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1 Introduction
Heinrich Freiherr von Stackelberg [33] introduced a concept of equilibrium in games, which
is now known as the Stackelberg equilibrium or the Stackelberg solution. In the Stackelberg
two-person game, one player acts as the leader (she) while the other behaves as the follower
(he). This sequential decision-making structure requires a solution method in which the
leader incorporates the follower’s best response into her action. Consequently, we can first
solve the follower’s optimization problem for any announced decision by the leader. This
results in obtaining the follower’s optimal response as a function of the leader’s decision.
Then the leader can solve her optimization problem that takes into account the follower’s
optimal response. This leads to the leader’s optimal decision. Substituting the leader’s
optimal decision into the follower’s response gives the follower’s optimal decision. These two
decisions taken together constitute a Stackelberg solution.

Later the concept of Stackelberg solution was extended to multi-period games. In dy-
namic settings, the dominance types of the leader over the follower as well as various infor-
mation sets lead to a variety of equilibrium concepts. If in the beginning of the game the
leader announces her whole strategy over the entire duration, then she dominates the follower
globally and the corresponding solution is referred to as a global Stackelberg solution. If the
leader acts ahead of the follower in every period (instant) based on the observed underlying
state, the corresponding solution is referred to as a feedback solution. One can refer to [4] for
the conceptualization of different equilibria in discrete-time and continuous-time determin-
istic settings. [17] and [24] survey various applications of dynamic Stackelberg game models
in the operations management, supply chain management, and marketing literature.

In this paper we focus on obtaining feedback Stackelberg-Nash Equilibria in stochastic
differential games. [18] initially formalized differential games and showed that the theory
of optimal control can be adapted to study Nash differential games as dynamic extensions
of the static Nash equilibria. Later, global Stackelberg equilibria were obtained by viewing
the follower’s Hamiltonian system as the leader’s state equation for the deterministic case
and the stochastic case (see, e.g., [4], [11], [25], [7]). For feedback Stackelberg equilibria, it
was realized that one can also look for them in differential games as an appropriate limit of
a sequence of dynamic discrete-time games, as the length of the period shrinks to zero [3].
However, the convergence of the solutions of the sequence of discrete-time games remains
a challenging open problem. Inspired by the results on feedback Nash equilibria where the
feedbacks are defined at the Hamiltonian level and obtained through a system of Hamilton-
Jacobi-Bellman (HJB) equations, we show that the feedback Stackelberg equilibria can also
be obtained in a similar way: obtain the feedbacks of the static Stackelberg game at the
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Hamiltonian level and at each instant, and solve the resulting system of HJB equations.
This paper is devoted to a class of differential games where there are no clear leaders and

followers as required in the original definition of a Stackelberg equilibrium. Indeed, in many
realistic situations, a player may act as a leader for some decisions and as a follower for the
remaining ones. For example, in the context of a manufacturer selling a product through a
retailer, the manufacturer could act as a leader for advertising decisions, while the retailer
could be the price leader. In this case, the manufacturer acts as a follower for making his
wholesale price decision and the retailer acts as a follower for making his decision relating
to local advertising of the product. Closer to home, it is possible to visualize a household
scenario where the wife acts as leader for decisions relating to domestic activities, whereas
the husband acts as the leader for budgetary or external decisions. Such games termed mixed
leadership games were introduced in [5] and [6], along with a procedure to obtain open-loop
equilibria. Open-loop solution is an example of a global solution, and for other types of
global solutions, the readers may refer to [7]. While [5] and [6] deal only with open-loop
solutions in mixed leadership games, this paper is devoted to feedback Stackelberg-Nash
equilibria. It is important to emphasize that none of the global solutions are in general
time-consistent, whereas a feedback solution is, which is an extremely desirable property.
Without time consistency, one needs a commitment on the part of the leader to begin with,
and perhaps a mechanism to enforce the commitment. Also, [5] derives necessary conditions
in the form of a maximum principle, this paper, however, derives a sufficient condition in
the form of a verification theorem.

In this paper, we develop a procedure to obtain a feedback equilibrium for mixed leader-
ship games. Specifically, we formalize games where some decisions are announced by player
1 and some by player 2 simultaneously. Then, each player must obtain its optimal response
for those decisions that are to be made by him in the role of the follower. Then, given these
responses, the remaining decisions are made simultaneously. For convenience in exposition,
we will partition all decisions into lead and follow-up decisions. The follow-up decisions are
obtained simultaneously as the optimal responses to the lead decisions. Thus, this procedure
involves both Nash and Stackelberg steps. And given the optimal responses, the lead deci-
sions are made simultaneously as the Nash step. Thus, the game requires two Nash steps
and one Stackelberg step in a nested fashion. In this paper we first provide the definition of
a feedback equilibrium in this dynamic mixed leadership setting. We establish a verification
theorem and show that finding such a dynamic equilibrium can actually be reduced to solv-
ing a mixed leadership static game at the Hamiltonian level and a system of HJB equations
involving the above obtained static equilibrium. We then provide a detailed analysis of a
representative example that admits a tractable, feedback Stackelberg-Nash equilibrium. It
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should be noted that standard fixed-point theories cannot be directly applied to our mixed
leadership framework, and hence our analysis on this representative example marks as a first
important step to tackle the fixed-point problems arising from the mixed leadership game
problem.

More importantly, this representative example offers a new insight into the mixed lead-
ership perspectives on the cooperative advertising decisions between a manufacturer and a
retailer. In this respect, we investigate a cooperative advertising game in a manufacturer-
retailer supply chain where there are no clear leaders and followers in the following sense:
Based on the observed market share, at each instant of time both players first simultaneously
decide their support rates (lead decisions) of the other party’s advertising effort, and then,
based on the announced support rates as well as the market share determined according to an
extension of the model in [27], simultaneously decide their own advertising effort (follow-up
decisions). We apply the verification theorem and find an equilibrium at which the players’
objective functions are affine functions of the market share. We derive a set of algebraic
equations to characterize the equilibrium strategies. These algebraic equations are easy to
solve numerically, and so we conduct a numerical analysis to examine the impact of model
parameters on the players’ decision variables, and compare our scenario with the traditional
one-sided cooperative advertising game where only the manufacturer supports the retailer’s
advertising effort.

The Stackelberg setting has been found very useful in modeling many realistic situations
in supply chains and marketing channels. Here we briefly review the related literature and
distinguish our paper from existing works. [28] considered one lead firm and N following firms
which supply a homogeneous product noncooperatively to a market. The leader is called a
Stackelberg firm and the followers are called Cournot firms as they compete with each other
simultaneously in terms of quantities. The authors studied the existence and uniqueness of
a Stackelberg-Nash-Cournot equilibrium and developed an algorithm to determine it. [34]
studied a similar setting but assumed that the demand is unknown when the Stackelberg
firm chooses the production level, whereas the Cournot firms make their decisions after the
realization of the demand. [10] extended [34] to a multiple-leader Stackelberg-Nash-Cournot
model and proposed a computational approach based on a sample average approximation to
find the equilibrium. [1] considered competition in a supply chain where multiple manufac-
turers compete on supply quantities of a set of products and multiple risk-averse retailers
compete on order quantities to satisfy customer demand. They examined the impact of
asymmetry of manufacturers, retailers, and product assortment on supply chain efficiency.
[12] analyzed sequential price competition in a multi-echelon supply chain where an arbitrary
number of firms are allowed at each echelon. They characterized the equilibria, provided
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a computational scheme to find them, and showed comparative statics results with respect
to model parameters. However, the models reviewed above involving both horizonal and
vertical competitions are static games in operations management. Our paper complements
the existing literature by addressing Stackelberg-Nash games in a dynamic setting.

