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Abstract   

Arterial Spin Labeling (ASL) acquisitions at multiple post-labeling delays allow for appropriate kinetic 
models to be fitted to the data, potentially providing more accurate quantification of cerebral blood 
flow (CBF) together with other perfusion-related parameters such as the arterial transit times (ATT) 
or arterial cerebral blood volume (aCBV) if an extended kinetic model is used.  Additionally, dispersion 
of the labelled bolus is a physiological aspect often neglected when modelling ASL signals that might 
also provide information of interest and improve perfusion quantification. Besides the choice of an 
appropriate kinetic model, it is also imperative that the data should have sufficient SNR to allow fitting 
of increasingly complex models.       

In this work, we investigated the impact of two denoising strategies, repetition averaging and 
independent component analysis (ICA), in combination with modeling dispersion effects on multi-
delay ASL measurements acquired from a group of small vessel disease (SVD) patients and a group of  
healthy controls. We found that repetition averaging interacted with modeling dispersion and 
impacted the estimation of CBF and aCBV, mostly in arterial locations. Moreover, keeping the 
repetitions without averaging increased the model’s free energy, as did ICA denoising and dispersion 
modeling. These results indicate that including all control-label repetitions rather than averaging 
provides better noise estimation and hence better model fitting, with special impact on earlier 
(noisier) time points and hence the estimation of arterial (macrovascular) contributions. I Repetitions 
averaging and dispersion modelling also interacted with group, such that we found apparently greater 
CBF in arterial regions of patients but only when averaging and not accounting for dispersion. These 
findings highlight the importance of modeling dispersion with appropriate noise estimation in 
pathology. 

 

Keywords: Arterial Spin Labeling, Kinetic Modeling, Independent Component Analysis, Dispersion, 
Denoising 
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Introduction  

Arterial Spin Labelling (ASL) is a non-invasive technique that uses arterial water as an endogenous 
tracer, by applying radiofrequency (RF) pulses to selectively invert the magnetization of the spins in 
the neck region [1]. After a certain post-labelling delay (PLD), an image is acquired comprising signal 
from the labelled water protons that reached the imaging region and the stationary water protons. 
Another image is then separately acquired without labelling but with identical RF to control for off-
resonance effects [2]. The magnetization difference between these two images (with and without 
tagged blood) represents the blood conveyed to the brain by perfusion.  
 
One of the main drawbacks of the ASL technique is its inherently low signal to noise ratio (SNR) since 
the expected difference image is about 1% of the total magnetization in the human brain at typical 
field strengths. To overcome this limitation, several techniques have been proposed  to improve SNR 
including. acquiring several repetitions of label-control difference images and averaging these. 
Nevertheless, this approach is associated with increased acquisition time which is not always feasible 
in clinical settings and may be associated with an increase in motion artefacts [3].  
 
Single PLD acquisitions with delays longer than the time the tracer takes from the labelling region to 
the brain (Arterial Transit Time, ATT) are commonly used to obtain CBF images [1]. However, this 
approach does not grant estimation of ATT, neither does it give insight into possible abnormal ATTs in 
specific physiological and/or pathological conditions ,which in turn may promote inaccuracies in CBF 
quantification [1]. Several authors have investigated the impact of using multiple PLDs and different 
labelling durations [4]–[7]. One clear benefit of multi-PLD imaging is that it allows for a kinetic model 
to be fitted to the ASL signal, being less dependent on temporal assumptions and potentially providing 
more accurate CBF estimates along with other hemodynamic parameters such as ATT which may also 
provide relevant information on the arterial blood supply to the brain [8], [9].  
Another factor to consider in multi-delay ASL is the dispersion of the labelled bolus. This occurs during 
the time it takes for the labelled bolus to reach the brain tissue of interest and it is caused by a 
combination of factors that alter the flow of the tagged water within the blood [10]. Although the 
effects of flow dispersion in ASL might be reduced when compared to techniques that require the use 
of contrast agents due to the proximity of the labelling region to the measurement place, it still occurs 
and should be accounted for. Indeed, it has been shown that the dispersion of the labelled bolus has 
a significant impact on the ASL signal [11]. This is particularly important when using extended kinetic 
models to account for macrovascular contributions on data acquired without macroflow suppression, 
additionally providing estimates of the arterial cerebral blood volume (aCBV) [9]. Although the 
standard kinetic model assumes no dispersion of the labelled bolus, the combined effects of the flow 
profile in the feeding arteries and the different arrival times from different paths have been shown to 
significantly impact ASL signals [12].  
 
