
Clerx, M, et al. 2019 Probabilistic Inference on Noisy Time
Series (PINTS). Journal of Open Research Software, 7: 23.
DOI: https://doi.org/10.5334/jors.252

Journal of
open research software

SOFTWARE METAPAPER

Probabilistic Inference on Noisy Time Series (PINTS)
Michael Clerx1, Martin Robinson1, Ben Lambert2, Chon Lok Lei1, Sanmitra Ghosh1,
Gary R. Mirams3 and David J. Gavaghan1

1	Department of Computer Science, University of Oxford, Oxford, UK
2	MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, UK
3	Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham,
Nottingham, UK

Corresponding author: Michael Clerx (michael.clerx@cs.ox.ac.uk)

Time series models are ubiquitous in science, arising in any situation where researchers seek to understand
how a system’s behaviour changes over time. A key problem in time series modelling is inference;
determining properties of the underlying system based on observed time series. For both statistical and
mechanistic models, inference involves finding parameter values, or distributions of parameters values,
which produce outputs consistent with observations. A wide variety of inference techniques are available
and different approaches are suitable for different classes of problems. This variety presents a challenge
for researchers, who may not have the resources or expertise to implement and experiment with these
methods. PINTS (Probabilistic Inference on Noisy Time Series — https://github.com/pints-team/pints) is
an open-source (BSD 3-clause license) Python library that provides researchers with a broad suite of
non-linear optimisation and sampling methods. It allows users to wrap a model and data in a transparent
and straightforward interface, which can then be used with custom or pre-defined error measures for
optimisation, or with likelihood functions for Bayesian inference or maximum-likelihood estimation.
Derivative-free optimisation algorithms — which work without harder-to-obtain gradient information
— are included, as well as inference algorithms such as adaptive Markov chain Monte Carlo and nested
sampling, which estimate distributions over parameter values. By making these statistical techniques
available in an open and easy-to-use framework, PINTS brings the power of these modern methods to a
wider scientific audience.

Keywords: Time series models; non-linear optimisation; MCMC sampling; nested sampling; Bayesian
inference; Python
Funding statement: M.C., G.R.M. and D.J.G. acknowledge support from the UK Biotechnology and
Biological Sciences Research Council [BBSRC grant number BB/P010008/1]; M.R., S.G. and D.J.G.
gratefully acknowledge research support from the UK Engineering and Physical Sciences Research Council
Cross-Disciplinary Interface Programme [EPSRC grant number EP/I017909/1]; C.L.L. acknowledges
support from the Clarendon Scholarship Fund, the EPSRC and the UK Medical Research Council (MRC)
[EPSRC grant number EP/L016044/1]; B.L. acknowledges support from the UK Engineering and Physical
Sciences Research Council [EPSRC grant number EP/F500394/1]; and S.G. and G.R.M. acknowledge
support from the Wellcome Trust & Royal Society [Wellcome Trust grant numbers 101222/Z/13/Z and
212203/Z/18/Z].

(1) Overview
Introduction
Time series models are common in science, where
they are used to describe the dynamics of system
behaviours. In many cases, these models are non-linear
and impossible to solve analytically, so that the forward
problem (predicting the model output for a given set of
parameters) is computationally hard. For such models,
there is no single method which can reliably solve the

inverse problem of estimating parameter values from a
noisy time trace. Much like there is a variety of forward
models, there is a diversity of approaches for parameter
inference. Further, it is often unclear which approach to
apply when, meaning that researchers are required to
implement a range of methods before successfully fitting
their model to data.

PINTS is a software framework that allows users to
easily trial and apply different inference methods to their

https://doi.org/10.5334/jors.252
mailto:michael.clerx@cs.ox.ac.uk
https://github.com/pints-team/pints