There are some studies in marketing literature which consider dynamic game theoretic
models in cooperative advertising; see for e.g., [19, 20, 21], [23], [16], [29], [14, 15], [8, 9]. The
readers are referred to [17], [2], [22], and [24], for extensive surveys on cooperative advertising
models. However, there are key differences between these papers and the application in
this paper. These papers consider advertising support in only one direction (manufacturer
to retailer), i.e., only one party supports the other in its advertising efforts. Whereas in
our model, both the manufacturer and the retailer make advertising efforts, and both may
support each other by sharing a fraction of the other’s advertising cost. Furthermore, these
papers model the problem in a classical pure Stackelberg or pure Nash framework, whereas
we consider a mixed leadership game in a feedback Stackelberg-Nash framework, which has
not been studied earlier to the best of our knowledge.

The paper is organized as follows. We first formulate a general mixed leadership dif-
ferential game and give the feedback equilibrium definition in Section 2. We characterize
the feedback Stackelberg-Nash equilibrium in terms of the solutions to a system of coupled
non-linear ordinary differential equations and provide a corresponding verification theorem in
Section 2.2. Based on this result, we study a cooperative advertising game in a manufacturer-
retailer supply chain in Section 3, and obtain a system of algebraic equations for a specific
equilibrium where the players’ profits are affine functions of the market share. In Section 4,
we numerically examine the impact of model parameters on the equilibrium behavior and
the resulting managerial insights. We conclude our paper in Section 5.

2 A Mixed-Leadership Differential Game Model

2.1 Model and problem formulation

Consider a game model with two players 1 and 2. The game model under consideration is
given by a state equation

dx(t) = f(x(t), u1(t), v1(t), u2(t), v2(t))dt+ σ(x(t))dW (t), x(0) = x, (1)

where x is an initial state known by both players, f : R×U1×V1×U2×V2 → R and σ : R → R
are the drift and the volatility functions of x, respectively; W is an one-dimensional standard

5



Brownian motion defined on a complete probability space (Ω,F ,P); and (ui(t), vi(t)) ∈
Ui × Vi ⊆ R× R, t ∈ [0,+∞), i = 1, 2, are the decision variables of the two players.

To ensure that the state equation x(t) in (1) yields a unique state trajectory, we assume
that f and σ satisfy the conditions below (see, e.g. [13]):

(i) For all (ui, vi) ∈ Ui × Vi with i = 1, 2, f is locally Lipschitz continuous in x and σ is
locally Lipschitz continuous in x.

(ii) f is continuously differentiable in (ui, vi) ∈ Ui × Vi with i = 1, 2.

For i = 1, 2, denote Jx
i to be an expected profit function of player 1

Jx
i (u1, v1, u2, v2) = E

[∫ ∞

0

e−ρtli(x(t), u1(t), v1(t), u2(t), v2(t))dt
∣∣∣x(0) = x

]
, (2)

where li is a continuously differentiable function in (ui, vi) ∈ Ui × Vi with i = 1, 2 that
represents the profit function of player i.

In view of the objective functions of the two players in (2), we define the admissible
strategy space Ui × Vi ⊆ Ui × Vi, for i = 1, 2, to be the set of strategies such that

Ui , {ui|ui : R → Ui and ui(x) is locally Lipschitz continuous in x},

Vi , {vi|vi : R× U1 × U2 → Vi and vi(x, µ1, µ2) is locally Lipschitz continuous in (x, µ1, µ2)},

and the following integrability condition is satisfied: for all (ui, vi) ∈ Ui × Vi, i = 1, 2,

E
[∫ ∞

0

e−ρs
∣∣li(x(s;u1, v1, u2, v2), u1, v1, u1, u2, v2

)∣∣ ds] < ∞, (3)

where ui, vi are evaluated at x(s;u1, v1, u2, v2) with the forms

ui

(
x(s;u1, v1, u2, v2)

)
,

vi

(
x(s;u1, v1, u2, v2), u1

(
x(s;u1, v1, u2, v2)

)
, u2

(
x(s;u1, v1, u2, v2)

))
.

This admissible strategy space Ui × Vi ⊆ Ui × Vi, for i = 1, 2, indicates that the underlying
information structure is of a feedback form for player i, in which ui is the lead decision
variable and vi is the follow decision variable.

We are now in position to define an optimization problem of each player i, for i = 1, 2:

Problem 2.1. Given the strategy pair of the other player j, (uj, vj) ∈ Uj × Vj, for j ̸= i ∈
{1, 2}, player i chooses her strategy pair (ui, vi) ∈ Ui × Vi to maximize her expected profit
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function Jx
i in (2) subject to

dx(s) =f
(
x(s), u1(x(s)), v1

(
x(s), u1(x(s)), u2(x(s))

)
, u2(x(s)), v2

(
x(s), u1(x(s)), u2(x(s))

))
ds

+ σ(x(s))dW (s),

x(0) =x.

When there is no ambiguity about the chosen strategies (u1, v1, u2, v2) from the context,
we will hereafter use an abbreviated notation x(·) for x(·;u1, v1, u2, v2) and omit the argu-
ments of the strategies ui and vi in f and li, i = 1, 2, for the sake of notational convenience.
In view of Problem 2.1, we now provide a rigorous definition of the equilibrium analyzed in
our paper.

Definition 2.1. Two pairs of strategies (u∗
i , v

∗
i ) ∈ Ui × Vi, i = 1, 2, are called a feedback

Stackelberg-Nash equilibrium if the following holds:

Jx
1

(
u∗
1(·), v∗1

(
·, u∗

1(·), u∗
2(·)
)
, u∗

2(·), v∗2
(
·, u∗

1(·), u∗
2(·)
))

≥Jx
1

(
u1(·), v1

(
·, u1(·), u∗

2(·)
)
, u∗

2(·), v∗2
(
·, u1(·), u∗

2(·)
))

, ∀(u1, v1) ∈ U1 × V1, ∀x ∈ R

Jx
2

(
u∗
1(·), v∗1

(
·, u∗

1(·), u∗
2(·)
)
, u∗

2(·), v∗2
(
·, u∗

1(·), u∗
2(·)
))

≥Jx
2

(
u∗
1(·), v∗1

(
·, u∗

1(·), u2(·)
)
, u2(·), v2

(
·, u∗

1(·), u2(·)
))

, ∀(u2, v2) ∈ U2 × V2, ∀x ∈ R.

