (14%)
Inadequate information	18/78 (23%)
Randomisation	
Randomized controlled trials	73/78 (94%)
Quasi Randomized trials	5/78 (6%)
Study report indicating intention-to-treat analysis	14/78 (18%)
External funding source	13/78 (17%)
Comparison type	
Two different types of surgical treatment	16/78 (21%)
• A type of surgical treatment compared to a type	
of conservative treatment Two different types of	16/78 (21%)
conservative treatment	

46/78 (59%)

Table 4. Outcome assessed in included trials.

Outcomes	n/N (%)
Clinical measurements	64/78 (82%)
Range of motion	45/78 (58%)
Grip strength	33/78 (42%)
Radiological	32/78 (41%)
Pain	28/78 (36%)
Patient reported outcome measures (PROMs)	19/78 (24%)
• Disabilities of the Arm, Shoulder and Hand (DASH)	10/78 (13%)
QuickDASH	7/78 (9%)
Patient Evaluation Measure (PEM)	2/78 (3%)
• Patient-Related Wrist Evaluation questionnaire (PRWE)	2/78 (3%)
Michigan Hand Outcomes questionnaire (MHQ)	1/78 (1%)
Return to previous occupation	15/78 (19%)
Overall satisfaction with the result	15/78 (19%)
Complications	12/78 (15%)
Physician-reported and/or composite outcome scores	5/78 (6%)
Mayo Modified Risk score	2/78 (3%)
Green/O'Brien score	2/78 (3%)
Modified Scaphoid Outcome Scoring System	1/78 (1%)
Satisfaction with cosmetic appearance	4/78 (5%)
Quality of life (EQ-5D)	1/78 (1%)

361		APPENDIX 1
362		
363	Search strateg	ies for the scoping review
364		
365	1. Hand t	terms
366	a.	("Hand bones"[MeSH] OR "Hand joints"[MeSH]
367	b.	OR "Carpal bones"[MeSH] OR carpals OR carpo OR carpus[tw] OR carpocarpal OR intracarpal
368		OR mediocarpal OR mesocarpal OR midcarpal OR transcarpal
369	с.	OR carpometacarpal OR CMC
370	d.	OR "Metacarpal bones"[MeSH] OR metacarpus OR metacarpal OR metacarpals OR
371		metacarpo* OR midmetacarpal OR transmetacarpal
372	e.	OR thumb OR thumbs OR thenar
373	f.	OR "Scaphoid bone"[MeSH] OR scaphoid OR scaphoids OR scaphoidal OR hemiscaphoid OR
374		medioscaphoid OR mesoscaphoid OR midscaphoid OR periscaphoid OR transcaphoid OR
375		transcaphoidal
376	g.	OR "Lunate bone"[MeSH] OR lunate OR lunates OR hemilunate OR mediolunate OR
377		mesolunate OR midlunate OR perilunate OR perilunar OR "semilunar bone" OR translunate
378	h.	OR "Pisiform bone"[MeSH] OR pisiform OR hemipisiform OR mediopisiform OR mesopisiform
379		OR midpisiform OR peripisiform OR transpisiform
380	i.	OR "Triquetrum bone"[MeSH] OR triquetrum OR triquetral OR hemitriquetral OR
381		mediotriquetral OR mesotriquetral OR midtriquetral OR peritriquetral OR transtriquetrum
382		OR transtriquetral
383	j.	OR "Trapezium bone"[MeSH] OR trapezium OR trapeziums OR trapezial OR hemitrapezium
384		OR mediotrapezium OR mesotrapezium OR midtrapezium OR pantrapezial OR peritrapezium
385		OR peritrapezial OR transtrapezium OR transtrapezial

- k. OR "Trapezoid bone"[MeSH] OR trapezoid OR trapezoids OR hemitrapezoid OR
 mediotrapezoid OR mesotrapezoid OR midtrapezoid OR pantrapezoid OR peritrapezoid OR
 peritrapezoidal OR transtrapezoid
- OR "Capitate bone" [MeSH] OR capitate OR hemicapitate OR mediocapitate OR mesocapitate
 OR midcapitate OR pericapitate OR transcapitate
- 391 m. OR "Hamate bone"[MeSH] OR hamate OR hamates OR hemihamate OR mediohamate OR
 392 mesohamate OR midhamate OR perihamate OR transhamate
- n. OR sesamoid OR sesamoids OR sesamoidal
- OR "Finger phalanges" [MeSH] OR finger OR fingers OR phalanx OR phalangeal OR phalanxes
 OR phalanges OR midphalangeal OR transphalangeal
- 396 p. OR ((Joints[MeSH] OR joint OR joints) AND (carpometacarpal OR metacarpophalangeal OR
 397 interphalangeal))
- 398 q. OR ((Ligaments[MeSH] Or ligament OR ligaments) AND (beak OR capitohamate OR 399 capitolunate OR "central slip" OR "central slips" OR "extensor expansion" OR "extensor 400 expansions" OR "extensor hood" OR "expansion hood" OR "extensor retinaculum" OR "deep transverse metacarpal" OR "dorsal intercarpal" OR "lateral band" OR "lateral bands" " OR 401 lunotriquetral OR "lunotriquetral interosseous" OR natatory OR pisohamate OR 402 403 pisometacarpal OR radiocapitate OR radiocarpal OR radiolunate OR radiolunotriquetral OR 404 radioscaphoid OR radioscaphocapitate OR radioscapholunate OR radiotriquetral OR "radial 405 collateral" OR retinacular " OR "ulnar collateral" OR radiopalmar OR "sagittal band" OR 406 "sagittal bands" OR scaphocapitate OR scapholunate OR "scapholunate interosseous" OR 407 scaphotrapezial OR scaphotrapezoid OR scaphotrapeziotrapezoid OR "superficial transverse 408 metacarpal" OR trapeziocapitate OR trapeziotrapezoid OR triquetralcapitate OR 409 triquetralhamate OR triquetrocapitate OR ulnocarpal OR ulnocapitate OR ulnolunate OR 410 ulnotriquetral))
- 411 r. OR "Collateral ligament, ulnar" [MeSH]
- 412 s. OR Testut[tw) OR Kuentz[tw] OR "Space of Poirier" OR "volar plate"

413t. OR Barton[tw] OR Barton's OR Bennett[tw] or Bennett's OR Boxer OR Boxer's OR414Chauffeur[tw] OR Chauffeur's OR Colles[tw] OR Colles' OR Colles's OR diepunch OR "die-415punch" OR FOOSH OR "Jersey finger" OR Mallet OR Rolando[tw] OR Rolando's OR Smith[tw]416OR Smith's)

417

2. Fracture and ligament injury terms

418a. (dislocation OR dislocations OR extraarticular OR "extra-articular" OR fracture[tw] OR419fractures[tw] OR "Fractures, bone" [MeSH] OR "Fractures, cartilage" [MeSH] OR "Fracture420healing" [MeSH] OR injury OR injuries OR injuries[subheading] OR intraarticular OR "intra-421articular" OR rupture OR ruptures OR sprain OR sprains)

422

3. Specific hand fracture/injury terms.

423a. ("wrist fracture" OR "wrist fractures" OR "hand fracture" OR "hand fractures" OR424(carpometacarpal AND dislocation) OR "digital fracture" OR "digital fractures" OR "carpal425fractures" OR "carpal fractures" OR "carpal dislocation" OR "carpal dislocations" OR426"gamekeepers thumb" OR "gamekeeper's thumb" OR ("proximal interphalangeal" AND427dislocation) OR (("radius fracture" OR "radial fracture" OR "radius fractures" OR "radial428fractures") AND distal) OR "skier's injury" OR "skier's thumb" OR "stener's lesion" OR "stener429lesion" OR (stener AND lesion))

430 4. 1 AND 2

431 5. 3 OR 4

APPENDIX 2

RCTs included in the scoping review

Table A. Table of RCTs for interventions for the treatment of scaphoid fractures

Study	Population	Intervention and comparator	Outcomes	Follow up at	Sample	Conclusion
identifier					size	
Scaphoid fract	ures					
(Adolfsson et	Adults (mean age 31,	Percutaneous Acutrak screw	ROM, Grip	16 and 24	53	No statistically significant differences
al., 2001)	range 15-75) with	fixation was compared to	strength, Active	weeks		with regard to the time to union.
Sweden	undisplaced fracture	immobilisation in a below elbow	flexion/extension,			Patients who underwent surgery had a
	of the waist of the	plaster cast for 10 weeks	Radial/ulnar			significantly better range of movement
	scaphoid.		deviation, time to			(ROM), but there were no significant
			union.			differences for grip strength at 16
						weeks.
(Bond et al.,	Adults (mean age 24,	Percutaneous cannulated screw	Grip strength,	1 week and	25	Percutaneous cannulated screw fixation
2001)	range 18-44) with an	fixation was compared to cast	ROM,	then at 2-		of nondisplaced scaphoid fractures
USA	acute nondisplaced	immobilization	Radiographic	week		resulted in faster radiographic union and

	fracture of the		union, Snuffbox	intervals		return to military duty compared with
	scaphoid waist		tenderness,	until union.		cast immobilization.
			complications,	Every 12		
			Patient	weeks up to		
			satisfaction, time	104 weeks		
			to return to			
			military duty			
(Bilic et al.,	Adults (average age	There were three treatment	Pain (VAS),	4, 8, 12, 16,	17	Osteogenic protein-1 resulted in an
2006) Croatia	21, standard	groups: (1) autologous iliac graft,	Movements, Grip	28, 52 weeks		accelerated radiological and clinical
	deviation 5) with	(2) autologous iliac graft and	strength,			repair of scaphoid avascular and
	symptomatic	osteogenic protein-1, and (3)	Radiographic			necrotic proximal pole non-unions.
	scaphoid non-union	allogenic iliac graft	union.			
	with no evidence of					
	progressive healing					
(Braga-Silva	Adults (mean age 31,	Surgery including distal radius	Wrist ROM, Grip	145 weeks	80	Similar functional results were obtained
et al., 2008)	range 17-52) with	vascularised bone grafting	strength,			with the two techniques
Brazil	symptomatic	compared to surgery including	Radiographic			
	scaphoid non-union	non-vascularised iliac crest bone	union			
	of a single wrist	grafting.				