Clerx et al: Probabilistic Inference on Noisy Time Series (PINTS)Art. 23, page 2 of 6

problem. The inference methods supplied by PINTS fall
into two broad categories: optimisers, which attempt to
find a single best parameter vector, and samplers, which
aim to estimate a probability distribution over parameter
values that are compatible with observed results. Users are
expected to already have a forward model (for example, a
simulation) at their disposal, which they make available
to PINTS by writing a simple Python wrapper. They then
define a Problem (a forward model plus a data set), on
which either an ErrorMeasure (for optimisation) or
a LogPDF (for optimisation and sampling) is defined.
Currently available optimisers include CMA-ES [6], XNES
[5], SNES [21], and Particle Swarm Optimisation (PSO)
[12]. Sampling methods include Random Walk Metropolis
Markov chain Monte Carlo (MCMC) [13, 15], adaptive
covariance MCMC [10], Population MCMC [8], Differential
Evolution [23], DREAM [25], emcee [3], Hamiltonian
MCMC [17], and MALA [4]. In addition, ellipsoidal [16] and
rejection nested samplers [22] are provided. Convenience
plotting methods are provided to quickly visualise the
results, as well as diagnostic tools to inspect the validity of
the results. An example of an optimisation problem and
its solution using PINTS is shown in Figure 1.

PINTS was developed as a community effort by
researchers in electrochemistry, cardiac electrophysiology,
and statistics, to compare different methods for solving
inverse problems in a common framework. It features
a clean and transparent object-orientated API that is
designed to easily accommodate new error measures, log-
likelihoods, optimisers and samplers, allowing users to
utilise pre-built components as much as possible, while
adding their own code for problem-specific areas. The
PINTS team aims for full test coverage, and includes unit
testing and extended statistical tests to verify the correct
operation of all methods.

Early research using PINTS in electrochemistry
has included fitting a differential-algebraic equation
(DAE) model of reduction-oxidation to voltammetry
measurements of a Polyoxometalates molecule [19],
and the design and application of a custom hierarchical
statistical model for repeat voltammetry experiments of a
Ferricynide process [18].

Optimisation algorithms are implemented in many
different software packages, (see, for example, the
Python scipy.optimize module), but are often
biased towards gradient-based methods, which can
perform poorly for many ordinary and partial differential
equations used in time series modelling. PINTS therefore
focuses on derivative-free optimisers, although we plan to
add gradient-based methods for comparison. In contrast
with more general-purpose optimisation software, PINTS
contains a number of error measures specifically suited
to time series models, and adds the ability to use any
PINTS log-likelihood class as an error measure in order to
perform maximum likelihood estimation (MLE).

Dakota [1] is a widely regarded package for parameter
fitting and uncertainty quantification and is most similar
to PINTS in that it offers a generic interface to call an
(assumed expensive) model, as well as a wide variety of
optimisers and samplers. In contrast to the PINTS Python
API, Dakota uses either a C++ or file input/output process
for communication between user models and the library,
and does not provide options for specifying either the
error measures or the log-likelihoods of the inverse
problem. However, Dakota has some features not yet
available in PINTS, such as the option to train a surrogate
model, useful for very expensive model evaluations.

Other software packages that enable parameter
inference and sampling for ODE models include BioBayes
[26], ABC-SysBio [14], SYSBIONS [9], PyMC3 [20], and

Figure 1: (Left) An experimentally measured noisy time series, and a simulated one. (Right) An example of an
optimisation procedure with PINTS. Note that the actual simulation code is omitted from the example model wrapper
at the top: this is the user-provided part, and can be written in Python or any other language that can interface with
Python, allowing computationally heavy forward simulations to be handled entirely outside of PINTS. This image,
and the full example code, can also be found in the PINTS repository.

������������

��������������������������������
�
��� ����������
���������	
�
��� ������������
��� ������
���������	������
���������
��
�
��� ���
������
��� �������������
�������������

��
���������������������
��������������������������
�������

������
���������������������������
�
��� ��������
����
����������

������
�����������������
�	�������������������

�������������������� ���­

����
��������������������
������������������
��� ������
�����������������������
����������������

����
�������������������
������������

�����������������

�������������

Clerx et al: Probabilistic Inference on Noisy Time Series (PINTS) Art. 23, page 3 of 6

Stan [2]. These packages use either a common model
description format (for example, SBML) or their own
language (for example, Stan’s probabilistic programming
language) to specify the model, presenting additional
learning hurdles for a user and often restricting the class
of models which can be fit. By contrast, PINTS aims to be
as general as possible to support a wider variety of models
(for example, PDEs). PyMC3 [20] does provide a similar
generic model interface to PINTS but, as with the other
packages, specialises in one sampling method, whereas
PINTS aims to support a wide variety of methods with
the assumption that no one sampling method is suitable
for all models of interest. BCM [24] offers both a generic
interface (via C++) and a wide variety of samplers, but does
not supply any likelihood functions and is unfortunately
largely undocumented.