(4)

In the above definition, we can see that in equilibrium no player can benefit from unilat-
erally changing its own strategy. In our mixed leadership feedback game, both players are
leaders in u decisions, and followers in v decisions. In other words, at each instant of time,
first player 1 (P1) decides u1 and player 2 (P2) decides u2, simultaneously. Then P1 and
P2 follow with their decisions v1 and v2 at each instant of time, respectively and simultane-
ously. At the level of u decisions, P1 and P2 play a feedback Nash game. At the level of v
decisions, P1 and P2 also play a feedback Nash game, with the additional information of the
instantaneous actions from the level of u decisions. From a vertical view of the two Nash
games, they are played with hierarchy and therefore constitute a feedback Stackelberg game.
In addition, since each player is both a leader in u decision and a follower in v decision, the
roles of players in the game are mixed. For the above two reasons, we term this game a mixed
feedback Stackelberg-Nash game, or mixed leadership game. To formalize the study of the
mixed leadership game, we first focus on equilibrium characterization. Since both feedback
Nash game and feedback Stackelberg game can be solved at the level of Hamiltonian, we
first introduce the related Hamiltonians for the mixed Stackelberg-Nash game in Section 2.2.
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2.2 Characterization of a Feedback Stackelberg-Nash Equilibrium

In this section we characterize the mixed feedback Stackelberg-Nash equilibrium in terms of
the solution to a system of ordinary differential equations (ODEs) involving two static Nash
games and a Stackelberg game at the level of Hamiltonian. To this end, we first introduce the
Hamiltonians for both players. For pi ∈ R, we define the Hamiltonian functions as follows

H1(x, µ1, ν1, µ2, ν2, p1) , l1(x, µ1, ν1, µ2, ν2) + p1 ·f(x, µ1, ν1, µ2, ν2),

H2(x, µ1, ν1, µ2, ν2, p2) , l2(x, µ1, ν1, µ2, ν2) + p2 ·f(x, µ1, ν1, µ2, ν2).
(5)

For a given pair of actions (µ1, µ2) ∈ U1 × U2, we first consider a static Nash game with ν1

and ν2 as the decision variables at the level of Hamiltonian. We suppose that we can get a
unique solution (Γν

1(x, µ1, µ2, p1, p2),Γ
ν
2(x, µ1, µ2, p1, p2)) from the equations

ν1 = arg max
ν1∈V1

H1(x, µ1, ν1, µ2, ν2, p1),

ν2 = arg max
ν2∈V2

H2(x, µ1, ν1, µ2, ν2, p2).
(6)

Taking into account the response at the v level, we substitute (Γν
1,Γ

ν
2) into H1 and H2, and

solve the following static Nash game with µ1 and µ2 as decision variables at the level of
Hamiltonian:

µ1 = arg max
µ1∈U1

H1

(
x, µ1,Γ

ν
1

(
x, µ1, µ2, p1, p2

)
, µ2,Γ

ν
2

(
x, µ1, µ2, p1, p2

)
, p1

)
,

µ2 = arg max
µ2∈U2

H2

(
x, µ1,Γ

ν
1

(
x, µ1, µ2, p1, p2

)
, µ2,Γ

ν
2

(
x, µ1, µ2, p1, p2

)
, p2

)
.

(7)

We assume that we have a unique solution (Γµ
1(x, p1, p2),Γ

µ
2(x, p1, p2)) of the equations (7).

Remark 2.1. In general, it is typically difficult to establish a set of sufficient conditions to
guarantee the existence of solutions to the fixed points problems in (6) and (7). The main
difficulty stems from the fact that (6) and (7) are nested and must be solved hierarchically.
Indeed, one begins by solving the fixed-point equations (6) in terms of µ1 ∈ U1, µ2 ∈ U2

and p1, p2 > 0 and obtain (Γν
1,Γ

ν
2). By assuming certain regularity properties of (Γν

1,Γ
ν
2),

one then proceeds to solve the fixed-point equations in (7) in terms of p1, p2 > 0 to obtain
(Γµ

1(x, p1, p2),Γ
µ
2(x, p1, p2)).

Fortunately, there exists a representative example of the mixed leadership games in which
the fixed point problems in (6) and (7) admit tractable solutions. We shall provide a detailed
analysis of this representative example in Section 3.

With these notations, we now provide a verification theorem to show that the solutions
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in (6) and (7) constitute a feedback Stackelberg-Nash equilibrium. We should stress that
we do not address the issue of the uniqueness of such an equilibrium. In general, multiple
equilibria could occur in differential games including mixed leadership games. DenoteV1(x) , Jx

1

(
u∗
1(·), v∗1

(
·, u∗

1(·), u∗
2(·)
)
, u∗

2(·), v∗2
(
·, u∗

1(·), u∗
2(·)
))

,

V2(x) , Jx
2

(
u∗
1(·), v∗1

(
·, u∗

1(·), u∗
2(·)
)
, u∗

2(·), v∗2
(
·, u∗

1(·), u∗
2(·)
))

,
(8)

where (u∗
i , v

∗
i ) ∈ Ui × Vi, for i = 1, 2, is the feedback Nash-Stackelberg equilibrium in

Definition 2.1. We have the following verification theorem.

Theorem 2.1 (Verification Theorem). Let wi, for i = 1, 2, be a function in C2(R) that
satisfies a polynomial growth condition.

(i) Suppose that

0 ≤ ρw1(x)− 1
2
σ2(x)w′′

1(x)− sup
(u1,v1)∈U1×V1

H1

(
x, u1(x), v1 (x, u1(x), u

∗
2(x)) ,

u∗
2(x), v

∗
2 (x, u1(x), u

∗
2(x)) , w

′
1(x)

)
,

0 ≤ ρw2(x)− 1
2
σ2(x)w′′

2(x)− sup
(u2,v2)∈U2×V2

H2

(
x, u∗

1 (x) , v
∗
1 (x, u

∗
1 (x) , u2(x)) ,

u2(x), v2 (x, u
∗
1 (x) , u2(x)) , w

′
2(x)

)
,

(9)

where u∗
1(x) , Γµ

1

(
x,w′

1, w
′
2

)
,

u∗
2(x) , Γµ

2

(
x,w′

1, w
′
2

)
;

(10)

v∗1(x, u
∗
1(x), u2(x)) , Γν

1 (x, u
∗
1(x), u2(x), w

′
1, w

′
2) ,

v∗2(x, u1(x), u
∗
2(x)) , Γν

2 (x, u1(x), u
∗
2(x), w

′
1, w

′
2) ,

(11)

with 
0 ≤ lim sup

t→∞
E [e−ρtw1(x(t))] , for all (u1, v1) ∈ U1 × V1;

0 ≤ lim sup
t→∞

E [e−ρtw2(x(t))] for all (u2, v2) ∈ U2 × V2,
(12)

Then, w1 ≥ V1 and w2 ≥ V2.