Besides the choice of an appropriate kinetic model, it is imperative that the data should have sufficient 
SNR to allow fitting such increasingly complex models. Several denoising strategies can be applied as 
post-processing steps to compensate for the low SNR of the ASL signal [13]. One common approach 
consists of averaging multiple repetitions of control-label difference images. Recently, independent 
component analysis (ICA) has also been proposed to separate the ASL signal of interest from artefacts 
or other structured noise sources (e.g. head motion or susceptibility artefacts),.increasing SNR of ASL 
data of up to 50% when compared to data without ICA clean-up [14].  
 
In this work, we aim to study the influence of two different denoising strategies (repetition averaging 
and ICA clean-up), together with modeling dispersion effects, on multi-delay ASL perfusion imaging in 
a group of cerebral small vessel disease (SVD) patients as well as in healthy individuals. The impact of 
different denoising strategies and modeling dispersion will be assessed in terms of CBF, ATT and aCBV 
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estimates and respective variances, as well as by model free energy (FE) in two different regions of 
interest (ROI): GM and arterial (aCBV). 

 

2. Methods 

2.1 Data acquisition 

Data were acquired from 17 SVD patients (SVD, 50+/-9 yrs) with two different SVD specificities:  
Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopaty 
(CADASIL) and sporadic SVD (sSVD). The control group consisted of 12 age-matched healthy controls 
without any medical records of SVD (CTRL, 52+/-8 yrs). To be included in this study, patients had to 
follow the subsequent criteria: 1) being independent on a daily basis, which was evaluated by the 
Instrumental Activities of Daily Living (IADL) scale; lack of large vessel disease, as assessed by Doppler 
ultrasound; 2) for the sSVD group: evidence of SVD in MRI (deep WMH injuries, with no other 
reasonable justification, with moderate and severe degrees, in accordance to the Fazekas metric [15]; 
3) for the CADASIL group: patients with symptoms and with indication of WMH lesions as well as 
molecular confirmation (mutation on the NOTCH3 gene). The criteria for exclusion were: 1) 
impossibility to perform MRI; 2) for the patients: existing WMH lesions from other previously 
identified pathologies; existence of chronic debilitating illnesses; stroke in the past three months; 
illiteracy; and impaired visual acuity. An experienced neurologist was assigned to evaluate all patients 
to detect and exclude other neurological disorders and to perform the necessary assessments. This 
study was approved by the Ethics Committee of Hospital da Luz, and all participants gave written 
informed consent in compliance with the Declaration of Helsinki. 

The participants were scanned on a 3T Siemens Verio scanner (Siemens Healthcare, Erlangen, 
Germany) using a 12-channel radiofrequency receive head coil. Multi-delay pulsed ASL (PASL) data 
were acquired using a PICORE-Q2TIPS sequence [16] with 2D-multi-slice Gradient Echo Echo-Planar 
Imaging (EPI) readout (TR/TE = 2500/11 ms, 28 slices with 3.5x3.5x5.0 mm3 resolution). Multiple post-
labelling delays were sampled using 11 TI2 values ranging from 400 to 2400 ms, in steps of 200 ms, 
with 8 control-label repetitions each. The Q2TIPS module allowed limiting the labeling to a maximum 
of 750 ms by adjusting TI1 and TI1s for each TI2: for TI2 < 1000 ms, TI1 = TI1s = TI2 - 25 ms; and for TI2 > 
1000 ms, TI1 = 750 ms and TI1s = 900 ms. A reference image was acquired from each subject for 
calibration: proton density image with the same readout as the ASL image but with a longer TR (TR = 
10 s) [17]. A Magnetization-Prepared Rapid Gradient-Echo (MPRAGE)-T1-weighted (T1WI) structural 
image (1mm isotropic resolution) was also obtained for registration and segmentation purposes. 