(Buijze et al.,	Adults (mean age	Treatment in a below-elbow cast	Wrist motion,	10 and 24	62	There was a significant difference in the
2014)	37.5, standard	including the thumb was	Grip strength, The	weeks		average extent of union on CT at 10
Netherlands	deviation 16) with	compared to treatment in a	Mayo Modified			weeks favouring treatment with a cast
	acute nondisplaced or	below-elbow cast excluding the	Wrist Score,			excluding the thumb
	minimally displaced	thumb	DASH, Pain (VAS),			
	fracture of the		Radiographic			
	scaphoid waist		union			
(Caporrino et	Adults (mean age	Vascularised bone grafting (VBG)	Union rate,	Every two	27	Although the VBG group attained earlier
al., 2014)	27.7, range 18-56)	using the 1,2 intercompartmental	Functional	weeks until		union, this may not be clinically
Brazil	with lack of scaphoid	suprareticular artery was	outcomes (pain,	bone healing		meaningful, nor justify the greater
	union for 3 months of	compared to distal radius	functional status,	and at		technical difficulty and use of resources
	conservative	nonvascularised bone graft.	ROM, wrist	discharge.		associated with this intervention.
	treatment.		strength)			
(Clay et al.,	Adults (mean age	A forearm gauntlet (Colles') cast,	Radiological	2, 4, 8 24	352	For acute, undisplaced fractures of the
1991)	29.7, range 16-71)	leaving the thumb free was	union, Tolerance	weeks		waist of the scaphoid, the simpler Colles'
UK	with radiologically	compared to a conventional	of casts,			plaster appears to be equally effective.
	proven scaphoid	'scaphoid' plaster incorporating	Functional			
	fractures	the thumb as far as its	recovery			
		interphalangeal joint.				

(Clementson	Adults (median age	Surgical treatment consisted of	DASH, VAS score,	6, 10, 14, 26,	31	Non- and minimally displaced scaphoid
et al., 2015)	30, range 16-63) with	wrist arthroscopy and	ROM, grip	52 weeks		waist fractures are best treated
Sweden	acute scaphoid	percutaneous antegrade screw	strength,	and then		conservatively. Operative treatment
	fracture	fixation compared to	Radiographic (CT	every 52		may provide an improved functional
		conservative treatment consisted	scan)	weeks		outcome in the short term but at the
		of a below-elbow thumb spica				price of a possible increased risk of
		cast until radiological signs of				arthritis in the long term
		union appeared				
(Clementson	Adults (median age	Arthroscopically assisted screw	Time to union	10, 14, 24	35	Screw fixation does not reduce time to
et al., 2015)	30, range 16-63) with	fixation was compared to		and 52		fracture union compared with
Sweden	scaphoid waist	conservative treatment		weeks		conservative treatment
	fracture					
(Dias et al.,	Adults (mean age	Early fixation was compared to	Clinical	2, 8, 12, 26,	88	This study did not demonstrate a clear
2005)	29.5, range 16-61)	non-operative treatment.	assessment: pain,	52 weeks.		overall, benefit of early fixation of acute
UK	with a fracture of the		swelling,			scaphoid fractures.
	waist of the scaphoid		tenderness, ROM,			
			Grip strength,			
			PEM			

(Dias et al.,	Adults (mean age 30,	Operative treatment (open	PRWE, Grip	Seen 416	88	Our study revealed that the outcome of
2008)	standard deviation	reduction and internal fixation	strength, Pinch	weeks after		early fixation is comparable to that of
UK	16-61) with a	through the volar approach using	strength, ROM,	treatment		initial non-operative treatment.
	scaphoid fracture	a Herbert screw or a cannulated	Radiological			
		Whipple screw, with an	union			
		additional Kirschner wire, or two				
		Kirschner wires only) was				
		compared to non-operative				
		treatment (immobilisation of the				
		wrist in a below-elbow cast for				
		eight weeks with the thumb left				
		free).				
(Drac et al.,	Adults (mean age 30)	Palmar percutaneous approach	Flexion,	4, 8, 12	76	We found no advantage to the palmar
2014)	with acute	(surgical) was compared to dorsal	Extension, Radial	weeks		percutaneous approach in the treatment
Czech	nondisplaced or	limited approach (surgical).	deviation, Ulnar			of nondisplaced and minimally displaced
Republic	minimally displaced		deviation, Grip			scaphoid fractures compared to dorsal
	scaphoid waist		strength, Pain,			limited approach.
	fracture		Complaints, DASH			

			score, Patient			
			satisfaction			
(Gaebler et	Adults (age of	Percutaneous screw fixation was	Radiological	8, 12, 16, 26,	41	This study suggests that percutaneous
al., 2002)	participants not	compared to non-operative	union, ROM, Grip	52 weeks.		stabilisation of scaphoid fractures is a
Austria	reported) with acute	treatment.	strength, Pinch			safe and reasonable approach,
	undisplaced scaphoid		grip,			especially in younger patients who want
	fractures		Green/O'Brien			and need to get back to work and sports
			score, Time to			early.
			return to work			
			and sports			
(Gellman et	Adults (age of	Long thumb-spica cast for 6	Radiographs	Every 3-4	51	We recommend an initial period of six
al., 1989) USA	participants not	weeks, followed by application of	(Time to union,	weeks, until		weeks of immobilisation in a long
	reported) with acute	a short thumb-spica cast until	Delayed union,	union.		thumb-spica cast, followed by use of a
	non-displaced	union was compared to short	Non-union)			short thumb-spica cast.
	fractures of the carpal	thumb-spica cast as a sole form				
	scaphoid	of treatment.				
(Goyal et al.,	Adults (mean age	lliac crest bone graft compared to	Residual pain,	Minimum	100	The results of our study show that the
2013)	34.7) with scaphoid	distal radius bone graft in surgery	Complications,	156 weeks		fusion rates and functional results of the
India	non-union	of nonunion of scaphoid fractures	Pinch strength,			two techniques are equivalent.

			Grip strength,			
			ROM. QDASH,			
			Mayo' scoring			
			system, Pain			
			(VAS)			
(Hambidge et	Adults (age of	Plaster immobilisation in 20	Comfort in	24 weeks	146	The authors recommend that a colles'
al., 1995) UK	participants not	degrees of flexion was compared	plaster, ROM,			type cast in slight extension be used for
	reported) with acute	to immobilisation in 20 degrees	Union			immobilization of the acute un-displaced
	scaphoid fracture	of extension.				scaphoid fracture.
(Hannemann	Adults (mean age 41,	Pulsed electromagnetic field	Grip strength,	4,6,9, 12, 24	53	We conclude that stimulation of bone
et al., 2012)	range 16-84) with	treatment compared to placebo	range of active	and 52		growth by PEMF has no additional value
Netherlands	acute scaphoid		extension,	weeks after		in the conservative treatment of acute
	fracture		flexion, radial and	diagnosis of		scaphoid fractures
			ulnar deviation,	the fracture		
			Radiological			
			healing,			
			Tenderness, Pain			