(ii) Suppose further that, for all x ∈ R, there exist (u∗
1, v

∗
1) ∈ U1×V1 and (u∗

2, v
∗
2) ∈ U2×V2,
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where u∗
1(x) , Γµ

2

(
x,w′

1, w
′
2

)
,

u∗
2(x) , Γµ

2

(
x,w′

1, w
′
2

)
;

(13)

v∗1(x, u
∗
1(x), u

∗
2(x)) , Γν

1 (x, u
∗
1(x), u

∗
2(x), w

′
1, w

′
2) ,

v∗2(x, u
∗
1(x), u

∗
2(x)) , Γν

2 (x, u
∗
1(x), u

∗
2(x), w

′
1, w

′
2) ,

(14)

such that

0 = ρw1(x)− 1
2
σ2(x)w′′

1(x)−H1

(
x, u∗

1(x), v
∗
1 (x, u

∗
1(x), u

∗
2(x)) ,

u∗
2(x), v

∗
2 (x, u

∗
1(x), u

∗
2(x)) , w

′
1(x)

)
,

0 = ρw2(x)− 1
2
σ2(x)w′′

1(x)−H2

(
x, u∗

1(x), v1 (x, u
∗
1(x), u

∗
2(x)) ,

u∗
2(x), v

∗
2 (x, u

∗
1(x), u

∗
2(x)) , w

′
2(x)

)
,

(15)

satisfying lim inft→∞ E
[
e−ρtw1

(
x∗(t)

)]
≤ 0,

lim inft→∞ E
[
e−ρtw2

(
x∗(t)

)]
≤ 0.

(16)

Then w1(x) = V1(x), w2 = V2(x), and that {(u∗
1, v

∗
1), (u

∗
2, v

∗
2)} is a feedback Stackelberg-

Nash equilibrium to Problem 2.1.

Proof. By symmetry, it suffices to focus on the case of w1. We shall suppress the arguments
in ui, vi, i = 1; 2, for notational convenience.

(i) Suppose that player 1 adopts an arbitrary pair of strategies (u1, v1) ∈ U1 × V1 and
player 2 adopts the pair of strategies (u∗

2, v
∗
2) defined in (10) and (11). Let Br(x)

represent an open ball of radius r, centered at x, i.e.,

Br(x) ,
{
y ∈ R

∣∣|x− y| < r
}
,

and let τr be the first exit time of x(·) from Br(x), i.e.,

τr , inf
{
s
∣∣x(s) ̸∈ Br(x), s ≥ 0

}
,
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with the convention that inf ∅ = ∞ if x(·) does not exit from Br(x).

Applying Itô’s formula to e−ρsw1

(
x(s)

)
, integrating from 0 to τr ∧ t, and taking expec-

tation, we get

w1(x) = E
[
e−ρ(τr∧t)w1

(
x(τr ∧ t)

)]
− E

[∫ τr∧t

0

e−ρs

(
− ρw1

(
x(s)

)
+

1

2
σ2
(
x(s)

)
w′′

1

(
x(s)

)
+f
(
x(s), u1, v1, u

∗
2, v

∗
2

)
w′

1

(
x(s)

))
ds

]

= E
[
e−ρ(τr∧t)w1

(
x(τr ∧ t)

)]
− E

[∫ τr∧t

0

e−ρs

(
− ρw1

(
x(s)

)
+

1

2
σ2
(
x(s)

)
w′′

1

(
x(s)

)
+f
(
x(s), u1, v1, u

∗
2, v

∗
2

)
w′

1

(
x(s)

)
+ l1

(
x(s), u1, v1, u

∗
2, v

∗
2

))
ds

]

+E
[∫ τr∧t

0

e−ρsl1
(
x(s), u1, v1, u

∗
2, v

∗
2

)
ds

]
= E

[
e−ρ(τr∧t)w1

(
x(τr ∧ t)

)]
− E

[∫ τr∧t

0

e−ρs

(
− ρw1

(
x(s)

)
+

1

2
σ2
(
x(s)

)
w′′

1

(
x(s)

)
+H1

(
x(s), u1, v1, u

∗
2, v

∗
2, w

′
1

(
x(s)

)))
ds

]
+ E

[∫ τr∧t

0

e−ρsl1
(
x(s), u1, v1, u

∗
2, v

∗
2

)
ds

]
≥ E

[
e−ρ(τr∧t)w1

(
x(τr ∧ t)

)]
+ E

[∫ τr∧t

0

e−ρsl1
(
x(s), u1, v1, u

∗
2, v

∗
2

)
ds

]
,

where the last inequality follows from (9).

By the polynomial growth condition on wi, for i = 1, 2, and the integrability condition
in (3), we can apply the dominated convergence theorem and send r to infinity to
obtain

w1(x) ≥ E
[
e−ρtw1

(
x(t)

)]
+ E

[∫ t

0

e−ρsl1
(
x(s), u1, v1, u

∗
2, v

∗
2

)
ds

]
, (17)

for all (u1, v1) ∈ U1×V1. Using (12), we can apply the dominated convergence theorem
again and sending t to infinity to obtain

w1(x) ≥ E
[∫ ∞

0

e−ρsl1
(
x(s), u1, v1, u

∗
2, v

∗
2

)
ds

]
= Jx

1

(
x, u1, v1, u

∗
2, v

∗
2

)
, (18)
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for all (u1, v1) ∈ U1 × V1. Therefore, it follows that

w1(x) ≥ sup
u1∈U1,v1∈V1

Jx
1

(
x, u1, v1, u

∗
2, v

∗
2

)
= V1(x). (19)

(ii) Repeat the exact arguments as in (i) and observe that the equilibrium condition in
(15) is obtained at (u∗

1, v
∗
1) in (13)-(14). Consequently, we have

E
[
e−ρtw1

(
x∗(t)

)]
= w1(x)− E

[∫ t

0

e−ρsl1
(
x∗(s), u∗

1, v
∗
1, u

∗
2, v

∗
2

)
ds

]
. (20)

Due to (16), we can apply the dominating convergence theorem again and send t to
infinity to obtain

w1(x) ≤ E
[∫ ∞

0

e−ρsl1
(
x∗(s), u∗

1, v
∗
1, u

∗
2, v

∗
2

)
ds

]
= Jx

1

(
x, u∗

1, v
∗
1, u

∗
2, v

∗
2

)
= V1(x). (21)

Finally, combining the right-hand sides of (18) and (21), it follows readily that

Jx
1

(
x, u∗

1, v
∗
1, u

∗
2, v

∗
2

)
≥ Jx

1

(
x, u1, v1, u

∗
2, v

∗
2

)
, (22)

from which it follows readily that (u∗
1, v

∗
1) in (13)-(14) constitute a Nash-Stackelberg

equilibrium.

A direct consequence of Theorem 2.1 is that the value functions V1, V2 ∈ C2(R) of players
1 and 2 at the mixed Nash-Stackelberg equilibrium (u∗

i , v
∗
i ), for i = 1, 2, if it exists, are the

solutions to the following system of coupled ODEs:

0 = ρV1(x)− 1
2
σ2(x)V ′′

1 (x)−H1

(
x, u∗

1(x), v
∗
1 (x, u

∗
1(x), u

∗
2(x)) ,

u∗
2(x), v

∗
2 (x, u

∗
1(x), u

∗
2(x)) , V

′
1(x)

)
,

0 = ρV2(x)− 1
2
σ2(x)V ′′

2 (x)−H2

(
x, u∗

1(x), v
∗
1 (x, u

∗
1(x), u

∗
2(x)) ,

u∗
2(x), v

∗
2 (x, u

∗
1(x), u

∗
2(x)) , V

′
2(x)

)
.