2.2 Data analysis 

All image analysis was performed using FSL (fsl.fmrib.ox.ac.uk) and MATLAB (2020a, 
http://mathworks.com). 

2.2.1 Pre-processing 

For each dataset, motion correction was performed using MCFLIRT [18] to align ASL control and label 
images. Control-label difference image time series were computed for each TI2. MPRAGE structural 
images were segmented using FAST [19] to obtain brain tissue masks for gray matter (GM), white 
matter (WM) and cerebrospinal fluid (CSF) based on the respective partial volume estimate (PVE) 
maps. The FLIRT tool [18] was used to perform registration between perfusion (ASL) and structural 
(MPRAGE) spaces using a linear transformation. Additionally, the FNIRT tool [18] was used to perform 
registration between structural (MPRAGE) and standard (MNI152-2mm standard brain) spaces.     

2.2.1 ICA denoising 
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For each ASL dataset, the control and label magnetization difference images (∆M) underwent single-
subject spatial-ICA using the Multivariate Exploratory Linear Optimised Decomposition of 
Independent Components (MELODIC) tool [20]. Noise-related Independent Components (ICs) were 
visually identified by one blinded rater following two criteria, one more conservative than the other:  

i) ICA level 1 (ICA1): only ICs related to motion, susceptibility and multiband artefacts, 
mismatching the expected spatial and temporal properties of the ASL perfusion signal;  

ii) ICA level 2 (ICA2): all ICs not consistent with the expected spatial and temporal properties 
of the ASL perfusion signal.  

A representative sample of the ICs selected in ICA level 2 and ICA level 1 is presented in supplementary 
Figure 1. The selected noise ICs were then regressed out from the ∆M time series data using FIX (ref). 
The two ICA denoising approaches were compared to not performing any ICA denoising (noICA, 
default), in terms of voxelwise percent change in the temporal standard deviation (%∆SD) of the time 
series [14][21], defined as: 

%∆𝑆𝐷 =	 !"(∆%!"#$%)'	!"(∆%#$%&)
!"(∆%!"#$%)

× 100  Eq.1 

where SD represents the voxelwise standard deviation of the ∆M image time series, and ICAi 
represents ICA1 or ICA2 Each map was then registered to standard space and averaged across subjects 
in each group.  

2.2.2 Repetition averaging  

After denoising, two repetition averaging options were considered for the ∆M image time series of 
each ASL dataset: i) averaging the 8 repetitions for each TI2 (averaging: 11-volumes, default)); and ii) 
not performing averaging (no averaging: 8x11=88-volumes).  

2.2.3 Kinetic modeling  

An extended kinetic model including a macrovascular component, was then fit to the data. Two 
different options were considered regarding dispersion effects of the arterial bolus: i) without 
dispersion (no disp, default) - default; and ii) with dispersion described by a gamma kernel (disp) [12].  

For each denoising strategy (ICA denoising and repetition averaging) and kinetic model dispersion 
option, the model was fitted to the data using BASIL and the following parameters were estimated in 
each voxel: CBF, ATT, ATTb (blood arterial transit time), and aCBV [22]. This Bayesian inference method 
incorporates prior information, which has been demonstrated to facilitate more accurate estimates 
of multiple model parameters [22]. Maps of estimation variance were obtained for each parameter, 
as well as maps of model free energy (FE). This parameter reflects the quality of the model fit, taking 
into consideration model complexity (i.e., the number of degrees of freedom). Specifically, the nearer 
to 0, the greater is the model’s ability to explain the data [22]. 