(Hannemann	Adults (mean age 35,	Active PEMF (pulsed	Range of active	6, 9, 12, 24	102	We concluded that the addition of PEMF
et al., 2014)	range 18-77) with	electromagnetic fields) compared	extension,	and 52		bone growth stimulation to the
Netherlands	acute scaphoid	to placebo. All fractures were	flexion, radial and	weeks		conservative treatment of acute
	fracture	treated with immobilisation in a	ulnar deviation,			scaphoid fractures does not accelerate
		forearm cast with the first	Grip strength,			bone healing
		metacarpal and both phalanges	Tenderness in the			
		immobilised	anatomical			
			snuffbox,			
			Radiological			
			healing, Pain			
(Lawton et	Adults (age range 24-	Munster thumb-spica cast was	Forearm	Not	10	A Munster thumb-spica cast may play a
al., 2007)	35) with acute non	compared to a long arm thumb-	pronation and	reported		role in the conservative treatment of
USA	displaced scaphoid	spica cast	supination, elbow			non-displaced scaphoid fractures by
	fracture		ROM.			allowing some elbow motion during the
						long immobilization period.
(Lyons et al.,	Adults (age of	Standard fiberglass resin cast was	Union of fracture,	Not	25	Treatment with a thermoplastic polymer
2017)	participants not	compared to thermoplastic	Patient	reported		based removable splint resulted in
UK	reported) with acute	removable splint	satisfaction,			comparable outcomes and patient
			QDASH			

	non-displaced					satisfaction compared to the use of
	scaphoid fractures					traditional resin casts.
(Mayr et al.,	Adults (mean age 37,	Low intensity, pulsed ultrasound	Not reported.	CT scan	28	The low-intensity, pulsed ultrasound
2000)	standard deviation	with immobilisation was		every 2		therapy is suitable for accelerating the
Germany	14) with fresh, stable	compared to immobilisation only.		weeks		healing of fresh scaphoid fractures
	scaphoid fractures					
(McQueen et	Adults (mean age	Percutaneous fixation with a	ROM, Grip and	8, 12, 26, 52	60	We recommend that all active patients
al., 2008) UK	29.4, range 17-65)	cannulated Acutrak was	pinch strength,	weeks		should be offered percutaneous
	with acute scaphoid	compared to immobilisation in a	Modified			stabilisation for fractures of the waist of
	fracture	cast	Green/O'Brien			the scaphoid.
			functional score,			
			Return to work			
			and sports,			
			Radiological			
			evidence of union			
(Raju and	Adults (mean age 28,	The Herbert screw fixation, the	Scapholunate and	24 weeks	33	The time to union was earliest in the
Kini, 2011)	range 20-48) with	Matti Russe bone grafting, or the	radiolunate			Kohlman modification of vascularised
Singapore	non-union of the	Kohlman modification of	angles, ROM,			muscle pedicle graft procedure, which is
	scaphoid involving		Functional			recommended for patients with old non-

	the proximal pole,	vascularised muscle pedicle graft	outcomes,			union (>1 year) or proximal pole
	waist, and distal pole.	procedure.	Modified			fractures.
			scaphoid			
			outcome scoring			
			system, Hardware			
			failure or any			
			iatrogenic			
			fracture during			
			pedicle dissection			
(Ribak et al.,	Adults (age of	Treatment using a vascularised	Radiographic	Not	86	We conclude that vascularised bone
2010)	participants not	bone graft from the dorsal and	evaluation, Active	reported		grafting yields superior results and is
Brazil	reported) with	distal aspect of the radius was	range of flexion,			more efficient in patients in scaphoid
	scaphoid non-union	compared to treatment with a	extension, radial			nonunion.
		conventional non-vascularised	deviation, ulnar			
		bone graft from the distal radius.	deviation,			
			scaphoid-lunate			
			angle, Pain, Grip			
			strength, Joint			

			mobility, Global			
			outcome score			
(Ricardo,	Adults (mean age	Low-intensity ultrasound was	Pain, Active range	Not	21	Our data analysis suggests that
2006)	26.7, range 17-62)	compared to placebo. The	of motion of the	reported		ultrasound therapy may be beneficial to
Cuba	with fractures of the	placebo units were adjusted to	wrist, carpal			the healing of non-union of the scaphoid
	scaphoid with	give no ultrasound signal output	height index, and			after treatment by vascularised pedicle
	established non-	across the transducer.	scapholunate-			bone graft.
	unions treated with		capitolunate			
	vascularised pedicle		angles,			
	bone graft		Radiographic			
			evidence of			
			union, Time to			
			healed non-union			
(Saeden et al.,	Adults (mean age 33,	Operatively using a Herbert screw	Tenderness,	Not	61	Operative treatment of an acute
2001) Sweden	standard deviation	was compared to conservatively	ROM, strength,	reported		fracture of the scaphoid allows early
	17) with acute	by a short-arm cast	Radiological			return of function and should be
	scaphoid fracture		union, Duration			regarded as an alternative to
	visible at the first		of sick leave,			conservative treatment in patients in
			Symptoms (VAS),			whom immobilisation in a cast for three

	radiological		Grip strength,			months is not acceptable for reasons
	examination.		Range of			related to sports, social life or work.
			flexion/extension			
(Sjolin and	Adults (mean age 27,	Dorsal plaster cast was compared	Radiographs	Not	108	We conclude that patients presenting
Andersen,	range 9-75) with	to supportive bandage	(fractures,	reported		with the clinical picture of a fracture of
1988)	symptoms of a		avulsion), Sick			the carpal scaphoid should be treated as
Denmark	fractured carpal		leave			having a soft-tissue injury if the four
	scaphoid, but without					standard radiographs do not show a
	radiological evidence					fracture. A cast may still be offered to
	of fracture					patients with much pain.
(Vinnars et	Adults (mean age 31,	Immobilization in a below-the-	DASH, PRWE,	520 weeks	83	This study did not demonstrate a true
al., 2008)	standard deviation	elbow scaphoid cast with the	Radiographic,			long-term benefit of internal fixation,
Sweden	12) with an isolated	thumb held in palmar abduction,	Complications			compared with nonoperative treatment.
	scaphoid fracture that	the interphalangeal joint free,				
	was nondisplaced or	and the wrist in neutral or slight				
	minimally displaced	extension for a planned period of				
		six weeks was compared to a				
		standard Herbert screw or a				

cannulated Herbert-Whipple	
stabilisation.	
436	
437	
438	

Table B. Table of RCTs for interventions for the treatment metacarpal fractures

Study	Population	Intervention and comparator	Outcomes	Follow up at	Sample	Conclusion
identifier					size	
Metacarpal frac	ctures					
(Anand et al.,	Adults (mean age 24,	Immediate mobilisation was	Cosmetic	1, 3, 6, and	60	The results of our study would suggest
1999)	range 11-48) with	compared to attempted	satisfaction,	12 weeks		that these fractures could be treated
USA	Boxer's fracture	reduction and splint	Return to pre-			with immediate mobilization with good
	(fracture of the neck	immobilization.	injury status,			functional results. We feel that
	of the fifth		Radiological			reduction and splintage seem
	metacarpal)		union, Dorsal and			unnecessary for these fractures
			ulnar angulation,			

			Extensor lag, Grip			
			strength, ROM.			
(Braakman et	Adults (mean age 26,	Functional tape for four weeks	Power grip, static	1, 4, 12, and	50	We advise treating fractures of the 5th
al., 1998)	range 14-44) with	was compared to ulnar gutter	pulling strength	24 weeks		metacarpal with a functional tape rather
Netherlands	fracture of the 5th	plaster-cast for four weeks.	of little finger,			than with cast immobilisation
	metacarpal.		maximum torque			
			force, fracture			
			angulation, power			
			grip,			
			Radiographic			
			union, Residual			
			symptoms at 6			
			months			
(Cepni et al.,	Adults (mean age 28,	Operative treatment was	Palmar	4 and 7	24	We recommend antegrade
2016) Turkey	range 18-46) with	compared to splinting (U-shaped	angulation, ROM,	weeks		intramedullary K-wire fixation as a
	an acute (0–15 days),	ulnar gutter)	Metacarpal			reliable method, which minimizes the
	closed, and simple		shortening,			functional loss and allows for early
	fracture of the fifth					return to daily activities in office
	metacarpal neck					

			QDASH, Return to			workers who sustained a fracture of the
			work, Radiological			fifth metacarpal neck.
			union			
(Galal and	Adults (mean age 32,	Surgical treatment using	Total Active ROM,	2, 6, 12, and	80	Both techniques are equally safe and
Safwat, 2017)	standard deviation 6)	transverse pinning was compared	Total Active	24 weeks		effective. The only difference was
Egypt	with a closed 5th	to surgical treatment using	Range of Flexion,			shorter operative time & less incidence
	metacarpal fracture	intramedullary pinning.	QDASH,			of complications in transverse pinning
	with angulation more		Radiological			group.
	than 30		union			
(Garramone,	Adults (age of	Volar splint was compared to	Grip strength,	8-10 weeks	33	Volar splinting was shown to provide
1996)	participants not	dorsal hood short arm cast	ROM, Subjective			significantly increased grip strength
USA	reported) with small		patient			along with improved range of motion,
	finger metacarpal		satisfaction			and decreased complaints of post
	neck fractures.					treatment pain
(Gulke et al.,	Adults (mean age 32,	A home exercise (HE) program	ROM, Grip	2, 6, 12	60	Study results show that both HE
2017)	range 18-60) with	was compared to a traditional	strength, DASH	weeks		program and traditional PT are effective
Germany	postoperative	physical therapy (PT) program.				in the postoperative management of
	management of					metacarpal fractures
	metacarpal fractures					

