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Time series models are ubiquitous in science, arising in any situation where researchers seek to understand 
how a system’s behaviour changes over time. A key problem in time series modelling is inference; 
determining properties of the underlying system based on observed time series. For both statistical and 
mechanistic models, inference involves finding parameter values, or distributions of parameters values, 
which produce outputs consistent with observations. A wide variety of inference techniques are available 
and different approaches are suitable for different classes of problems. This variety presents a challenge 
for researchers, who may not have the resources or expertise to implement and experiment with these 
methods. PINTS (Probabilistic Inference on Noisy Time Series — https://github.com/pints-team/pints) is 
an open-source (BSD 3-clause license) Python library that provides researchers with a broad suite of 
non-linear optimisation and sampling methods. It allows users to wrap a model and data in a transparent 
and straightforward interface, which can then be used with custom or pre-defined error measures for 
optimisation, or with likelihood functions for Bayesian inference or maximum-likelihood estimation. 
Derivative-free optimisation algorithms — which work without harder-to-obtain gradient information 
— are included, as well as inference algorithms such as adaptive Markov chain Monte Carlo and nested 
sampling, which estimate distributions over parameter values. By making these statistical techniques 
available in an open and easy-to-use framework, PINTS brings the power of these modern methods to a 
wider scientific audience.
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(1) Overview
Introduction
Time series models are common in science, where 
they are used to describe the dynamics of system 
behaviours. In many cases, these models are non-linear 
and impossible to solve analytically, so that the forward 
problem (predicting the model output for a given set of 
parameters) is computationally hard. For such models, 
there is no single method which can reliably solve the 

inverse problem of estimating parameter values from a 
noisy time trace. Much like there is a variety of forward 
models, there is a diversity of approaches for parameter 
inference. Further, it is often unclear which approach to 
apply when, meaning that researchers are required to 
implement a range of methods before successfully fitting 
their model to data.

PINTS is a software framework that allows users to 
easily trial and apply different inference methods to their 
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problem. The inference methods supplied by PINTS fall 
into two broad categories: optimisers, which attempt to 
find a single best parameter vector, and samplers, which 
aim to estimate a probability distribution over parameter 
values that are compatible with observed results. Users are 
expected to already have a forward model (for example, a 
simulation) at their disposal, which they make available 
to PINTS by writing a simple Python wrapper. They then 
define a Problem (a forward model plus a data set), on 
which either an ErrorMeasure (for optimisation) or 
a LogPDF (for optimisation and sampling) is defined. 
Currently available optimisers include CMA-ES [6], XNES 
[5], SNES [21], and Particle Swarm Optimisation (PSO) 
[12]. Sampling methods include Random Walk Metropolis 
Markov chain Monte Carlo (MCMC) [13, 15], adaptive 
covariance MCMC [10], Population MCMC [8], Differential 
Evolution [23], DREAM [25], emcee [3], Hamiltonian 
MCMC [17], and MALA [4]. In addition, ellipsoidal [16] and 
rejection nested samplers [22] are provided. Convenience 
plotting methods are provided to quickly visualise the 
results, as well as diagnostic tools to inspect the validity of 
the results. An example of an optimisation problem and 
its solution using PINTS is shown in Figure 1.

PINTS was developed as a community effort by 
researchers in electrochemistry, cardiac electrophysiology, 
and statistics, to compare different methods for solving 
inverse problems in a common framework. It features 
a clean and transparent object-orientated API that is 
designed to easily accommodate new error measures, log-
likelihoods, optimisers and samplers, allowing users to 
utilise pre-built components as much as possible, while 
adding their own code for problem-specific areas. The 
PINTS team aims for full test coverage, and includes unit 
testing and extended statistical tests to verify the correct 
operation of all methods.

Early research using PINTS in electrochemistry 
has included fitting a differential-algebraic equation 
(DAE) model of reduction-oxidation to voltammetry 
measurements of a Polyoxometalates molecule [19], 
and the design and application of a custom hierarchical 
statistical model for repeat voltammetry experiments of a 
Ferricynide process [18].

Optimisation algorithms are implemented in many 
different software packages, (see, for example, the 
Python scipy.optimize module), but are often 
biased towards gradient-based methods, which can 
perform poorly for many ordinary and partial differential 
equations used in time series modelling. PINTS therefore 
focuses on derivative-free optimisers, although we plan to 
add gradient-based methods for comparison. In contrast 
with more general-purpose optimisation software, PINTS 
contains a number of error measures specifically suited 
to time series models, and adds the ability to use any 
PINTS log-likelihood class as an error measure in order to 
perform maximum likelihood estimation (MLE).