To obtain the estimated CBF and aCBV parameters in absolute units, voxelwise calibration was 
performed. This was achieved by estimating the magnetization of the arterial blood (M0b) based on 
the tissue magnetization (M0t). The M0t map was generated through the acquisition of a proton density 
image with the same readout as the ASL image but with a longer TR [17].  Correction for voxelwise T1 
relaxation at the acquisition TR was also performed . The M0b is then obtained by normalization, using 
the tissue’s specific partition coefficient (λ) as well as the differences in transverse relaxation between 
tissue and blood (T2*). In theory, there is a single value of 𝜆) for each voxel due to the variety of 
tissues, resulting in partial volume estimates (PVEs). Therefore,  𝜆) can be considered a PVE-corrected 
average of λ. 
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2.3 Statistical analysis  

Statistical analysis was performed using MATLAB and IBM SPSS Statistics (version 26.0.0, 
https://www.ibm.com) to assess the effects of the ICA denoising (ICA), repetition averaging 
(Averaging) and dispersion modeling (Dispersion), as well as their interactions with each other and 
with subject group (Group), on perfusion estimation. Firstly, a region-of-interest (ROI) analysis was 
performed taking all factors into account. Based on significant effects identified in this ROI analysis, 
voxelwise analyses were then performed to further assess their spatial distribution.  

2.3.1. ROI analysis 

An analysis based on two different ROIs was performed: i) gray matter (GM), created for each 
subject based on the respective PVE map using a threshold of >70%; and ii) arterial blood (Arterial), 
created for each subject and each combination of analysis options (ICA, Averaging and Dispersion), 
based on the estimated aCBV map using a threshold of 0.1%.  

Averages of the following quantities were obtained in each ROI, for each subject and each combination 
of analysis options (ICA, Averaging and Dispersion):  

- Values of estimated parameters (CBF, aCBV, ATT and ATTb) 
- Variances of estimated parameters (Var_CBF, Var_aCBV, Var_ATT and Var_ATTb) 
- Model free energy (FE) 

For each ROI and quantity, a 3-way repeated measures ANOVA was performed to assess the effects 
of within-subjects factors ICA (NoICA, ICA level 1, ICA level 2), Averaging (no averaging, averaging) and 
Dispersion (no disp, disp), and between-subjects factor Group (CTRL, SVD). For significant interactions, 
post-hoc pairwise t-tests were performed.  

2.3.2. Voxelwise analysis 

Given that significant interactions were found between several factors for estimated parameters CBF, 
aCBV and ATT (as shown in Results, section 3.2), voxelwise analysis were performed separately for 
each factor, using permutation testing as implemented by the FSL tool Randomise [18]. In each case, 
maps of percent change in each parameter estimate between different analysis options were 
computed for each subject and averaged across subjects in each group. 

 

3. Results 

3.1 ICA denoising  

The number of independent components (ICs) estimated by principal component analysis before ICA 
was 28 ± 5, ranging from 21 to 45. The ICA level 1 approach resulted in the identification of 43±7% / 
36±8% noisy ICs in patients / controls, whilst ICA level 2 generated 65±9% / 54±10% noisy ICs in 
patients / controls. The maps of percent change in ASL control-label temporal SD with ICA denoising 
are presented in Supplementary Figure 1 (top), showing evident effects on the edges and in the central 
part of the brain. These were larger for ICA level 2 than ICA level 1, as expected, achieving reductions 
of up to 30%. Interestingly, greater reductions were observed in patients compared with controls, with 
differences of up to +/-10%, as can be seen in Supplementary Figure 2 (bottom). This is consistent with 
the fact that a larger number of ICs was classified as noise and removed in patients relative to controls. 
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When looking at the effect of ICA on the model’s FE, the voxelwise maps of No ICA vs. ICA level 2 
reveal that ICA denoising has a greater impact on the FE of Patients when compared to Controls and 
on the data that was not averaged when compared to the averaged data, being apparently 
independent on the dispersion model implemented (Figure 1). This highlights the positive impact of 
denoising ASL data on the goodness of the model fit, especially in pathology.   