			- .	4 4 4 2	105	
(Hansen and	Adults (age of	Ulnar plaster-of-Paris from	Fracture	4, and 12	105	We recommend the functional brace for
Hansen,	participants not	proximal interphalangeal joint to	tenderness, ROM,	weeks		treatment of fractures of the neck of the
1998)	reported) with	the ring and little finger was	Patient			ring and little metacarpals.
Denmark	fractures of the necks	compared to a functional brace	satisfaction			
	of the ring or little	made of Hexalite and to an elastic				
	metacarpals.	bandage alone.				
(Harding et	Adults (mean age 27,	Treatment with a moulded	ROM,	3 weeks	73	Patients treated with the metacarpal
al., 2001)	range 12-57) with	metacarpal brace was compared	Tenderness,			brace had significantly less pain than
UK	fractures of the neck	to treatment with neighbour	Overall			those treated with neighbour strapping,
	of the little finger	strapping.	satisfaction, Back			and this facilitated an early return to
	metacarpal		to work			work.
(Hofmeister	Adults (age of	Short-arm cast with volar	Radiographic	1, 4 and 12	81	Advantages of the MCP-ext cast include
et al., 2008)	participants not	outriggers (SAC-VOR) was	union, cast	weeks		quicker application and, to a much lesser
USA	reported) with	compared to a short-arm cast	durability,			degree, better tolerability, range of
	isolated fracture of	extended to the proximal	complications.			motion, and final grip strength
	the fifth metacarpal	interphalangeal joint with a 3-	DASH. ROM, grip			
	neck.	point mold (MCP-ext).	strengths			

(Kim and Kim,	Adults (mean age 27,	An antegrade intramedullary K-	DASH, Pain (VAS),	3, 24 weeks	46	Antegrade intramedullary pinning has
2015)	range 18-53) with a	wire was compared to a	Radiographic			some clinical advantages during the
South Korea	surgical indication for	percutaneous retrograde	union, ROM			early recovery period, but the
	a fifth metacarpal	intramedullary K-wire				advantages are not evident at 6 months
	neck fracture					postoperatively.
(Konradsen et	Adults (age of	Immobilization by a plaster cast	Pain, Cast	1, 3, and 12	100	Functional casting reduced volar
al., 1990)	participants not	(immobilizing the wrist and the	inconvenience,	weeks.		angulation by two thirds for metacarpal
Denmark	reported) with a	joints of the involved digits) was	Time to return to			shaft fractures and by one third for
	shaft or neck fracture	compared to immobilisation by a	work, Rotation,			metacarpal neck fractures when
	of the second through	functional cast (allowing the wrist	Ulnar/radial			compared with plaster cast
	the fifth meta-carpal	and the digits a free range of	angulation, ROM,			immobilization. Sick leave was reduced
	bone	motion)	Grip strength,			by two thirds after functional casting
			Radiographic			compared with the plaster cast group.
			union			
(Kuokkanen	Adults (median age	Closed reduction and splinting	ROM, Grip force,	4, and 12	29	Subcapital fractures of the fifth
et al., 1999)	28, range 11-68) with	was compared to functional	Hand grip	weeks		metacarpal bone can successfully be
Finland	subcapital fractures	treatment	strength			treated without closed reduction and
	of the fifth					splinting.
	metacarpal bone					

(McMahon et	Adults (mean age 31)	Compression glove and early	Hand volume,	Not	42	Use of a compression glove relieved pain
al., 1994)	with a unilateral fresh	mobilization was compared to	Finger	reported		and avoided the loss of function
UK	closed stable fracture	immobilization in a plaster splint.	circumference,			imposed by splintage and was
	of the shaft of a single		ROM, Loss of			associated with a greater range of
	finger metacarpal.		flexion, Pain and			movement during the second and third
			functional			weeks.
			limitations.			
(Rafique et	Adults (age of	Percutaneous K wires were	Infection rate,	Not	60	Percutaneous K wires had significantly
al., 2006)	participants not	compared to a buried placement	Time to remove K	reported		greater infection rate than wires which
Pakistan	reported) with	of K wires.	wires			were buried deep to skin.
	isolated hand					
	fractures (of					
	metacarpals and					
	phalanges). Both					
	open and closed					
	fractures were					
	included.					

(Randall et	Adults (mean age 29,	Traction and palmar/dorsal glide	Active ROM,	Three	18	The joint mobilization treatment given
al., 1992)	range 19-46)	techniques were used to perform	Torque ROM,	appointmen		to the subjects in this study resulted in a
USA	following treatment	the joint mobilization treatment	Excursion.	ts over a 1		significant gain in AROM and decrease in
	of a metacarpal	and they were compared to no		week period		joint stiffness within a treatment session
	fracture and whose	treatment.				when compared to the control group.
	hand had been					
	immobilized for least					
	2 weeks.					
(Sletten et al.,	Adults (mean age 27,	Operative treatment (closed	QDASH, Pain	1, 6, 12 and	85	We recommend conservative treatment
2015) Norway	range 18-68) with	reduction and internal fixation)	(VAS), Patient	52 week		with early mobilization for fractures up
	little finger	was compared to conservative	satisfaction, QoL			to 45–50° palmar angulation in the
	metacarpal neck	treatment (no attempt of	EQ-5D-3L, Active			lateral view.
	fractures.	reduction, plaster-of-Paris for 1	flexion/extension,			
		week, buddy strapping and active	Flexion/extension			
		exercises)	deficit, TAM, Grip			
			strength			
(Sorensen et	Adults (age of	A functional brace (the Galveston	Complications,	1, 4 and 12	113	We found that the benefits did not
al., 1993)	participants not	metacarpal brace) was compared	Fracture	weeks		outweigh the risks of the functional
Denmark	reported) with	to a dorsal/ulnar plaster cast	angulation,			fracture bracing, and we cannot

	fractures of the		Satisfaction with			recommend the tested version of the
	second through the		bandage			Galveston metacarpal brace.
	fifth metacarpal					
	bones					
(Statius	Adults (mean age 29,	Treatment with an ulnar gutter	ROM, Patient	6 and 12	40	A pressure bandage for 1 week and
Muller et al.,	range 15-74) with a	plaster cast for a period of	satisfaction, Pain	weeks		immediate mobilization is a sufficient
2003)	fracture of the	3weeks followed by mobilization	perception,			alternative treatment of a boxer's
Netherlands	subcapital 5 th	was compared to pressure	Return to work			fracture, if this is not angulated greater
	metacarpal	bandage for 1 week and	and hobby, Need			than 70° and not rotated.
		immediate mobilization within	for			
		limits imposed by pain	physiotherapy.			
(Strub et al.,	Adults (mean age 30,	Closed reduction and	Flexion /	2, 6, 12, 24,	40	We conclude that intramedullary
2010)	range 20-70) with	intramedullary splinting was	extension of the	and 52		splinting for displaced fractures of the
Switzerland	acute, closed	compared to conservative	MCP joint, Grip	weeks		little finger metacarpal neck offers an
	fractures of the little	treatment without reduction	strength,			aesthetic, but not a functional
	finger metacarpal		Radiological			advantage.
	neck with a palmar		union, Pain (VAS),			
	displacement of		Patient			
			satisfaction, Time			

	between 30o and		off work,			
	70o.		Complications			
(van Aaken et	Adults (mean age 29,	Soft wrap and buddy taping (SW)	Pain (VAS),	1, 4 and 16	68	This study supports the use of soft wrap
al., 2016)	standard deviation	was compared to reduction and	Patient	weeks		and buddy taping for treatment of
Switzerland	12) with fifth	cast (RC)	Satisfaction,			boxer's fracture with palmar angulation
	metacarpal (MC) neck		ROM, Power grip,			=70 degrees and no rotational</td
	fractures (Boxer's		Radiographic			deformity.
	fracture)		union			
(Winter et al.,	Adults (mean age 32,	Transverse pinning (operative)	Pain (VAS),	Evaluated	36	Intramedullary pinning gave better
2007) France	range 18-65) with	was compared to intramedullary	Patient	clinically six		functional outcomes than transverse
	fractures of the little	pinning (operative). A palmar	satisfaction,	times after		pinning, although the former was more
	finger metacarpal	splint was applied for 1 week.	ROM, Grip	surgery, up		technically demanding
	neck, or ''Boxer's''	Patients began physiotherapy	strength,	to the 12		
	fractures.	three times per week for 30 days	Radiographic	weeks		
			union,			
			Complications			
(Xia, 2015)	Adults (mean age	Mini-plate fixation was compared	TAFS score for	Not	76	The mini-plate fixation for metacarpal
China	27.5, range 18-50)	to Kirschner wire	hand function,	reported		and phalangeal fractures can obviously
			total active			

	with metacarpal or		flexion degree,			improve hand function, shorten length
	phalangeal fracture		length of hospital			of hospital stay and healing time
			stay, delayed			
			healing of bone,			
			incidence of			
			infection, healing			
			time			
(Zyluk and	Adults (mean age 34,	Operative (by fixation with K-	Active ROM, Grip	8 and 24	74	The results of this study indicate the
Budzynski,	range 16-75) with	wires) treatment was compared	strength,	weeks		equal effectiveness of both the
2009) Poland	isolated, displaced	to conservative treatment.	Radiological			operative by K-wiring, and conservative
	and extra-articular		union, DASH			treatment of fractures of the
	metacarpal fractures.					metacarpals.