Implementation and architecture
PINTS is designed around two core ideas: 1. PINTS should
work with a wide range of time series models, and make
no demands on how they are implemented other than
a minimal input/output interface. 2. It is assumed that
model evaluation (simulation) is the most costly step in
any optimisation or sampling routine.

The decision to use Python fits both these criteria: Python
interfaces well with C and C++, which are typically used
for high-performance simulation, and any performance
hit of using the high-level, easy to read and write language
Python is overshadowed by simulation time.

Defining an optimisation or sampling problem
All optimisers operate on a callable ErrorMeasure
object that describes a function to minimise or on a
callable LogPDF object that describes a probability

density function (PDF) to maximise. Similarly, all
samplers start from a callable LogPDF, so that the same
probability function can be used with both optimisers
and samplers. The natural logarithm of the PDF is used
for computational efficiency and accuracy, and we
allow the probability density to be unnormalised (i.e.
its integral does not have to sum to 1). Figure 2 shows
how a user-defined model can be wrapped in a PINTS
ForwardModel and combined with time points and
measured values to create a Problem from which several
standard ErrorMeasures and LogPDFs can be created.
For inference in a Bayesian context, a LogPosterior
class and several LogPrior distributions are provided.
If a given LogPDF or ErrorMeasure cannot be
constructed from PINTS classes, users can also define their
own classes.

Implementation of optimisers and samplers
Most PINTS samplers and optimisers are implemented
using a so-called ask-and-tell interface, inspired by the
Python implementation of CMA-ES [6] (https://github.
com/CMA-ES/pycma). In this framework, the details of
solving the forward problem are partitioned away from
the rest of the sampling or optimising algorithm. For each
iteration the following steps are undertaken (Figure 3):
first, the user calls ask() to obtain one or more parameter
values from their chosen method — these values are
typically vectors generated stochastically conditional
on an internal system state; second, the user solves the
forward model and generates a score for each parameter
vector, for example, an error measure or (unnormalised)
posterior probability; third, the user calls tell() to pass
the score back to the method, which can then update its
internal state and finish the iteration. For example, in

Figure 2: An overview of the main PINTS classes used to define error measures (for optimisation) and PDFs (for
optimisation or sampling). Users write a wrapper class for their model, making it available to pints, and must provide
the experimental data using any Python sequence structure (for example, a list or a NumPy array). With these
ingredients, a (single or multi-output) problem can be defined that can then be used with any of the available error
measure or likelihood classes. Alternatively, users implement their own ErrorMeasure or LogPDF, which allows
for further customisation and for problems other than time series problems to be solved.

https://github.com/CMA-ES/pycma
https://github.com/CMA-ES/pycma

Clerx et al: Probabilistic Inference on Noisy Time Series (PINTS)Art. 23, page 4 of 6

many MCMC methods each ask() call returns a single
proposed sample to be evaluated by the user, and the
following tell() then either accepts or rejects this
point based on its probability. For optimisers such as
CMA-ES, ask() returns a set of points in parameter
space, and the scores passed in via tell() are then
used to estimate the local gradient, which is used to move
towards the estimated optimum. This framework has a
number of advantages: since optimisation or sampling
can take hours or even days, this allows programs using
PINTS to provide regular user feedback and logging
(which is not possible when the routine is implemented
as a single monolithic function call); allows users with
access to CPU clusters or GPU machines to implement
their own parallelised evaluation of ErrorMeasures
and LogPDFs; lets users implement their own strategies
(for example, by dynamically changing hyperparameters)
and/or stopping criteria; and, finally, by delineating the
sampling or optimisation algorithm’s steps from the
methods used to solve the forward problem, encourages
development of transparent and modular code.