(23)

Due to the feedback feature of the mixed Nash-Stackelberg equilibrium (u∗
i , v

∗
i ), for i = 1, 2,

in (6)-(7), the system of coupled ODEs in (23) is highly non-linear in general and its solution
is typically difficult to obtain. Nonetheless, we now turn to a representative example in which

12



solving the system of coupled ODEs in (23) can be reduced to solving a system of algebraic
equations.

3 A Model of Cooperative Advertising
In this section, we consider a representative example of the mixed leadership game that
admits tractable solutions in (6) and (7). More importantly, this representative example has
an important application in cooperative adverising decisions between a manufacturer and a
retailer. Specifically, we consider a manufacturer-retailer supply chain in a mature product
category where sales, expressed as a fraction of the potential market, are positively influenced
through advertising spending by the supply chain partners. We use the mixed leadership
game theoretic framework developed in Sections 2-3 to study advertising cooperation between
the manufacturer and the retailer. The advertising is done at the national level (e.g., TV
ads broadcasted nationally during prime time, in national print media, etc.), and at the
local level (e.g., advertisements in local print media, local radio and TV stations, pamphlets,
promotions, etc.) We assume that the manufacturer decides the national advertising effort
whereas the local advertising effort is decided by the retailer. Both types of advertising have
stimulating effects on the sales, to be expressed shortly in the state dynamics of our model.
The manufacturer, or the retailer, or both may decide to support the other in its advertising
effort. This financial support is expressed in terms of the participation rate, which is defined
as the fraction of the total advertising cost of one party’s advertising effort that is shared
by the other. Thus, manufacturer’s participation rate for the retailer is the fraction of the
cost of retailer’s local advertising effort shared by the manufacturer. Similarly, the retailer’s
participation rate for the manufacturer is the fraction of the cost of manufacturer’s national
advertising effort shared by the retailer. The cost of advertising is expressed as the square
of the advertising effort. This type of cost structure captures the marginally diminishing
returns of advertising and is commonly used in the literature ([17] and [24]).

We denote the market share at time t as x(t). The following table lists the notation used
in this paper. Here we take the manufacturer as Player 1 and the retailer as Player 2. So
we will use subscripts m and r instead of 1 and 2, respectively. Thus, u1, v1, u2, v2 will be
replaced by um, vm, ur, vr, respectively, in Sections 3-4.

m, r subscript used for manufacturer and retailer, respectively,
x(t) ∈ [0, 1] market share at time t,

vm(t)∈ Vm = [0,∞) manufacturer’s advertising effort rate at time t,

vr(t)∈ Vr = [0,∞) retailer’s advertising effort rate at time t,

13



um(t)∈ Um = [0, 1] manufacturer’s participation rate for retailer’s advertising effort at time t,

ur(t)∈ Ur = [0, 1] retailer’s participation rate for manufacturer’s advertising effort at time t,

a > 0 advertising effectiveness of retailer,
b > 0 advertising effectiveness of manufacturer,
δ ≥ 0 market share decay parameter,
ρ > 0 discount rate,
R ≥ 0 gross margin of retailer,
M ≥ 0 gross margin of manufacturer,
Vm value function of manufacturer,
Vr value function of retailer.

We model the sales-advertising dynamics as the following extension of the Sethi model, to
incorporate multiple advertising decisions:dx(t) = [(avr(t) + bvm(t) + k

√
vr(t)vm(t))

√
1− x(t)− δx(t)]dt+ σ(x(t))dW (t),

x(0) = x0 ∈ [0, 1],
(24)

where k > 0 denotes the magnitude of synergy and σ(x(t)) is uniformly bounded with
σ(x(0)) = σ(x(1)) = 0. Under the model assumption, the market share x(t) can be readily
shown to be bounded in [0, 1].

The supply chain carries out its decisions in a Stackelberg framework. We assume that m
and r announce their respective participation rates um and ur first. Thus, the participation
rates are the lead decisions. Given these, m and r decide on the national and local advertising
rates, vm and vr, respectively. That is, the advertising rates are the follow decisions. Thus,
we have a special case of the mixed leadership differential game developed in Section 2.
Accordingly, m and r play Nash to solve for vm and vr given um and ur. This produces
optimal responses, which are then used by m and r in solving for um and ur, respectively,
once again in the Nash differential game framework. The Stackelberg step is the use of the
response function in the formulation of the Nash game for the lead decisions.

More specifically, the mixed-leadership game between the manufactuer and the retailer
can be succinctly represented as follows:

Problem 3.1. The manufacturer chooses (um, vm) ∈ Um×Vm to maximize her accumulated
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revenue net of the cumulative advertising cost, i.e.,

Vm(x) = sup
(um,vm)∈Um×Vm

E
[∫ ∞

0

e−ρt(Mx− umv
2
r − (1− ur)v

2
m)dt

]
, (25)

while the retailer chooses (ur, vr) ∈ Ur ×Vr to maximize her accumulated revenue net of the
cumulative advertising cost, i.e.,

Vr(x) = sup
(ur,vr)∈Ur×Vr

E
[∫ ∞

0

e−ρt(Rx− (1− um)v
2
r − urv

2
m)dt

]
, (26)

subject to the dynamics of the market share x(t) in (24).

Under the model specifications in Problem 3.1, the Hamiltonians for m and r are as
follows:

Hm(x, um, ur, vm, vr, pm) = Mx− umv
2
r − (1− ur)v

2
m

+pm
[(
avr + bvm + k

√
vmvr

)√
1− x− δx

]
,

Hr(x, um, ur, vm, vr, pr) = Rx− (1− um)v
2
r − urv

2
m

+pr
[(
avr + bvm + k

√
vmvr

)√
1− x− δx

]
.

(27)

The next theorem shows that the Problem 3.1 admits an analytical solution.

Theorem 3.1. The feedback Stackelberg-Nash equilibrium and the corresponding value func-
tions to Problem 3.1 admit the following form:v∗m = γ2

m

√
1− x,

v∗r = γ2
r

√
1− x,

(28)

u∗
m = max(ûm, 0), where (1− ûm) =

βm(2aγr+kγm)
4γ3

r
,

u∗
r = max(ûr, 0), where (1− ûr) =

βr(2bγm+kγr)
4γ3

m
,

(29)

Vm(x) = αm + βmx,

Vr(x) = αr + βrx,
(30)

where αr, αm, βr, βm, γr, and γm are the solutions to the following coupled system of algrebraic
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equations:

0 =
[
4βm

(
a+ k

2
γm
γr

)
− 8γ2

r

] (
2b+ 3k

2
γr
γm

)
+ 2aβr

(
b+ k

2
γr
γm

)
+ 2bβr

(
a+ k

2
γm
γr

)
,

0 =
[
4βr

(
b+ k

2
γr
γm

)
− 8γ2

m

] (
2a+ 3k

2
γm
γr

)
+ 2aβm

(
b+ k

2
γr
γm

)
+ 2bβm

(
a+ k

2
γm
γr

)
,

ραm = βm (aγ2
r + bγ2

m + kγrγm)−
βmγ

2
m

2

(
b+ k

2

γr
γm

)
− γ4

r +
βrγ

2
r

2

(
a+ k

2

γm
γr

)
,

ραr = βr (aγ
2
r + bγ2

m + kγrγm)−
βrγ

2
r

2

(
a+ k

2

γm
γr

)
− γ4

m +
βmγ

2
m

2

(
b+ k

2

γr
γm

)
,

(ρ+ δ)βm = M − βm (aγ2
r + bγ2

m + kγrγm) +
βmγ

2
m

2

(
b+ k

2

γr
γm

)
+ γ4

r −
βrγ

2
r

2

(
a+ k

2

γm
γr

)
,

(ρ+ δ)βr = R− βr (aγ
2
r + bγ2

m + kγrγm) +
βrγ

2
r

2

(
a+ k

2

γm
γr

)
+ γ4

m − βmγ
2
m

2

(
b+ k

2

γr
γm

)
.