Table C. Table of RCTs for interventions for the treatment of mallet finger

Study	Population	Intervention and comparator	Outcomes	Follow up at	Sample	Conclusion
identifier					size	
Mallet finger						
(Auchincloss,	Adults (mean age 41,	Percutaneous fixation of the	Subjective results	56, 72 weeks	50	After a mallet finger injury treated
1982)	range 17-82) with	distal interphalangeal joint using	(treatment			within two weeks by either method few
UK	mallet finger. Both	a K wire was compared to a Pryor	acceptable good			patients have significant persistent
	open and closed	and Howard splint for 6 weeks	result, normal			disability. Both groups of patients were
	injuries were	without radiographic control.	function),			generally satisfied with their treatment
	included.		Objective results			and its outcome.

			(Good, improved,			
			(Good, Improved,			
			unchanged), ROM			
(Batibay et	Adults (mean age 36,	The new suture anchor technique	ROM, Extension	12, 24, 52	29	Our study suggests that the new suture
al., 2017)	range 17-61) with	(operative) compared to	lag/deficit DIP	weeks		anchor technique is not superior to
Turkey	mallet finger	conservative management	flexion, VAS			conservative treatment
		(aluminium orthotic device)	score, Return to			
			work, Radiologic			
			union, DIP joint			
			degeneration			
(Gruber et al.,	Adults (mean age 50,	A night splint for an additional	DASH	Not	51	Supplemental night splinting does not
2014)	range 24-78) with	month after 6 to 8 weeks of		reported		improve the outcome of mallet finger.
USA	mallet finger with or	continuous splinting was				
	without fracture and	compared to no night splint.				
	treatment with a					
	period of continuous					
	splint or cast					
	immobilization for 6					
	weeks or greater					

(Kinninmonth	Adults (age of	Perforated splint and told to keep	Skin status,	2, 6, 52	54	The perforated mallet finger splint can
and Holburn,	participants not	it on without restricting their	Lag,	weeks		produce consistently good results even
1986)	reported) with mallet	activities compared to standard	Ability to change			in those patients who would not tolerate
UK	finger	'stack' splint with instructions on	splint			a conventional splint.
		daily removal for hygiene				
		purpose.				
(O'Brien and	Adults (mean age 38,	A prefabricated stack splint	ROM,	1, 6, 8, 10,	64	In this study, no extensor lag difference
Bailey, 2011)	range 11-86) with	(control), was compared to a	Compliance,	12, 20 weeks		was found between the 3 splint types,
Australia	mallet finger	dorsal padded aluminum splint,	Treatment failure			but custom-made thermoplastic splints
		and a custom-made	and			were significantly less likely to result in
		thermoplastic thimble splint. All	complications,			treatment failure.
		were worn for 8 weeks	Pain (VAS),			
		continuously, with a 4 week	Patient			
		graduated withdrawal and	satisfaction			
		exercise program.				
(Pike et al.,	Adults (mean age 43)	3 splint types were compared:	Clinical lag,	7, 12, 24	87	No lag difference was demonstrated
2010) Canada	with acute mallet	volar padded aluminum splint,	Radiographic lag,	weeks.		between custom thermoplastic, dorsal
	finger	dorsal padded aluminum splint,	Complications,			padded aluminum splint, and volar
		and custom thermoplastic. Splints	MHQ scores			

		were continued for 6 weeks full-				padded aluminum splinting for Doyle I
		time.				acute mallet fingers.
(Saito and	Adults (mean age 42,	The 2-step immobilization group	Not reported.	3 and 16	44	Our study thus suggested that the initial
Kihara, 2016)	range 18-72) with	underwent initial immobilization		week		immobilization involved in new 2-step
Japan	mallet finger.	using an orthosis, followed by the				orthosis and is thus a good
		use of a second orthosis. This was				immobilization technique.
		compared to the figure of eight-				
		type orthosis (control) group,				
		which underwent conventional				
		immobilization using an orthosis.				
(Tocco et al.,	Adults (mean age 45,	Cast immobilization of closed	Edema, Hand	Once during	57	Cast immobilization seems to be slightly
2013)	standard deviation	mallet fingers using Quickcast	function,	3-4, 6-8, 7-9,		more effective than the traditional
Italy	12) with mallet finger	(QC) was compared to a	Subjective	8-10, 10-12,		approach probably for its greater
		removable, lever-type	evaluation of the	12-14, 24-28		capacity to reduce edema.
		thermoplastic orthosis.	orthosis,	and weeks		
			Satisfaction with			
			outcome, Grip			
			strength			

(Warren et	Adults (mean age	Stack splint was compared to	Extension loss,	Regularly	116	The Stack splint is more acceptable to
al., 1988)	46.1, range 10-77)	Abouna splint	Success of	until 10		the patient than the Abouna splint.
UK	with mallet finger		treatment,	weeks		
			Patient			
			satisfaction			
(Zhou et al.,	Adults (mean age:	Percutaneous pinning with	Total active	Regularly	72	Percutaneous pinning with plaster splin
2008) China	27.5, standard	plaster splint was compared to	movement (TAM)	until 104		is simple in operation and has smaller
	deviation 9.5) with	open reduction and pulling out	functional	weeks		incisions and fewer complications
	mallet finger	wire	assessment,			compared with open reduction and
			operation time,			pulling out wires.
			flap necrosis and			
			infection, skin			
			ulcer, bone union,			
			pseudoarthrosis			

Table D. Table of RCTs for interventions for the treatment of proximal phalangeal fracture

Study	Population	Intervention and comparator	Outcomes	Follow up at	Sample	Conclusion
identifier					size	
Proximal phala	ingeal fracture					
(Abubeih et	Adults (mean age 31,	An extensor tendon splitting	QDASH, Total	Not	40	Meticulous surgical dissection,
al., 2016)	range 14-56) with	approach fixed with a nonlocking	active ROM, Grip	reported		anatomical closure of layers, and early
Egypt	extra-articular	titanium miniplates and screws	strength			active mobilization are the keys to
	proximal phalangeal	was compared to an extensor				success in fixation of phalangeal
	fractures.	tendon sparing approach				fractures, regardless of the approach
						chosen.
(Franz et al.,	Adults (mean age 49,	Treatment using a functional	Clinical and	1, 2, 4, 6,	66	The clinical and radiological results
2012)	range 16-93) with	forearm cast was compared to	radiographic	and 12		achieved with the Lucerne cast are
Switzerland	extra-Articular	treatment with LuCa	assessments,	weeks		comparable to those of established
	Fractures of the		ROM			treatment.
	Proximal Phalanges of					
	the Fingers					

(Horton et al.,	Adults (mean age 26,	Closed reduction and Kirschner	Pain (VAS),	12, 24 and	32	We feel that surgeons treating displaced
2003)	range 14-79) with an	wire group was compared to	Functional	52 weeks		spiral and long oblique fractures of the
UK	isolated spiral or long	open reduction and lag screw	recovery, Tip-			proximal phalanx should favour the
	oblique fracture of		palm distance,			method with which they are most
	the proximal phalanx		loss of			familiar and competent, or the
			extension/flexion			technique that utilizes the least health
			grip strength,			care resources.
			Radiographic			
			union, Failure of			
			fixation			
Kappos et al.,	Adults (age of	Open reduction and internal	ROM. DASH,	6 and 24	42	At 6 weeks there was a trend favouring
016)	participants not	fixation with a plate and screws	ability to work,	weeks		the adhesion barrier that disappeared at
witzerland	reported) with an	via a dorsal approach with	Need for			6 months. Overall the results do not
	isolated, closed	adhesive barrier was compared	secondary			support the use of this device
	proximal phalangeal	to no adhesion barrier.	surgery.			
	fracture needing					
	plate osteosynthesis					

(Miller et al.,	Adults (mean age 34,	6 weeks of synergistic wrist and	Pain, Difficulty	1, 6 and 12	66	Constrained and unconstrained
2016)	standard deviation	finger exercises with the	with specific and	weeks.		exercises has similar effects after open
Australia	11) following 1 week	metacarpophalangeal joint	usual hand			reduction and internal fixation of
	of open reduction	constrained were compared to	activity			proximal phalangeal fracture.
	and internal fixation	finger exercises with the				
	of proximal	metacarpophalangeal joint				
	phalangeal fractures	unconstrained, as part of a				
		comprehensive rehabilitation				
		program				
(Sourmelis et	Adults (age of	Functional treatment was	Fracture union	4 and 6	40	We conclude that functional treatment
al., 1995)	participants not	compared to static splinting		weeks		is a safe method for the conservative
Greece	reported) with					treatment of the proximal phalangeal
	proximal phalangeal					fractures
	fracture					
ahle F Table	of RCTs for interventio	ns for the treatment PIP joint inju	iries			
Study	Population	Intervention and comparator	Outcomes	Follow up at	Sample	Conclusion
					size	