Running optimisation and sampling
For more casual users (whom we expect will be the
majority), PINTS includes ‘controller’ classes (e.g.
OptimisationController or MCMCController)
that provide a higher level interface (see e.g. Figure
1). When creating a controller, the user specifies the
name of the lower-level method to use (e.g. CMAES,
or AdaptiveCovarianceMCMC) and passes in an
ErrorMeasure or LogPDF. The controller then
instantiates and manages this method, as well as providing
user-configurable stopping criteria (e.g. maximum
number of iterations) and logging to screen and/or the
filesystem. An important difference with the lower-level
ask-and-tell interface, is that controllers handle function
evaluation, and can distribute evaluations over multiple

CPU cores using Python multiprocessing. This provides
users with out-of-the-box parallelisation, while users
looking to implement custom parallelisation can fall back
on the ask-and-tell interface.

Quality control
PINTS has three levels of testing: unit testing, functional
testing, and comparative testing. Unit tests are used to
test the functionality of simple (deterministic) methods,
and to check that complex (pseudo-random) methods run
without raising exceptions. All the unit tests are available
to be run by a user to ensure the software is working
correctly. Continuous integration is carried out using
Travis CI (Ubuntu Trusty distribution with Python versions
2.7, 3.4, 3.5 and 3.6, and OS/X with Python version 2.7)
and AppVeyor (Windows Server 2011 R2 with Python
versions 2.7, 3.4, 3.5 and 3.6). PINTS uses Flake8 linter
tests to ensure that contributed code conforms to best
practices and code coverage tests to ensure that all code
is sufficiently tested and documented. Functional testing
of the methods is performed separately and is used to test
the method’s behaviour from different (pseudo-random)
initial conditions. Analysis of functional checking is done
both visually and statistically (for example, if recent results
deviate significantly from previous results this indicates
the possible introduction of a bug). In our current
solution, functional checking is run automatically but the
results are interpreted by the PINTS developers. Work is
ongoing to develop an automated analysis system so that
these functional tests can be included in the continuous
integration pipeline. Finally, in comparative testing a
number of problems are set up and solved with different
methods in order to compare the solutions they return
and evaluate their performance. Performance testing is
partially automated, but tests are initiated and analysed
by the developer.

(2) Availability
Operating system
PINTS uses no functions specific to any operating
system (OS) and so can run on any OS that provides
Python. Optional parallelisation is provided that uses
the Python multiprocessing module, which works
best on UNIX-based systems (for example, Linux and
OS/X), but runs on Windows with slightly reduced
performance.

Programming language
PINTS requires Python 2.7 or higher, or Python 3.4 or
higher.

Additional system requirements
PINTS has a minimal disk space footprint (approximately
2MB) and can be run on single-processor devices or headless
on multi-processor machines (for example, via ssh).

Dependencies
PINTS uses the NumPy (version 1.8 or higher) and SciPy
(version 0.14 or higher, [11]) libraries extensively. The
default optimisation method is CMA-ES, for which the
cma package (version 2 or higher) is used. The remaining

Figure 3: The three steps iterated in an ask-and-tell
interface. The stars here represent code specific to
the chosen sampling or optimiser method and θ′
is the input parameter vector proposed by ask().
The state(.) of the system varies according to the
method but typically holds a set of input parameter
vectors and other constant or dynamic variables used
by the ask() and tell() steps.

ask θ’

tellscore

I.

II.

III.

forward

model
θ’ score

model prediction

data

state(t)

state(t+1)

https://github.com/pints-team/pints/tree/master/pints/tests
https://travis-ci.org/pints-team/pints
https://ci.appveyor.com/project/MichaelClerx/pints
https://github.com/pints-team/functional-testing

Clerx et al: Probabilistic Inference on Noisy Time Series (PINTS) Art. 23, page 5 of 6

optimisation and sampling methods require no further
dependencies. Finally, Matplotlib (version 1.5 or higher [7])
is required for installation, but it is possible to use PINTS
without Matplotlib or with a different plotting library.

List of contributors
Michael Clerx, Sanmitra Ghosh, Ben Lambert, Chon Lok
Lei, Martin Robinson.