(31)

To prove Theorem 3.1, we shall first need Propositions 3.2, Corollary 3.3, and Proposition
3.4.

Proposition 3.2. Given um, ur ∈ [0, 1] and pm, pr > 0, the solution pair (Γv
m,Γ

v
r) of (6)

admits the following form:

(i) If there is at least one ui = 1, for i = m, r, then there is no solution (vm, vr) satisfying
(6) simultaneously for x ̸= 1;

(ii) If um ̸= 1, ur ̸= 1, thenΓv
m(x, um, ur, pm, pr) =

pm
2(1−ur)

(
b+ k

2
y
)√

1− x,

Γv
r(x, um, ur, pm, pr) =

pr
2(1−um)

(
a+ k

2y

)√
1− x,

(32)

where y , v2
v1

is the unique solution to the following equation

0 =
kpm
2pr

y4 +
bpm
pr

y3 − a
(1− ur)

(1− um)
y − k(1− ur)

2(1− um)
. (33)

Proof. Given um, ur ∈ [0, 1] and pm, pr > 0, the first-order condition of Hm (resp., Hr) in
(27) with respect to vm (resp., vr) gives

2vm(1− ur) = pm

(
b+

k

2

√
vr
vm

)√
1− x, , (34)

2vr(1− um) = pr

(
a+

k

2

√
vm
vr

)√
1− x. (35)

We now analyze the solution pair (vm, vr) of (34)-(35) under the following cases of um, ur:
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(i) (a) (um = 1, ur = 1)
In this case, there is no solution (vm, vr) when (um, ur) = (1, 1), for x ̸= 1.
Indeed, when (um, ur) = (1, 1), the left-hand sides of (34) and (35) are zero.
Since pm, pr, a, b, k > 0, it follows readily that the right-hand sides of (34) and
(35) cannot be zero simultaneously unless x = 1.

(b) (um ̸= 1, ur = 1)
When um ̸= 1, ur = 1, (34) yields

√
vr
vm

= −2b
k

or vr = 4b2

k2
vm. Hence, (35) now

becomes

vm =
k2

8b2
pr

(1− um)

(
a− k2

4b

)√
1− x,

which implies that

vr =
pr

2(1− um)

(
a− k2

4b

)√
1− x.

Note: Substituting in the above expressions for vm, vr yields vr
vm

= 4b2

k2
. Since

ur = 1, (34) becomes 0 = pm(b + b)
√
1− x, which can only be true when x = 1,

as Case (a).

(c) (um = 1, ur ̸= 1)
Following the analogous arguments in Case (b), it also follows readily thatvr =

k2

8a2
pm

(1−ur)

(
b− k2

4a

)√
1− x,

vm = pm
2(1−ur)

(
b− k2

4a

)√
1− x,

implying that vm
vr

= 4a2

k2
. Since um = 1, (35) becomes 0 = pr(a+ a)

√
1− x, which

can only be true when x = 1, as Case (a).

(ii) (um ̸= 1, ur ̸= 1)
We first show that (vm, vr) to (34)–(35) are bounded away from zero. Indeed, when
vm → 0, the left-hand side of (34) converges to 0 for ur ̸= 1 on [0, 1], whereas the right-
hand side of (34) converges to ∞. On the other hand, when vr → 0, the left-hand side
of (35) converges to 0 for um ̸= 1, whereas the right-hand side of (35) converges to ∞.

Now dividing (34) by (35) gives

vm(1− ur)

vr(1− um)
=

pm
pr

(
b+ k

2

√
vr
vm

)
(
a+ k

2

√
vm
vr

) . (36)
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Denote y ,√ vr
vm

. Rearranging (36) yields

0 =
kpm
2pr

y4 +
bpm
pr

y3 − a
(1− ur)

(1− um)
y − k(1− ur)

2(1− um)
.

Define

ζ(y) , kpm
2pr

y4 +
bpm
pr

y3 − a
(1− ur)

(1− um)
y − k(1− ur)

2(1− um)
. (37)

Since

lim
y→0

ζ(y) = − k(1− ur)

2(1− um)
< 0, lim

y→∞
ζ(y) = ∞,

implying that there exists at least one y∗ ∈ (0,∞) such that ζ(y∗) = 0.

To show that y∗ > 0 satisfying ζ(y∗) = 0 is unique, observe that

ζ ′(y)
∣∣∣
ζ(y)=0

=
2kpm
pr

y3 +
3bpm
pr

y2 − a
(1− ur)

(1− um)

=
kpm
pr

y3 +
2bpm
pr

y2 +
1

y

(
kpm
2pr

y4 +
bpm
pr

y3 − a
(1− ur)

(1− um)
y

)
=

kpm
2pr

y3 +
2bpm
pr

y2 +

(
1

y

)
k(1− ur)

2(1− um)
> 0,

where the last equality follows from ζ(y) = 0. Therefore, we have a unique y∗ satisfying
ζ(y∗) = 0.

Corollary 3.3. Given um, ur, pm, pr > 0, the partial derivatives ∂v1
∂u2

, ∂v1
∂u2

> 0 and admit the
following explicit forms, for um, ur ̸= 1,

∂Γv
m(x, um, ur, pm, pr)

∂ur

=

2vm
(1−ur)

(
b+ k

2

√
vr
vm

)(
2a+ 3k

2

√
vm
vr

)
∆(vm, vr)

, (38)

∂Γv
r(x, um, ur, pm, pr)

∂um

=

2vr
(1−um)

(
a+ k

2

√
vm
vr

)(
2b+ 3k

2

√
vr
vm

)
∆(vm, vr)

, (39)

where

∆(vm, vr) , 4

(
a+

k

2

√
vm
vr

)(
b+

k

2

√
vr
vm

)
+ k

√
vm
vr

(
b+

k

2

√
vr
vm

)
+ k

√
vr
vm

(
a+

k

2

√
vm
vr

)
.