Fracture/disloc	ation of PIP joint					
(Arora et al.,	Adults (age of	Dorsal block splinting of the PIP	Pain, Radiological	Not	65	Early active motion after dorsolateral
2004) Austria	participants not	joint following reduction with	(looking for	reported		dislocation of the PIP joint produces
	reported) with	daily exercises was compared to	arthritis and bony			significantly superior results regarding
	isolated, acute, closed	a closed reduction and	healing), Active			the active range of motion and pinch
	dorsolateral	immobilisation with a short-arm	ROM, Pinch			power than static splinting.
	dislocation of the PIP	cast including both	power,			
	joint	interphalangeal joints for 4 weeks	Circumference of			
			the finger,			
			Stability of the			
			collateral			
			ligament			
(Boisgontier	Adults (mean age 36,	The techniques of both active	ROM	Not	20	These findings highlighted the
et al., 2009)	standard deviation	range of motion (AROM) and of		reported		superimposed technique as an effective
France	12) with sprain of	NMES superimposed				method, which could be integrated in
	proximal	(superimposed technique [ST]:				rehabilitation protocols for recovering
	interphalangeal joint	application of electrical stimulus				the proximal interphalangeal joint range
		during a voluntary muscle action)				of motion following sprain
		compared to active range of				

		motion (AROM) treatment on its				
		own				
(Norregaard	Adults (mean age 24,	3 weeks of immobilization with a	Pain, Thickened	24 and 160	112	We concluded that comfort of the
et al., 1987)	standard deviation	foam-rubber-covered aluminum	joint,	weeks		patient and the economic advantages of
Denmark	11) with	splint applied to the volar surface	Flexion/extension			early motion are obvious.
	hyperextension	with the injured joint flexed was	defect, Swan-			
	trauma to the PIP	compared to treatment with	neck or Button-			
	joints of any of the	analgesics and no immobilization.	hole deformity,			
	four ulnar fingers	They were advised to start active	Volar-plate			
		movements a few days after the	tenderness,			
		trauma.	Stiffness and			
			coldness			
(Pedersen et	Adults (mean age 37,	Double finger bandage was	Clinical	2 and 24	40	The two methods were equally good as
al., 1995)	range 18-79) with	compared to a Carstam splint	examination	weeks.		treatment for volar plate injuries to the
Denmark	dislocation of the PIP		according to			PIP-joint. The advantage of DFB may be
	joint (volar plate		Benke and			a quicker return to full ROM.
	injuries)		Stableforth, ROM			

	(Thomsen et	Adults (mean age 37,	Treatment with an aluminium	ROM, Clinical	2 and 24	40	We find that type 1 hyperextension
	al., 1995)	range 18-79) with	splint for 2 weeks was compared	(joint stiffness,	weeks.		injuries to the PIP joint are well-treated
	Denmark	type I hyperextension	to treatment conservatively by an	hyperextension).			with an aluminium splint or with DFB for
		injuries to PIP joint,	elastic double-finger bandage for	Satisfaction with			2 weeks.
		involving avulsion of	2 weeks	treatment, Return			
		the volar plate or a		to work.			
		minor avulsion					
		fracture					
)							
<u>.</u>							
5							
Ļ							
)							
5							
_							
,							

Table F. Table of RCTs for interventions for the treatment of rupture of UCL

Study	Population	Intervention and comparator	Outcomes	Follow up at	Sample	Conclusion
identifier					size	
Rupture of UCL						
(Moineau and	Adults (mean age 43,	In the superimposed electrical	Not reported.	Not	8	Superimposing electrical stimulation to
Boisgontier,	standard deviation	stimulation session, they		reported		voluntary contractions is an efficient
2014) France	12) with pre-stiff	performed 20 min of				technique to improve active range of
	thumbs after	percutaneous neuromuscular	cutaneous neuromuscular			motion of the pre-stiff
	operative repair for	electrical stimulations which				metacarpophalangeal joint of the thumb
	rupture of the ulnar	were superimposed to voluntary				
	collateral ligament	flexion. In the voluntary				
		contraction session, they				
		performed 20 min of repeated				

		active flexions of the impaired				
		metacarpophalangeal joint.				
Rocchi et al.,	Adults (mean age 39,	Patients received modified spica	ROM, Pinch	Weekly in	30	Surgical repair, combined with active
2014) Italy	range 16-64) with an	splint with freedom of motion at	strength,	the first 4		metacarpophalangeal motion allowed
	acute tear of the UCL	the MCP joint, but prevention of	Stability, Time off	weeks, and		by the new functional splint, was
	(0-7 days)	the radial and ulnar joint	work,	then 8, 24		effective, safe and well tolerated.
		deviation. This was compared to	Physiotherapy,	and 52		
		the operated thumb being	Complications	weeks.		
		immobilised for a month using a				
		traditional spica splint.				
Sollerman et	Adults (mean age 32,	Immobilization in a plaster cast	Clinical	60 weeks	63	We conclude that immobilization of the
l., 1991)	range 11-62) with	was compared to a functional	examination,			thumb after a ligamentous injury with a
weden	fresh rupture of the	splint	Stability tests,			movable splint is strongly preferred by
	ulnar collateral		ROM,			the patients and that the functional
	ligament of the MCP		Pinch grip test,			results of this technique are equal to
	joint of the thumb.		Comfort of the			plaster cast immobilization after both
			bandage, Length			surgical and nonsurgical treatment.
			of sick leave.			

473								
474								
475								
476								
477								
478								
479								
480								
481								
482								
483	Table G. Tabl	e of RCTs for the inte	rventions for treatment of distal ph	nalangeal fractures				
	Study	Population	Intervention and comparator	Outcomes	Follow up at	Sample	Conclusion	
	identifier					size		
	Distal phalan	geal fractures (open)						

(Sloan et al.,	Adults (mean age 37,	Short or long courses of	Infection rate	1 week	85	Three different antibiotic regimes were
1987)	standard deviation	antibiotics compared to no				compared, with no difference in the
UK	16) with open	antibiotics.				infection rate.
	fractures of the distal					
	phalanges of less than					
	6 hours duration					
	treated by					
	conventional surgery.					
(Stevenson et	Adults (range 16-88)	Prophylactic flucloxacillin	Infection rate	1, 2, and 8	193	It is concluded that the addition of
al., 2003)	with open fractures	compared to placebo (in addition	(superficial, deep)	weeks.		prophylactic flucloxacillin to thorough
UK	of the distal	to meticulous wound toilet)				wound toilet and careful soft-tissue
	phalanges of less than					repair of open fracture of the distal
	12 hours old.					phalanx confers no benefit

Table H. Table of RCTs for interventions for the treatment of closed bone fractures

Study	Population	Intervention and comparator	Outcomes	Follow up at	Sample	Conclusion
identifier					size	
Closed bone fr	actures					
(Chang et al.,	Adults (mean age 33,	Low level laser therapy (LLLT) for	Pain (VAS),	2 weeks	50	LLLT can relieve pain and improve the
2014)	standard deviation 8)	the healing of CBF five times per	Functional			healing process of CBF in the human
Taiwan	with closed bone	week for 2 weeks compared to	disability,			wrist and hand.
	fracture (CBF) of wrist	sham laser treatment	QDASH,			
	and hand.		Grip strength,			

	The fracture was in	Radiographic	
	the phalanges, or the	union	
	metacarpal, carpal,		
	distal ulna, or distal		
	radial bones. The		
	patients had not been		
	treated.		
496			
497			
498			
499			
500			
501			
502			
503			
504			

- 505
- 506
- 507 References
- 508
- 509 Abubeih H, Saleh W, Thabet M, Ibrahim A-K. Extensor tendon splitting versus extensor tendon sparing approach for miniplate fixation of extraarticular proximal
- 510 phalangeal fractures. Current orthopaedic practice. 2016, 27: 623-32.
- 511 Adolfsson L, Lindau T, Arner M. Acutrak screw fixation versus cast immobilisation for undisplaced scaphoid waist fractures. Journal of hand surgery (Edinburgh,
- 512 Scotland). 2001, 26: 192-5.
- 513 Anand N, Tannoury T, Mey S, Weinstein R. Boxer's fracture: A prospective randomized study comparing immediate mobilization to immobilization. American
- 514 academy of orthopaedic surgeons annual meeting; 1999 feb 4-8; anaheim (CA) 1999.
- 515 Arora R, Lutz M, Fritz D, Zimmermann R, Gabl M, Pechlaner S. Dorsolateral dislocation of the proximal interphalangeal joint: Closed reduction and early active motion
- 516 or static splinting; a retrospective study. Archives of orthopaedic and trauma surgery. 2004, 124: 486-8.
- 517 Auchincloss JM. Mallet-finger injuries: A prospective, controlled trial of internal and external splintage. Hand. 1982, 14: 168-73.
- 518 Batibay SG, Akgul T, Bayram S, Ayik O, Durmaz H. Conservative management equally effective to new suture anchor technique for acute mallet finger deformity: A
- 519 prospective randomized clinical trial. Journal of hand therapy : official journal of the American Society of Hand Therapists. 2017.
- 520 Bilic R, Simic P, Jelic M et al. Osteogenic protein-1 (bmp-7) accelerates healing of scaphoid non-union with proximal pole sclerosis. International orthopaedics. 2006,
- 521 30: 128-34.