Software location
Name: GitHub (release v0.2.2)
�Persistent identifier: https://github.com/pints-team/
pints/releases/tag/v0.2.2
Licence: BSD 3-clause
Publisher: Pints team
Version published: 0.2.2
Date published: 30/04/2019

Code repository
Name: GitHub (develop)
�Persistent identifier: https://github.com/pints-team/
pints
Licence: BSD 3-clause
Date published: 16/05/17

Language
English.

(3) Reuse potential
Detailed documentation is provided on using PINTS with
user-supplied models (see, for example, the writing-
a-model example on the GitHub repository). While
PINTS was designed primarily with biological and
electrochemical problems in mind, there is nothing to
prohibit its use on time series models from other fields.
Similarly, while the implemented ErrorMeasure and
LogPDF classes were chosen to work well with time
series problems, PINTS can be used outside this setting
(in fact, utility functions fmin and curve_fit are
provided specifically for this purpose). Users are also
free to create their own ErrorMeasure or LogPDF
classes that do not rely on PINTS ForwardModel or
Problem classes, which allows PINTS to be used beyond
its intended scope of time-series problems. A link to the
full API documentation can be found on the GitHub
repository, which also contains a list of examples for all
PINTS’ main features (https://github.com/pints-team/
pints/tree/master/examples). We have found that these
examples, rather than our API documentation, serve to
kick-start any new project based on PINTS.

Contact and support
We welcome questions, suggestions, bug reports, and user
contributions via the GitHub repository, which acts as a
central communication platform for PINTS. A detailed
guide on contributing to PINTS is also available there. A
Research Software Engineering group has recently been
established at Oxford university, through which we hope
to provide long-term support. In addition, we are happy
to respond to questions via e-mail or other means of
communication.

Competing Interests
The authors have no competing interests to declare.

Author Contributions
Michael Clerx and Martin Robinson authors contributed
equally to this manuscript.

References
1.	 Adam, B, Bauman, L, Bohnhoff, W, Dalbey, K,

Ebeida, M, et al. 2015 ‘Dakota, a multilevel parallel
object-oriented framework for design optimization,
parameter estimation, uncertainty quantification, and
sensitivity analysis: Version 6.0 user manual’, Technical
report, Tech. rep., Sandia NationalLaboratories. DOI:
https://doi.org/10.2172/1177048

2.	 Carpenter, B, Gelman, A, Hoffman, M D, Lee, D,
Goodrich, B, Betancourt, M, Brubaker, M, Guo,
J, Li, P and Riddell, A 2017 ‘Stan: A probabilistic
programming language’. Journal of Statistical Software,
76(1). DOI: https://doi.org/10.18637/jss.v076.i01

3.	 Foreman-Mackey, D, Hogg, D W, Lang, D and
Goodman, J 2013 ‘emcee: the MCMC hammer’.
Publications of the Astronomical Society of
the Pacific, 125(925): 306. DOI: https://doi.
org/10.1086/670067

4.	 Girolami, M and Calderhead, B 2011 ‘Riemann
manifold Langevin and Hamiltonian Monte Carlo
methods’. Journal of the Royal Statistical Society: Series
B (Statistical Methodology), 73(2): 123–214. DOI:
https://doi.org/10.1111/j.1467-9868.2010.00765.x

5.	 Glasmachers, T, Schaul, T, Yi, S, Wierstra, D
and Schmidhuber, J 2010 ‘Exponential natural
evolution strategies’. In: ‘Proceedings of the 12th
Annual Conference on Genetic and Evolutionary
Computation’, ACM, 393–400. DOI: https://doi.
org/10.1145/1830483.1830557

6.	 Hansen, N, Müller, S D and Koumoutsakos, P 2003
‘Reducing the time complexity of the derandomized
evolution strategy with covariance matrix adaptation
(CMA-ES)’. Evolutionary Computation, 11(1): 1–18.
DOI: https://doi.org/10.1162/106365603321828970

7.	 Hunter, J D 2007 ‘Matplotlib: A 2D graphics
environment’. Computing in Science & Engineering, 9(3):
90–95. DOI: https://doi.org/10.1109/MCSE.2007.55

8.	 Jasra, A, Stephens, D A and Holmes, C C 2007 ‘On
population-based simulation for static inference’.
Statistics and Computing, 17(3): 263–279. DOI:
https://doi.org/10.1007/s11222-007-9028-9