3.2 ROI analysis  

The distributions across subjects of the GM and Arterial ROI average estimates of CBF, aCBV, ATT and 
ATTb, for each condition of ICA denoising, repetition averaging and dispersion modeling, and for each 
group (Controls and Patients), are presented in Figure 2. 

The most consistent finding across all estimated parameters was a significant (or close to significant) 
interaction between Averaging and Dispersion in both ROIs. A significant (or close to significant) main 
effect of Averaging was also found for all parameters in both ROIs (except ATT in GM). Effects of 
Dispersion were found significant for all parameters in GM, but its effects in the Arterial ROI strongly 
depended on averaging and group. 

, modeling dispersion reduced CBF in the arterial region; however, this was only verified when no 
averaging was performed. This interaction may be explained by the fact that averaging resulted in 
significantly reduced aCBV estimates in this area, implying that it may have compromised crucial 
information in the early time points for the estimation of the macrovascular contributions. Indeed, ] 
an increase in aCBV was also only found when not averaging. Consistently, arterial transit times also 
exhibited effects of dispersion in the Arterial ROI only when not averaging, with reduced ATT and 
increased ATTb.  

Most interestingly, a significant triple interaction between Averaging, Dispersion and Group was found 
for CBF and aCBV (close to significant for ATT and ATTb) in the Arterial ROI. Indeed, an apparently 
greater CBF was found in SVD vs. CTRL, but only when not modeling dispersion or when averaging; 
this difference disappeared when using all 88 volumes without averaging and modeling dispersion. 
This effect is accompanied, and may be explained by, a greater aCBV in the Arterial ROI for SVD vs. 
CTRL in the same conditions (with 88 volumes and dispersion). Moreover, consistent trends were also 
found for the transit times, with the arterial regions of patients showing greater reduction of ATT 
(consistent with reduced CBF estimate), making them comparable with controls, and greater increase 
in ATTb (consistent with increased aCBV estimate), suggesting slower blood velocity relative to 
controls.   

In GM, estimates of CBF, aCBV and ATTb significantly decreased with Averaging, in interaction with 
Dispersion. Remarkably, despite the main effect of Dispersion, aCBV only increased with dispersion 
without averaging, once more suggesting that aCBV could only be accurately estimated under these 
circumstances. Main effects of ICA denoising were found for ATTb in GM, with trends also for aCBV 
and ATT.  

ATTb estimates tend to be decreased with dispersion in the aCBV ROI although no main effects were 
found. However, in the GM ROI both averaging, dispersion and ICA affect the ATTb estimations: higher 
ATTb is obtained when not averaging and modeling dispersion. Only in this case, significant differences 
were also found between Groups – suggesting that blood velocity is reduced in patients - once more 
suggesting that apparent changes in CBF estimates are intrinsically related with ATTb estimates and 
that physiological changes are more likely to be captured with dispersion. In the arterial ROI, there 
were significant interactions among these covariates and Group: when averaging, the perfusion 
estimates were higher in patients than controls.  
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The distributions across subjects of the GM and Arterial ROI average parameter estimate variances 
and model FE are displayed in Figure 3. CBF, ATT and ATTb estimation variances were significantly (or 
close to significantly) reduced with ICA denoising in both ROIs, indicating an improvement in 
estimation precision in agreement with a previous report [14]. Consistently, better model fitting as 
evidenced by increased FE was obtained with ICA denoising (in the GM ROI). Moreover, averaging 
drastically increased FE in both ROIs, probably because of the difference in degrees of freedom 
between averaging (11 volumes) and not averaging (88 volumes). 