- 522 Boisgontier M, Vuillerme N, Thomas D, Pinsault N, Emprin M, Caillat-Miousse JL. Effects of neuromuscular electrical stimulation on the range of motion recovery in
- hand proximal interphalangeal sprain. Science and Sports. 2009, 24: 192-5.
- 524 Bond CD, Shin AY, McBride MT, Dao KD. Percutaneous screw fixation or cast immobilization for nondisplaced scaphoid fractures. J Bone Joint Surg Am. 2001, 83-a:
- 525 483-8.
- 526 Braakman M, Oderwald EE, Haentjens MH. Functional taping of fractures of the 5th metacarpal results in a quicker recovery. Injury. 1998, 29: 5-9.
- 527 Braga-Silva J, Peruchi FM, Moschen GM, Gehlen D, Padoin AV. A comparison of the use of distal radius vascularised bone graft and non-vascularised iliac crest bone
- 528 graft in the treatment of non-union of scaphoid fractures. J Hand Surg Eur Vol. 2008, 33: 636-40.
- 529 Buijze GA, Goslings JC, Rhemrev SJ et al. Cast immobilization with and without immobilization of the thumb for nondisplaced and minimally displaced scaphoid waist
- fractures: A multicenter, randomized, controlled trial. The Journal of hand surgery. 2014, 39: 621-7.
- 531 Caporrino FA, Dos Santos JB, Penteado FT, de Moraes VY, Belloti JC, Faloppa F. Dorsal vascularized grafting for scaphoid nonunion: A comparison of two surgical
- techniques. Journal of orthopaedic trauma. 2014, 28: e44-8.
- 533 Cepni SK, Aykut S, Bekmezci T, Kilic A. A minimally invasive fixation technique for selected patients with fifth metacarpal neck fracture. Injury. 2016, 47: 1270-5.
- 534 Chang W, Wu J, Wang H, Jiang J. Therapeutic outcomes of low-level laser therapy for closed bone fracture in the human wrist and hand. Photomedicine and laser
- 535 surgery. 2014, 32: 212-8.
- 536 Clay NR, Dias JJ, Costigan PS, Gregg PJ, Barton NJ. Need the thumb be immobilised in scaphoid fractures? A randomised prospective trial. The Journal of bone and
- 537 joint surgery British volume. 1991, 73: 828-32.
- 538 Clementson M, Jorgsholm P, Besjakov J, Bjorkman A, Thomsen N. Union of scaphoid waist fractures assessed by ct scan. Journal of wrist surgery. 2015, 4: 49-55.

- 539 Clementson M, Jorgsholm P, Besjakov J, Thomsen N, Bjorkman A. Conservative treatment versus arthroscopic-assisted screw fixation of scaphoid waist fractures--a
- randomized trial with minimum 4-year follow-up. The Journal of hand surgery. 2015, 40: 1341-8.
- 541 Dias JJ, Dhukaram V, Abhinav A, Bhowal B, Wildin CJ. Clinical and radiological outcome of cast immobilisation versus surgical treatment of acute scaphoid fractures
- at a mean follow-up of 93 months. The Journal of bone and joint surgery British volume. 2008, 90: 899-905.
- 543 Dias JJ, Wildin CJ, Bhowal B, Thompson JR. Should acute scaphoid fractures be fixed? A randomized controlled trial. J Bone Joint Surg Am. 2005, 87: 2160-8.
- 544 Drac P, Cizmar I, Manak P et al. Comparison of the results and complications of palmar and dorsal miniinvasive approaches in the surgery of scaphoid fractures. A
- 545 prospective randomized study. Biomedical papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia. 2014, 158: 277-81.
- 546 Franz T, von Wartburg U, Schibli-Beer S et al. Extra-articular fractures of the proximal phalanges of the fingers: A comparison of 2 methods of functional, conservative
- treatment. The Journal of hand surgery. 2012, 37: 889-98.
- 548 Gaebler C, McQueen M, Vecsei V. Percutaneous screw fixation versus conservative treatment in undisplaced scaphoid fractures. European journal of trauma. 2002,
- 549 28:98.
- 550 Galal S, Safwat W. Transverse pinning versus intramedullary pinning in fifth metacarpal's neck fractures: A randomized controlled study with patient-reported
- 551 outcome. Journal of clinical orthopaedics and trauma. 2017, 8: 339-43.
- 552 Garramone J. A functional analysis of short arm cast vs volar splint immobilization in the treatment of small finger metacarpal neck fractures. Orthopaedic
- 553 transactions. 1996, 20.
- 554 Gellman H, Caputo RJ, Carter V, Aboulafia A, McKay M. Comparison of short and long thumb-spica casts for non-displaced fractures of the carpal scaphoid. J Bone 555 Joint Surg Am. 1989, 71: 354-7.

556 Goyal T, Sankineani SR, Tripathy SK. Local distal radius bone graft versus iliac crest bone graft for scaphoid nonunion: A comparative study. Musculoskeletal surgery.

557 2013, 97: 109-14.

- 558 Gruber JS, Bot AG, Ring D. A prospective randomized controlled trial comparing night splinting with no splinting after treatment of mallet finger. Hand (New York,
- 559 NY). 2014, 9: 145-50.
- 560 Gulke J, Leopold B, Grozinger D, Drews B, Paschke S, Wachter NJ. Postoperative treatment of metacarpal fractures-classical physical therapy compared with a home
- exercise program. Journal of hand therapy : official journal of the American Society of Hand Therapists. 2017.
- 562 Hambidge J, Davis T, Schranz P, Compson J, Barton N. Which position for the wrist when immobilising scaphoid fractures. Journal of bone and joint surgery british
- 563 volume. 1995, 77 Suppl 1: 12.
- 564 Hannemann PF, Gottgens KW, van Wely BJ et al. The clinical and radiological outcome of pulsed electromagnetic field treatment for acute scaphoid fractures: A
- randomised double-blind placebo-controlled multicentre trial. The Journal of bone and joint surgery British volume. 2012, 94: 1403-8.
- 566 Hannemann PF, van Wezenbeek MR, Kolkman KA et al. Ct scan-evaluated outcome of pulsed electromagnetic fields in the treatment of acute scaphoid fractures: A
- randomised, multicentre, double-blind, placebo-controlled trial. The bone & joint journal. 2014, 96-b: 1070-6.
- 568 Hansen PB, Hansen TB. The treatment of fractures of the ring and little metacarpal necks. A prospective randomized study of three different types of treatment.
- 569 Journal of hand surgery (Edinburgh, Scotland). 1998, 23: 245-7.
- 570 Harding IJ, Parry D, Barrington RL. The use of a moulded metacarpal brace versus neighbour strapping for fractures of the little finger metacarpal neck. Journal of
- hand surgery (Edinburgh, Scotland). 2001, 26: 261-3.
- 572 Hofmeister EP, Kim J, Shin AY. Comparison of 2 methods of immobilization of fifth metacarpal neck fractures: A prospective randomized study. The Journal of hand
- 573 surgery. 2008, 33: 1362-8.

- 574 Horton TC, Hatton M, Davis TR. A prospective randomized controlled study of fixation of long oblique and spiral shaft fractures of the proximal phalanx: Closed
- 575 reduction and percutaneous kirschner wiring versus open reduction and lag screw fixation. Journal of hand surgery (Edinburgh, Scotland). 2003, 28: 5-9.
- 576 Kappos EA, Esenwein P, Meoli M, Meier R, Grunert J. Implantation of a denaturated cellulose adhesion barrier after plate osteosynthesis of finger proximal phalangeal
- 577 fractures: Results of a randomized controlled trial. J Hand Surg Eur Vol. 2016, 41: 413-20.
- 578 Kim JK, Kim DJ. Antegrade intramedullary pinning versus retrograde intramedullary pinning for displaced fifth metacarpal neck fractures. Clinical orthopaedics and

579 related research. 2015, 473: 1747-54.

- 580 Kinninmonth AW, Holburn F. A comparative controlled trial of a new perforated splint and a traditional splint in the treatment of mallet finger. Journal of hand
- 581 surgery (Edinburgh, Scotland). 1986, 11: 261-2.
- 582 Konradsen L, Nielsen PT, Albrecht-Beste E. Functional treatment of metacarpal fractures 100 randomized cases with or without fixation. Acta orthopaedica 583 Scandinavica. 1990, 61: 531-4.
- 584 Kuokkanen HO, Mulari-Keranen SK, Niskanen RO, Haapala JK, Korkala OL. Treatment of subcapital fractures of the fifth metacarpal bone: A prospective randomised
- 585 comparison between functional treatment and reposition and splinting. Scandinavian journal of plastic and reconstructive surgery and hand surgery. 1999, 33: 315-
- 586 7.
- 587 Lawton JN, Nicholls MA, Charoglu CP. Immobilization for scaphoid fracture: Forearm rotation in long arm thumb-spica versus munster thumb-spica casts.
- 588 Orthopedics. 2007, 30: 612-4.
- 589 Lyons R, Stanley C, McKenna P. Assessment of the use of a synthetic removable polymer splint (fastform polytrexxtm) for the treatment of non-displaced scaphoid
- 590 fractures: Prospective randomized trial. Irish journal of medical science Conference: 42nd sir peter freyer memorial lecture and surgical symposium Ireland. 2017,
- 591 186: S330.