(40)
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Proof. Differentiating (34) and (35) with respect to um yields2(1− ur)
∂vm
∂um

= pm

(
k
4
v
− 1

2
r v

− 1
2

m
∂vr
∂um

− k
4
v

1
2
r v

− 3
2

m
∂vm
∂um

)√
1− x,

2(1− um)
∂vr
∂um

− 2vr = pr

(
k
4
v
− 1

2
m v

− 1
2

r
∂vm
∂um

− k
4
v

1
2
mv

− 3
2

r
∂vr
∂um

)√
1− x,

or, in matrix form, we have  0

2vr

 = A


∂vm
∂um

∂vr
∂um

 ,

where

A ,

2(1− ur) +
k
4
pmv

1
2
r v

− 3
2

m

√
1− x −k

4
pmv

− 1
2

r v
− 1

2
m

√
1− x

−k
4
prv

− 1
2

m v
− 1

2
r

√
1− x 2(1− um) +

k
4
prv

1
2
mv

− 3
2

r

√
1− x

 . (41)

Since

det(A) = 4(1− um)(1− ur) +
(1− ur)k

2
v

1
2
mv

− 3
2

r pr
√
1− x+

(1− um)k

2
v

1
2
r v

− 3
2

m pm
√
1− x

= 4(1− um)(1− ur) +
(1− ur)(1− um)k

√
vm
vr(

a+ k
2

√
vm
vr

) +
(1− ur)(1− um)k

√
vr
vm(

b+ k
2

√
vr
vm

)
= (1− um)(1− ur)

∆(vm, vr)(
a+ k

2

√
vm
vr

)(
b+ k

2

√
vr
vm

) > 0, (42)

where the second equality follows from (34) and (35) and the third follows from (40).
It follows from (41) that 

∂vm
∂um

∂vr
∂um

 =
A−1

det(A)

 0

2vr

 ,

where A−1 =

2(1− um) +
k
4
prv

1
2
mv

− 3
2

r

√
1− x k

4
pmv

− 1
2

r v
− 1

2
m

√
1− x

k
4
prv

− 1
2

m v
− 1

2
r

√
1− x 2(1− ur) +

k
4
pmv

1
2
r v

− 3
2

m

√
1− x

.
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This implies that

∂vr
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)
∆(vm, vr)

,

where the second equality follows from (34), the third equality follows from (42). In addition,
it is now readily seen from (40) that ∂vr

∂um
> 0.

By the exact arguments, we obtain
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,

where the second equality follows from (35), the third equality follows from (42). Finally, it
is now readily seen from (40) that ∂vm

∂ur
> 0. This concludes the proof.

Proposition 3.4. Given pm, pr > 0, the solution pair (Γµ
m,Γ

µ
r ) of (7) admits the following

explicit form: Γµ
m(x, pm, pr) = min (1− ūm, 0) ,

Γµ
r (x, pm, pr) = min (1− ūr, 0) ,

(43)

where
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Proof. The first-order condition of Hm (resp. Hr) in (27) with respect to um (resp., ur) gives
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(46)

In view of (34) and (35), (46) can be simplified as follows:0 = −v2r +
∂vr
∂um

[
−2umvr + 2pm
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vr(1− um)

]
,

0 = −v2m + ∂vm
∂ur

[
−2urvm + 2 pr
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In view of ∂vr
∂um

in (39), the first equation in (47) becomes
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where the second equality follows from (39) in Corollary 3.3. Hence, we have
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where the second equality follows from (40). Exact arguments show that

(1− ur) =
4
(
b+ k

2

√
vr
vm

)(
2a+ 3k

2

√
vm
vr

)
4
(
1 + pr

pm

)(
b+ k

2

√
vr
vm

)(
2a+ 3k

2

√
vm
vr

)
−∆(vm, vr)

=
4
(
b+ k

2

√
vr
vm

)(
2a+ 3k

2

√
vm
vr

)
4pr
pm

(
b+ k

2

√
vr
vm

)(
2a+ 3k

2

√
vm
vr

)
+ 4ab+ ak

√
vr
vm

+ bk
√

vm
vr

> 0.

21



This concludes the proof.

Proof of Theorem 3.1:
In view of Theorem 2.1, it suffices to show that the value functions Vm, Vr in (30) solve the
following ODE system:ρVm = Mx− u∗

mv
∗2
r − (1− u∗

r)v
∗2
m + V ′

m

[
(av∗r + bv∗m + k

√
v∗rv

∗
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√
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]
+ V ′′

mσ(x)2

2
,
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[
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√
v∗rv

∗
m)

√
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]
+ V ′′

r σ(x)2

2
,

(48)

where the solution pair (v∗m, v∗r) of (6) admits the form in (28) and the solution pair (u∗
m, u

∗
r)

of (7) admits the form in (29) .
Indeed, in terms of the assumed forms of Vi in (30) and vi in (28), for i = r,m, (34)-(35)

yield (1− um) =
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2γ2
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2
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,
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)
,

(49)

yielding (29). The desired expressions for u∗
r and u∗

m readily follow by recalling that u∗
r and

u∗
m must be in [0, 1].

On the other hand, (1− ur) and (1− um) in Proposition 3.4 now become
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(50)

Equating (49) and (50) yields the first two equations in (31).
To determine the constants αm, αr, βm, βr, substituting the assumed forms of Vi and vi,

together with (1 − ui) in (49), for i = r,m, into the ODE system in (48) and matching
coefficients yields the remaining four equations in (31). This concludes the proof.

4 Numerical Analysis
Since it is quite difficult to obtain an explicit solution of the system of equations (31) in the
general case, we performed a numerical analysis to get key insights into the dependence of
the decision variables on the various model parameters. We numerically solved the above
set of equations using Mathematica for a variety of parameter sets and obtained similar
results. In this section we present some sample results highlighting the insights obtained.
For this purpose, we define Cm = umγr

4 + (1 − ur)γm
4, Cr = urγm

4 + (1 − um)γr
4, and
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∆m−r = umγr
4−urγm

4. The discussion below highlights our findings on the impact of model
parameters on the following: participation rates (um, ur), manufacturer’s and retailer’s total
advertising expenses (represented by Cm, and Cr, respectively), total expenses on national
and local advertising (represented by γm

4, and γr
4, respectively), and net transfer of money

from the manufacturer to the retailer (represented by ∆m−r). We also investigate the impact
of various parameters on the value functions of the two parties. Figures (5)-(23) show value
functions of the retailer and the manufacturer for two different values of the initial market
share, i.e., x0 = 0.1 and x0 = 0.6. All the figures corresponding to the numerical analysis
are presented together following a brief discussion of results.

Figure 1: Participation Rates vs M Figure 2: Mfg and ret’s total ad. expenses vs M

Figure 3: National & local ad. expenses vs M Figure 4: Net transfer from mfg to ret vs M

• Impact of margins (Figures 1-5): As the manufacturer’s margin M increases, the man-
ufacturer has a higher incentive to advertise more. Thus, the manufacturer’s support
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Figure 5: Value functions vs M

to the retailer increases whereas that of the retailer decreases. Also, the manufac-
turer’s total expense in advertising increases whereas that of the retailer decreases.
The national advertising is higher than the local when M < R and vice versa. Also, as
M increases, the net money transfer from manufacturer to the retailer increases. This
indicates the manufacturer’s increasing incentive to the retailer to advertise more as
greater advertising is more beneficial to the manufacturer than the retailer. Figure 5
shows that the value function of the manufacturer increases sharply as his margin M

increases, whereas the impact on the retailer is relatively much less prominent. Fur-
thermore, the profits of both parties increase marginally as the initial market share
increases. Above results are symmetric in nature when the retailer’s margin R changes
instead.