9.	 Johnson, R, Kirk, P and Stumpf, M P 2014 ‘SYSBIONS:
nested sampling for systems biology’. Bioinformatics,
31(4): 604–605. DOI: https://doi.org/10.1093/
bioinformatics/btu675

10.	Johnstone, R H, Chang, E T, Bardenet, R, De Boer, T
P, Gavaghan, D J, Pathmanathan, P, Clayton, R H and
Mirams, G R 2016. ‘Uncertainty and variability in models
of the cardiac action potential: Can we build trustworthy
models?’ Journal of Molecular and Cellular Cardiology, 96:
49–62. DOI: https://doi.org/10.1113/JP271671

11.	Jones, E, Oliphant, T and Peterson, P 2014 ‘Scipy:
open source scientific tools for Python’. http://www.
scipy.org. [Online; accessed 13-Aug-2018].

https://github.com/pints-team/pints/releases/tag/v0.2.2
https://github.com/pints-team/pints/releases/tag/v0.2.2
https://github.com/pints-team/pints
https://github.com/pints-team/pints
https://github.com/pints-team/pints/tree/master/examples
https://github.com/pints-team/pints/tree/master/examples
https://doi.org/10.2172/1177048
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.1086/670067
https://doi.org/10.1086/670067
https://doi.org/10.1111/j.1467-9868.2010.00765.x
https://doi.org/10.1145/1830483.1830557
https://doi.org/10.1145/1830483.1830557
https://doi.org/10.1162/106365603321828970
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1007/s11222-007-9028-9
https://doi.org/10.1093/bioinformatics/btu675
https://doi.org/10.1093/bioinformatics/btu675
https://doi.org/10.1113/JP271671
http://www.scipy.org
http://www.scipy.org

Clerx et al: Probabilistic Inference on Noisy Time Series (PINTS)Art. 23, page 6 of 6

12.	Kennedy, J 2011 Particle swarm optimization. In:
‘Encyclopedia of Machine Learning’, Springer, 760–766.
DOI: https://doi.org/10.1007/978-0-387-30164-8_630

13.	Lambert, B 2018 ‘A Student’s Guide to Bayesian
Statistics’. Sage Publications Ltd.

14.	Liepe, J, Barnes, C, Cule, E, Erguler, K, Kirk, P, Toni,
T and Stumpf, M P 2010 ‘ABC-SysBio-approximate
Bayesian computation in Python with GPU support’.
Bioinformatics, 26(14): 1797–1799. DOI: https://doi.
org/10.1093/bioinformatics/btq278

15.	Metropolis, N, Rosenbluth, A W, Rosenbluth, M
N, Teller, A H and Teller, E 1953 ‘Equation of state
calculations by fast computing machines’. The Journal
of Chemical Physics, 21(6): 1087–1092. DOI: https://
doi.org/10.1063/1.1699114

16.	Mukherjee, P, Parkinson, D and Liddle, A R 2006
‘A nested sampling algorithm for cosmological model
selection’. The Astrophysical Journal Letters, 638(2):
L51. URL: https://arxiv.org/pdf/astro-ph/0508461.
DOI: https://doi.org/10.1086/501068

17.	Neal, R M, et al. 2011 ‘MCMC using Hamiltonian
dynamics’. Handbook of markov chain monte carlo,
2(11): 2. DOI: https://doi.org/10.1201/b10905-6

18.	Robinson, M, Bond, A, Simonov, A, Zhang, J
and Gavaghan, D 2018 ‘Separating the effects of
experimental noise from inherent system variability in
voltammetry: The [Fe(CN)6]

3/4 process’. ChemRxiv. DOI:
https://doi.org/10.26434/chemrxiv.7149281.v1

19.	Robinson, M, Ounnunkad, K, Zhang, J,
Gavaghan, D and Bond, A 2018 ‘Integration of heuristic
and automated parametrization of three unresolved
twoelectron surfaceconfined polyoxometalate reduction
processes by AC voltammetry’. ChemElectroChem. DOI:
https://doi.org/10.1002/celc.201800950