- 592 Mayr E, Rudzki MM, Rudzki M, Borchardt B, Hausser H, Ruter A. [does low intensity, pulsed ultrasound speed healing of scaphoid fractures?]. Handchirurgie,
- 593 Mikrochirurgie, plastische Chirurgie : Organ der Deutschsprachigen Arbeitsgemeinschaft fur Handchirurgie : Organ der Deutschsprachigen Arbeitsgemeinschaft fur
- 594 Mikrochirurgie der Peripheren Nerven und Gefasse 2000, 32: 115-22.
- 595 McMahon PJ, Woods DA, Burge PD. Initial treatment of closed metacarpal fractures. A controlled comparison of compression glove and splintage. Journal of hand
- 596 surgery (Edinburgh, Scotland). 1994, 19: 597-600.
- 597 McQueen MM, Gelbke MK, Wakefield A, Will EM, Gaebler C. Percutaneous screw fixation versus conservative treatment for fractures of the waist of the scaphoid:
- 598 A prospective randomised study. The Journal of bone and joint surgery British volume. 2008, 90: 66-71.
- 599 Miller L, Crosbie J, Wajon A, Ada L. No difference between two types of exercise after proximal phalangeal fracture fixation: A randomised trial. Journal of
- 600 physiotherapy. 2016, 62: 12-9.
- 601 Moineau B, Boisgontier MP. Superimposed electrical stimulation improves mobility of pre-stiff thumbs after ulnar collateral ligament injury of the
- 602 metacarpophalangeal joint: A randomized study. Annals of physical and rehabilitation medicine. 2014, 57: 373-80.
- Norregaard O, Jakobsen J, Nielsen KK. Hyperextension injuries of the pip finger joint. Comparison of early motion and immobilization. Acta orthopaedica Scandinavica. 1987, 58: 239-40.
- 0'Brien LJ, Bailey MJ. Single blind, prospective, randomized controlled trial comparing dorsal aluminum and custom thermoplastic splints to stack splint for acute
- 606 mallet finger. Archives of physical medicine and rehabilitation. 2011, 92: 191-8.
- 607 Pedersen M, Thomsen N, Hovgaard C. Double finger bandage versus carstam splint for the treatment of volar plate injuries of the proximal interphalangeal joint.
- 608 Acta orthopaedica scandinavica. 1995, 66: 72.

- 609 Pike J, Mulpuri K, Metzger M, Ng G, Wells N, Goetz T. Blinded, prospective, randomized clinical trial comparing volar, dorsal, and custom thermoplastic splinting in
- 610 treatment of acute mallet finger. The Journal of hand surgery. 2010, 35: 580-8.
- 611 Rafique A, Ghani S, Sadiq M, Siddiqui IA. Kirschner wire pin tract infection rates between percutaneous and buried wires in treating metacarpal and phalangeal
- 612 fractures. Journal of the College of Physicians and Surgeons--Pakistan : JCPSP. 2006, 16: 518-20.
- Raju PK, Kini SG. Fixation techniques for non-union of the scaphoid. Journal of orthopaedic surgery (Hong Kong). 2011, 19: 80-4.
- Randall T, Portney L, Harris BA. Effects of joint mobilization on joint stiffness and active motion of the metacarpal-phalangeal joint. The Journal of orthopaedic and
- 615 sports physical therapy. 1992, 16: 30-6.
- 616 Ribak S, Medina CE, Mattar R, Jr., Ulson HJ, Ulson HJ, Etchebehere M. Treatment of scaphoid nonunion with vascularised and nonvascularised dorsal bone grafting
- 617 from the distal radius. International orthopaedics. 2010, 34: 683-8.
- 618 Ricardo M. The effect of ultrasound on the healing of muscle-pediculated bone graft in scaphoid non-union. International orthopaedics. 2006, 30: 123-7.
- 619 Rocchi L, Merolli A, Morini A, Monteleone G, Foti C. A modified spica-splint in postoperative early-motion management of skier's thumb lesion: A randomized clinical
- trial. European journal of physical and rehabilitation medicine. 2014, 50: 49-57.
- 521 Saeden B, Tornkvist H, Ponzer S, Hoglund M. Fracture of the carpal scaphoid. A prospective, randomised 12-year follow-up comparing operative and conservative
- treatment. The Journal of bone and joint surgery British volume. 2001, 83: 230-4.
- 523 Saito K, Kihara H. A randomized controlled trial of the effect of 2-step orthosis treatment for a mallet finger of tendinous origin. Journal of hand therapy : official
- journal of the American Society of Hand Therapists. 2016, 29: 433-9.
- 625 Sjolin SU, Andersen JC. Clinical fracture of the carpal scaphoid--supportive bandage or plaster cast immobilization? Journal of hand surgery (Edinburgh, Scotland).
- 626 1988, 13: 75-6.

- 627 Sletten IN, Hellund JC, Olsen B, Clementsen S, Kvernmo HD, Nordsletten L. Conservative treatment has comparable outcome with bouquet pinning of little finger
- 628 metacarpal neck fractures: A multicentre randomized controlled study of 85 patients. J Hand Surg Eur Vol. 2015, 40: 76-83.
- 529 Sloan JP, Dove AF, Maheson M, Cope AN, Welsh KR. Antibiotics in open fractures of the distal phalanx? Journal of hand surgery (Edinburgh, Scotland). 1987, 12: 123-
- 630 4.
- 631 Sollerman C, Abrahamsson SO, Lundborg G, Adalbert K. Functional splinting versus plaster cast for ruptures of the ulnar collateral ligament of the thumb. A
- 632 prospective randomized study of 63 cases. Acta orthopaedica Scandinavica. 1991, 62: 524-6.
- 633 Sorensen JS, Freund KG, Kejla G. Functional fracture bracing in metacarpal fractures: The galveston metacarpal brace versus a plaster-of-paris bandage in a
- 634 prospective study. Journal of hand therapy : official journal of the American Society of Hand Therapists. 1993, 6: 263-5.
- 635 Sourmelis S, Platanitis G, Korakis T, Daras A, Schinas N, Papakostas C. Static splinting vs. Functional treatment in extra-articular fractures of the proximal phalanges.
- 636 Orthopaedic transactions. 1995, 19: 210.
- 637 Statius Muller MG, Poolman RW, van Hoogstraten MJ, Steller EP. Immediate mobilization gives good results in boxer's fractures with volar angulation up to 70
- 638 degrees: A prospective randomized trial comparing immediate mobilization with cast immobilization. Archives of orthopaedic and trauma surgery. 2003, 123: 534-
- 639 7.
- 640 Stevenson J, McNaughton G, Riley J. The use of prophylactic flucloxacillin in treatment of open fractures of the distal phalanx within an accident and emergency
- 641 department: A double-blind randomized placebo-controlled trial. Journal of hand surgery (Edinburgh, Scotland). 2003, 28: 388-94.
- 642 Strub B, Schindele S, Sonderegger J, Sproedt J, von Campe A, Gruenert JG. Intramedullary splinting or conservative treatment for displaced fractures of the little
- 643 finger metacarpal neck? A prospective study. J Hand Surg Eur Vol. 2010, 35: 725-9.
- Thomsen NO, Petersen MS, Hovgaard C. Treatment of hyperextension injuries to the pip joint. Journal of hand surgery (Edinburgh, Scotland). 1995, 20: 383-4.

- 645 Tocco S, Boccolari P, Landi A et al. Effectiveness of cast immobilization in comparison to the gold-standard self-removal orthotic intervention for closed mallet fingers:
- 646 A randomized clinical trial. Journal of hand therapy : official journal of the American Society of Hand Therapists. 2013, 26: 191-200; quiz 1.
- van Aaken J, Fusetti C, Luchina S et al. Fifth metacarpal neck fractures treated with soft wrap/buddy taping compared to reduction and casting: Results of a
- 648 prospective, multicenter, randomized trial. Archives of orthopaedic and trauma surgery. 2016, 136: 135-42.
- 649 Vinnars B, Pietreanu M, Bodestedt A, Ekenstam F, Gerdin B. Nonoperative compared with operative treatment of acute scaphoid fractures. A randomized clinical
- 650 trial. J Bone Joint Surg Am. 2008, 90: 1176-85.
- 651 Warren RA, Norris SH, Ferguson DG. Mallet finger: A trial of two splints. Journal of hand surgery (Edinburgh, Scotland). 1988, 13: 151-3.
- 652 Winter M, Balaguer T, Bessiere C, Carles M, Lebreton E. Surgical treatment of the boxer's fracture: Transverse pinning versus intramedullary pinning. J Hand Surg
- 653 Eur Vol. 2007, 32: 709-13.
- 54 Xia X. Kirschner wire and mini-plate fixation in repair of metacarpal and phalangeal fractures: Hand function and adverse reactions. Chinese journal of tissue
- 655 *engineering research*, 2015, Vol. 19: 2741-4.
- 556 Zhou F, Shen B, Wang R, Fan S, Hu W. [clinical contrast of percutaneous pinning with plaster splint and open reduction and pulling out wire in the treatment of mallet
- 657 fingers]. Zhongguo xiu fu chong jian wai ke za zhi = Zhongguo xiufu chongjian waike zazhi = Chinese journal of reparative and reconstructive surgery. 2008, 22: 1451-
- 658 4.
- Zyluk A, Budzynski T. [conservative vs operative treatment of isolated fractures of phalanges: Results of the prospective, randomized study]. Chirurgia narzadow
 ruchu i ortopedia polska. 2009, 74: 74-8.
- 661