Dakota [1] is a widely regarded package for parameter 
fitting and uncertainty quantification and is most similar 
to PINTS in that it offers a generic interface to call an 
(assumed expensive) model, as well as a wide variety of 
optimisers and samplers. In contrast to the PINTS Python 
API, Dakota uses either a C++ or file input/output process 
for communication between user models and the library, 
and does not provide options for specifying either the 
error measures or the log-likelihoods of the inverse 
problem. However, Dakota has some features not yet 
available in PINTS, such as the option to train a surrogate 
model, useful for very expensive model evaluations.

Other software packages that enable parameter 
inference and sampling for ODE models include BioBayes 
[26], ABC-SysBio [14], SYSBIONS [9], PyMC3 [20], and 

Figure 1: (Left) An experimentally measured noisy time series, and a simulated one. (Right) An example of an 
optimisation procedure with PINTS. Note that the actual simulation code is omitted from the example model wrapper 
at the top: this is the user-provided part, and can be written in Python or any other language that can interface with 
Python, allowing computationally heavy forward simulations to be handled entirely outside of PINTS. This image, 
and the full example code, can also be found in the PINTS repository.
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Stan [2]. These packages use either a common model 
description format (for example, SBML) or their own 
language (for example, Stan’s probabilistic programming 
language) to specify the model, presenting additional 
learning hurdles for a user and often restricting the class 
of models which can be fit. By contrast, PINTS aims to be 
as general as possible to support a wider variety of models 
(for example, PDEs). PyMC3 [20] does provide a similar 
generic model interface to PINTS but, as with the other 
packages, specialises in one sampling method, whereas 
PINTS aims to support a wide variety of methods with 
the assumption that no one sampling method is suitable 
for all models of interest. BCM [24] offers both a generic 
interface (via C++) and a wide variety of samplers, but does 
not supply any likelihood functions and is unfortunately 
largely undocumented.

Implementation and architecture
PINTS is designed around two core ideas: 1. PINTS should 
work with a wide range of time series models, and make 
no demands on how they are implemented other than 
a minimal input/output interface. 2. It is assumed that 
model evaluation (simulation) is the most costly step in 
any optimisation or sampling routine.

The decision to use Python fits both these criteria: Python 
interfaces well with C and C++, which are typically used 
for high-performance simulation, and any performance 
hit of using the high-level, easy to read and write language 
Python is overshadowed by simulation time.

Defining an optimisation or sampling problem
All optimisers operate on a callable ErrorMeasure 
object that describes a function to minimise or on a 
callable LogPDF object that describes a probability 

density function (PDF) to maximise. Similarly, all 
samplers start from a callable LogPDF, so that the same 
probability function can be used with both optimisers 
and samplers. The natural logarithm of the PDF is used 
for computational efficiency and accuracy, and we 
allow the probability density to be unnormalised (i.e. 
its integral does not have to sum to 1). Figure 2 shows 
how a user-defined model can be wrapped in a PINTS 
ForwardModel and combined with time points and 
measured values to create a Problem from which several 
standard ErrorMeasures and LogPDFs can be created. 
For inference in a Bayesian context, a LogPosterior 
class and several LogPrior distributions are provided. 
If a given LogPDF or ErrorMeasure cannot be 
constructed from PINTS classes, users can also define their 
own classes.

Implementation of optimisers and samplers
Most PINTS samplers and optimisers are implemented 
using a so-called ask-and-tell interface, inspired by the 
Python implementation of CMA-ES [6] (https://github.
com/CMA-ES/pycma). In this framework, the details of 
solving the forward problem are partitioned away from 
the rest of the sampling or optimising algorithm. For each 
iteration the following steps are undertaken (Figure 3): 
first, the user calls ask() to obtain one or more parameter 
values from their chosen method — these values are 
typically vectors generated stochastically conditional 
on an internal system state; second, the user solves the 
forward model and generates a score for each parameter 
vector, for example, an error measure or (unnormalised) 
posterior probability; third, the user calls tell() to pass 
the score back to the method, which can then update its 
internal state and finish the iteration. For example, in 

Figure 2: An overview of the main PINTS classes used to define error measures (for optimisation) and PDFs (for 
optimisation or sampling). Users write a wrapper class for their model, making it available to pints, and must provide 
the experimental data using any Python sequence structure (for example, a list or a NumPy array). With these 
ingredients, a (single or multi-output) problem can be defined that can then be used with any of the available error 
measure or likelihood classes. Alternatively, users implement their own ErrorMeasure or LogPDF, which allows 
for further customisation and for problems other than time series problems to be solved.

https://github.com/CMA-ES/pycma
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many MCMC methods each ask() call returns a single 
proposed sample to be evaluated by the user, and the 
following tell() then either accepts or rejects this 
point based on its probability. For optimisers such as 
CMA-ES, ask() returns a set of points in parameter 
space, and the scores passed in via tell() are then 
used to estimate the local gradient, which is used to move 
towards the estimated optimum. This framework has a 
number of advantages: since optimisation or sampling 
can take hours or even days, this allows programs using 
PINTS to provide regular user feedback and logging 
(which is not possible when the routine is implemented 
as a single monolithic function call); allows users with 
access to CPU clusters or GPU machines to implement 
their own parallelised evaluation of ErrorMeasures 
and LogPDFs; lets users implement their own strategies 
(for example, by dynamically changing hyperparameters) 
and/or stopping criteria; and, finally, by delineating the 
sampling or optimisation algorithm’s steps from the 
methods used to solve the forward problem, encourages 
development of transparent and modular code.