20.	Salvatier, J, Wiecki, T V and Fonnesbeck, C 2016
‘Probabilistic programming in Python using PyMC3’.
PeerJ Computer Science, 2: e55. DOI: https://doi.
org/10.7717/peerj-cs.55

21.	Schaul, T, Glasmachers, T and Schmidhuber, J
2011 ‘High dimensions and heavy tails for natural
evolution strategies’. In: ‘Proceedings of the 13th
annual conference on Genetic and evolutionary
computation’, ACM, 845–852. DOI: https://doi.
org/10.1145/2001576.2001692

22.	Skilling, J, et al. 2006 ‘Nested sampling for general
Bayesian computation’. Bayesian Analysis, 1(4):
833–859. DOI: https://doi.org/10.1214/06-BA127

23.	Ter Braak, C J 2006 ‘A Markov Chain Monte Carlo
version of the genetic algorithm Differential Evolution:
easy Bayesian computing for real parameter spaces’.
Statistics and Computing, 16(3): 239–249. DOI:
https://doi.org/10.1007/s11222-006-8769-1

24.	Thijssen, B, Dijkstra, T M, Heskes, T and Wessels,
L F 2016 ‘BCM: toolkit for Bayesian analysis of
computational models using samplers’. BMC Systems
Biology, 10(1): 100. DOI: https://doi.org/10.1186/
s12918-016-0339-3

25.	Vrugt, J A, Ter Braak, C, Diks, C, Robinson, B A,
Hyman, J M and Higdon, D 2009 ‘Accelerating
Markov chain Monte Carlo simulation by differential
evolution with self-adaptive randomized subspace
sampling’, International Journal of Nonlinear Sciences
and Numerical Simulation, 10(3): 273–290. DOI:
https://doi.org/10.1515/IJNSNS.2009.10.3.273

26.	Vyshemirsky, V and Girolami, M 2008 ‘BioBayes: a
software package for Bayesian inference in systems
biology’. Bioinformatics, 24(17): 1933–1934. DOI:
https://doi.org/10.1093/bioinformatics/btn338

How to cite this article: Clerx, M, Robinson, M, Lambert, B, Lei, C L, Ghosh, S, Mirams, G R and Gavaghan, D J 2019
Probabilistic Inference on Noisy Time Series (PINTS). Journal of Open Research Software, 7: 23. DOI: https://doi.org/10.5334/
jors.252

Submitted: 07 November 2018 Accepted: 05 July 2019 Published: 19 July 2019

Copyright: © 2019 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

OPEN ACCESSJournal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press

https://doi.org/10.1007/978-0-387-30164-8_630
https://doi.org/10.1093/bioinformatics/btq278
https://doi.org/10.1093/bioinformatics/btq278
https://doi.org/10.1063/1.1699114
https://doi.org/10.1063/1.1699114
https://arxiv.org/pdf/astro-ph/0508461
https://doi.org/10.1086/501068
https://doi.org/10.1201/b10905-6
https://doi.org/10.26434/chemrxiv.7149281.v1
https://doi.org/10.1002/celc.201800950
https://doi.org/10.7717/peerj-cs.55
https://doi.org/10.7717/peerj-cs.55
https://doi.org/10.1145/2001576.2001692
https://doi.org/10.1145/2001576.2001692
https://doi.org/10.1214/06-BA127
https://doi.org/10.1007/s11222-006-8769-1
https://doi.org/10.1186/s12918-016-0339-3
https://doi.org/10.1186/s12918-016-0339-3
https://doi.org/10.1515/IJNSNS.2009.10.3.273
https://doi.org/10.1093/bioinformatics/btn338
https://doi.org/10.5334/jors.252
https://doi.org/10.5334/jors.252
http://creativecommons.org/licenses/by/4.0/

	(1) Overview
	Introduction
	Implementation and architecture
	Defining an optimisation or sampling problem
	Implementation of optimisers and samplers
	Running optimisation and sampling

	Quality control

	(2) Availability
	Operating system
	Programming language
	Additional system requirements
	Dependencies
	List of contributors
	Software location
	Code repository

	Language

	(3) Reuse potential
	Contact and support

	Competing Interests
	Author Contributions
	References
	Figure 1
	Figure 2
	Figure 3