Figure 6: Participation Rates vs a Figure 7: Mfg and ret’s total ad. expense vs a

• Impact of advertising effectiveness (Figures 6-17): As the retailer’s advertising ef-
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Figure 8: National & local ad. expense vs a Figure 9: Net transfer from mfg to ret vs a

Figure 10: Participation Rates vs k Figure 11: Advertising expenses vs k

Figure 12: Participation Rates vs k Figure 13: Mfg and ret’s total ad. expense vs k
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Figure 14: National & local ad. expense vs k Figure 15: Net transfer from mfg to ret vs k

Figure 16: Value function vs a Figure 17: Value function vs k

fectiveness a increases, ur, i.e., retailer’s advertising support to the manufacturer in-
creases. The retailer’s total advertising expenditure and the total local level advertising
increase as well. However, the manufacturer’s participation rate, his advertising ex-
pense, and the total national advertising decrease. Also, the net transfer of money
from the manufacturer to the retailer increases as a increases. The net transfer is to
the retailer if a > b, i.e., when the retailer’s advertising effort is more effective than the
manufacturer’s and to the manufacturer if a < b. Symmetric results are obtained when
b is changed. On the other hand, as the common advertising effectiveness parameter
k increases with M = R and a = b, the participation rates of the two channel mem-
bers are equal and decrease. The national advertising expense of the manufacturer
equals the local advertising expense of the retailer and both decrease as the common
effectiveness parameter increases. Thus, the net transfer of money between the two
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parties is always zero in this case. However, when M ̸= R, the participation rates and
the advertising expenses, as well as their rates of change are different. For M > R,

the net transfer of money from manufacturer to retailer is positive and increases as k

increases. When M = R and a = b we find that the value functions of both the parties
are equal and increase with k. Figure 16 shows that the value functions increase as
a increases, and are also higher when the initial market share is higher. When a = b

and M = R, the value functions of both parties are equal and increase as k increases
(Figure 17).

Figure 18: Participation Rates vs δ Figure 19: Mfg and ret’s total ad. expense vs δ

Figure 20: National & local ad. expense vs δ Figure 21: Net transfer from mfg to ret vs δ

• Impact of the decay factor δ (Figures 18-22) and the discount rate ρ (Figures 24-27):
It was observed that when M = R and a = b, the participation rate for both members
are the same and do not change with δ or ρ. Also, with M = R and a = b, we have
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Figure 22: Value function vs δ Figure 23: Value function vs ρ

Figure 24: Participation Rates vs ρ Figure 25: Mfg and ret’s total ad. expense vs ρ

Figure 26: National & local ad. expense vs ρ Figure 27: Net transfer from mfg to ret vs ρ

28



Cm = Cr = γm
4 = γr

4, and they decrease as δ or ρ increases. Thus, the advertising
expenses are equal and decrease with δ as well as with ρ. The net transfer of money
is therefore zero in this case. Figures (18)-(27), on the other hand, show changes in
these quantities with δ and ρ, when M ̸= R. When M = R and a = b, the profits of
both parties decrease as δ increases (Figure 22), and also as ρ increases (Figure 23).

4.1 Comparison with the Traditional Model

Most game-theoretic models in cooperative advertising consider the scenario in which the
mechanism of cooperation is supported by one party to the other, and more specifically,
from the manufacturer to the retailer in its promotional efforts. In this paper, using the
mixed-leadership framework, we are able to analyze the situation in which each party may
offer support to the other in its advertising program. Therefore, it will be interesting to
compare the two scenarios, i.e., when there is no clear leader and both may offer support
to each other v.s. when one party (manufacturer) is the leader and offers support to the
other (retailer). To analyze this, we solved the model by forcing the participation rate ur(t)

of the retailer to be zero. Thus, in this case, in the first stage the manufacturer announces
his participation rate (um(t)) for the retailer, followed by the second stage in which both
choose their advertising efforts over time, i.e., vm(t) and vr(t). Figures (28)-(31) present the
numerical insights and comparison of the results with the mixed-leadership scenario solved
earlier. We find that in the absence of any subsidy offered by the retailer, the manufacturer’s
participation rate for the retailer is slightly higher as shown in Figure (28), whereas the total
advertising expense by both parties are somewhat lower as shown in Figure (29). Figure
(30) shows that in the absence of the retailer’s support, while the total national advertising
expenditure decreases, the total local advertising expenditure increases. Quite obviously,
the net transfer from the manufacturer to the retailer is always positive as the retailer does
not offer any money to the manufacturer (Figure 31). Figure 32 shows the value functions
of the retailer and the manufacturer when ur = 0, in comparison with the general scenario
when both participation rates can be positive. We find that the value functions are slightly
lower for both parties when the retailer cannot offer any support to the manufacturer.

5 Concluding Remarks
In this paper, we provide a theoretical framework to study a class of stochastic Stackelberg-
Nash differential games. We investigate the situation where the roles of two players are mixed:
They are leaders on some decisions and followers on the remaining decisions. We establish
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Figure 28: Participation Rates vs M
when ur = 0

Figure 29: Mfg and ret’s total ad. expense vs M
when ur = 0

Figure 30: National & local ad. expense vs M
when ur = 0

Figure 31: Net transfer from mfg to ret vs M
when ur = 0

a notion of a feedback Stackelberg-Nash equilibrium and prove a verification theorem via
dynamic programming, which reduces the task of finding equilibrium strategies in functional
spaces to two simple steps. The first steps focuses on solving two static Nash games at the
Hamiltonian level in a nested version. The second step solves the corresponding system of
HJB equations in terms of the solutions to the two nested Nash games.

While the solutions to the associated HJB equations are difficult to establish in general,
we consider a representative example of a mixed leadership game in which solving the associ-
ated HJB equations can be reduced to a problem of solving a system of algebraic equations.
Specifically, we adopt the mixed leadership game framework to study a cooperative adver-
tising problem in a manufacturer-retailer supply chain which, different from the traditional
framework, incorporates the flexibility of the support of the retailer on the manufacturer’s
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Figure 32: Value functions vs M
when ur = 0, x0 = 0.1

advertising effort. Based on the verification theorem, we find an equilibrium associated with
affine value functions and reduce the problem to a system of quartic algebraic equations. We
numerically solve these equations and conduct the sensitivity analysis for the equilibrium
behaviors. One interesting thing is that, compared to the traditional cooperative advertising
model, mutual supports for the other party’s advertising effort benefit both supply chain
partners.

The mixed-leadership game framework in this paper suggests several future investiga-
tions. Toward the development in cooperative advertising, the mixed leadership game pro-
vides the modelling flexibility that allows players to take the mixed leadership roles in dif-
ferent pricing and advertising contexts. Indeed, we have shown that the players in the
mixed-leadership games can achieve higher values that those in the traditional cooperative
advertising models in this paper. It is therefore imperative to see similar comparisons under
different contexts. Secondly, the analysis on the mixed leadership games with controls in
the drift and the volatility terms in a high-dimensional setting proves to be another impor-
tant direction with far-reaching potential applications. Finally, the specific structures in the
representative example explored in this paper can also offer new insights into searching for
a broader class of mixed game models with tractable, feedback Nash-Stackelberg equilibria.
We shall consider these developments in future works.
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