Running optimisation and sampling
For more casual users (whom we expect will be the 
majority), PINTS includes ‘controller’ classes (e.g. 
OptimisationController or MCMCController) 
that provide a higher level interface (see e.g. Figure 
1). When creating a controller, the user specifies the 
name of the lower-level method to use (e.g. CMAES, 
or AdaptiveCovarianceMCMC) and passes in an 
ErrorMeasure or LogPDF. The controller then 
instantiates and manages this method, as well as providing 
user-configurable stopping criteria (e.g. maximum 
number of iterations) and logging to screen and/or the 
filesystem. An important difference with the lower-level 
ask-and-tell interface, is that controllers handle function 
evaluation, and can distribute evaluations over multiple 

CPU cores using Python multiprocessing. This provides 
users with out-of-the-box parallelisation, while users 
looking to implement custom parallelisation can fall back 
on the ask-and-tell interface.

Quality control
PINTS has three levels of testing: unit testing, functional 
testing, and comparative testing. Unit tests are used to 
test the functionality of simple (deterministic) methods, 
and to check that complex (pseudo-random) methods run 
without raising exceptions. All the unit tests are available 
to be run by a user to ensure the software is working 
correctly. Continuous integration is carried out using 
Travis CI (Ubuntu Trusty distribution with Python versions 
2.7, 3.4, 3.5 and 3.6, and OS/X with Python version 2.7) 
and AppVeyor (Windows Server 2011 R2 with Python 
versions 2.7, 3.4, 3.5 and 3.6). PINTS uses Flake8 linter 
tests to ensure that contributed code conforms to best 
practices and code coverage tests to ensure that all code 
is sufficiently tested and documented. Functional testing 
of the methods is performed separately and is used to test 
the method’s behaviour from different (pseudo-random) 
initial conditions. Analysis of functional checking is done 
both visually and statistically (for example, if recent results 
deviate significantly from previous results this indicates 
the possible introduction of a bug). In our current 
solution, functional checking is run automatically but the 
results are interpreted by the PINTS developers. Work is 
ongoing to develop an automated analysis system so that 
these functional tests can be included in the continuous 
integration pipeline. Finally, in comparative testing a 
number of problems are set up and solved with different 
methods in order to compare the solutions they return 
and evaluate their performance. Performance testing is 
partially automated, but tests are initiated and analysed 
by the developer.

(2) Availability
Operating system
PINTS uses no functions specific to any operating 
system (OS) and so can run on any OS that provides 
Python. Optional parallelisation is provided that uses 
the Python multiprocessing module, which works 
best on UNIX-based systems (for example, Linux and 
OS/X), but runs on Windows with slightly reduced  
performance.

Programming language
PINTS requires Python 2.7 or higher, or Python 3.4 or 
higher.

Additional system requirements
PINTS has a minimal disk space footprint (approximately 
2MB) and can be run on single-processor devices or headless 
on multi-processor machines (for example, via ssh).

Dependencies
PINTS uses the NumPy (version 1.8 or higher) and SciPy 
(version 0.14 or higher, [11]) libraries extensively. The 
default optimisation method is CMA-ES, for which the 
cma package (version 2 or higher) is used. The remaining 

Figure 3: The three steps iterated in an ask-and-tell 
interface. The stars here represent code specific to 
the chosen sampling or optimiser method and θ′ 
is the input parameter vector proposed by ask(). 
The state(.) of the system varies according to the 
method but typically holds a set of input parameter 
vectors and other constant or dynamic variables used 
by the ask() and tell() steps.
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optimisation and sampling methods require no further 
dependencies. Finally, Matplotlib (version 1.5 or higher [7]) 
is required for installation, but it is possible to use PINTS 
without Matplotlib or with a different plotting library.
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(3) Reuse potential
Detailed documentation is provided on using PINTS with 
user-supplied models (see, for example, the writing-
a-model example on the GitHub repository). While 
PINTS was designed primarily with biological and 
electrochemical problems in mind, there is nothing to 
prohibit its use on time series models from other fields. 
Similarly, while the implemented ErrorMeasure and 
LogPDF classes were chosen to work well with time 
series problems, PINTS can be used outside this setting 
(in fact, utility functions fmin and curve_fit are 
provided specifically for this purpose). Users are also 
free to create their own ErrorMeasure or LogPDF  
classes that do not rely on PINTS ForwardModel or 
Problem classes, which allows PINTS to be used beyond 
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communication.
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