Interestingly, we found that modeling dispersion significantly (or close to significantly) reduced the 
variance of all parameter estimates in both regions (except aCBV in the Arterial ROI), once more 
suggesting that accounting for bolus dispersion may provide more precise perfusion measurements. 
The variance reduction was particularly large for ATTb in the Arterial ROI. Accordingly, modeling 
dispersion increased FE (close to significance), but only in the Arterial ROI, indicating that this is more 
crucial in regions with larger macrovascular contributions. Interactions between ICA and Averaging 
and/or Dispersion were systematically observed, indicating that the precision of dispersion model 
estimates depends on appropriate denoising strategies. 

3.3 Voxelwise analysis  

Since ICA denoising generally improved model fitting and parameter estimation, by increased FE and 
decreasing estimation variance, while leaving the values of the parameter estimates largely 
unaffected, we proceed with the analysis of the datasets that underwent the ICA level 2 denoising 
pipeline. Given the effects of Averaging and Dispersion, and their interactions with each other and 
with Group, we present voxelwise analysis of the effects of these two factors for each combination of 
the other factors (with ICA level 2): effects of Dispersion in Fig.4 and effects of Averaging in Fig.5.  

The voxelwise analysis revealed significantly greater aCBV when including dispersion in the model in 
regions that agree with the expected arterial signal location, but only without averaging (Fig. 4). The 
area of significant differences was greater for patients compared with controls, with 47138 and 16577 
voxels, respectively. These effects are consistent with the Arterial ROI analysis of aCBV; however, they 
were only close to significant in this case, indicating a high degree of spatial specificity probably not 
accurately captured by our definition of the ROI. On the other hand, no significant effects were found 
for the other parameters, in contrast with the GM ROI analysis. This may be explained by the fact that 
these effects are relatively small but quite widespread, therefore gaining sensitivity through spatial 
averaging into ROIs. 

Regarding the voxelwise comparisons between averaging approaches, significantly greater aCBV 
estimates were found when not averaging, but only when modeling dispersion, in apparently arterial 
regions (Fig. 5). As for Dispersion, the area of significant differences was greater for patients compared 
with controls, with 20714 and 16990 voxels, respectively. These effects are also consistent with the 
Arterial ROI analysis of aCBV. In contrast, when not modeling dispersion, significantly reduced aCBV 
values were estimated in a widespread region across the brain, which was not captured by the ROI 
analysis. This is probably due to the loss of spatial specificity when spatial averaging into the ROIs. Also 
only partly consistent with the ROI analysis, we found significantly greater ATT values across the brain, 
both with and without dispersion, but only in patients. This finding again highlights the importance of 
the spatial specificity of voxelwise analyses, whenever sensitivity is sufficient. 

 

Discussion 
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We assessed the effects of modeling the label bolus dispersion, together with two denoising strategies 
(averaging of the control-label repetitions per PLD – Averaging, and Independent Component 
Analysis), on multi-delay ASL data collected from a group of patients with SVD and their healthy 
controls. We found that repetition averaging strongly interacted with modeling dispersion and 
significantly impacted the estimation of perfusion and macrovascular contributions, mostly in brain 
regions consistent with arterial locations. On the other hand, ICA denoising significantly improved 
model fitting and reduced the variance of parameter estimation, while not affecting the values of the 
parameter estimates. 

ROI definition 

The effects of dispersion modeling, repetition averaging and ICA denoising were analysed across two 
different ROIs, defined for each subject. The choice of ROI is crucial since it establishes the area of the 
brain being investigated for changes regarding the different post-processing options and model fitting 
in pathology. For this reason, we considered a global GM region, representative of the brain tissue 
from where an ASL signal is typically measured. Alongside, we created an Arterial ROI to specifically 
analyse regions where the ASL signal is more contaminated by macrovascular contributions, since the 
analysis options we investigated were expected to impact them mostly.  

ICA denoising 

The main disadvantage of ASL is that the image created is only 1% of the total magnetization, resulting 
in an intrinsically low SNR [23]. The use of ICA denoising in post-processing has been shown to 
successfully remove artefactual components and, thus increase the precision of the results [13], [17]. 
Manual IC classification has been considered the appropriate procedure and was used in this study 
following two selection criteria with different degrees of signal preservation [24]. Although the total 
number of IC’s obtained was similar in both patient and control groups, for both ICA denoising levels 
(ICA level 2 and ICA level 1) about 10% more components were selected as noise in SVD patients when 
compared to healthy controls. This difference might be attributed to expected increased head motion 
in the patients group. Additional evidence that our denoising was effective was obtained by verifying 
that the location of the change in the ASL difference signal variance corresponded to the expected 
head motion locations, such as the brain rim and deep white matter (WM) around the ventricles 
(Supplementary Fig. 2). 

ICA denoising did not significantly impact parameter quantification, but it had a positive influence on 
the quality of the model fitting as evidenced by increased model FE and decreased parameter estimate 
variances. Since an improvement was found also between ICA level 1 and ICA level 2, the latter was 
chosen to perform a more detailed voxelwise analysis of the other two factors, Averaging and 
Dispersion. 

Interactions between repetition averaging and dispersion modeling 

In the ROI analysis we found that repetition averaging interacted with modeling dispersion and 
impacted the estimation of perfusion (CBF) and macrovascular (aCBV) contributions, mostly in arterial 
locations. aCBV values systematically increased in both ROIs when no Averaging was performed and 
with dispersion modeling, probably due to the inclusion of signal that was wrongly assigned as CBF in 
other analysis. On the other hand, in the case of the Averaged dataset, the voxelwise analysis 
evidenced regions of decreased aCBV when including dispersion in the model which seem mostly 
artifactual (Figure 4). This outlines the increase in noise/artefactual components potentially arising 
from the averaging of the early time points. This aCBV underestimation might be related to the 
averaging of the earlier ATTs, which is very variable and may cause the mismatch of CBF for aCBV. 
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Moreover, keeping the repetitions without averaging increased the model’s free energy, as did ICA 
denoising and dispersion modeling. These results indicate that including all control-label repetitions 
rather than averaging provides better noise estimation and hence better model fitting, with special 
impact on earlier time points and hence the estimation of arterial (macrovascular) contributions. In 
fact, averaging these noisier time points might provoke undesired outliers.  

Interactions with pathology 

Interestingly, averaging and dispersion also interacted with group, such that we found greater CBF in 
arterial regions of patients if averaging and not modeling dispersion. These findings may be explained 
by differences in dispersion between groups that manifests as apparent differences in CBF when not 
appropriately accounting for dispersion, highlighting the importance of modeling dispersion in 
pathology.  Furthermore, differences observed in ATT between SVD and CTRL when averaging was not 
performed and dispersion was modelled once more suggest that this strategy is better at modeling 
the decreased blood velocities in large vessels expected with this pathology, which might be more 
prone to dispersion [25]. 

Regarding the impact of these options in pathology, SVD patients normally have severe alterations of 
their hemodynamic responses and vessel properties. Indeed, this disease is associated with higher 
vessel wall stiffness, which implies higher pulsatility of the vessels generated by the cardiac flow [26]. 
We hypothesize that this increased pulsatile energy will also be associated with greater dispersion 
[10], [27]. For this reason, hemodynamic parameter estimation in patients is more likely altered by 
the inclusion of dispersion in the model than healthy controls. 
 

Limitations  

Although the main goal of our work is to create a systematic and standardized way to analyse ASL 
data, some limitations should be considered. In this study, the use of PASL labelling rather than pCASL 
(the recommended approach according to the ASL White Paper [1]) might impact the reproducibility 
of the results. Furthermore, the 2D EPI readout implemented allows for shorter TR’s and hence more 
time points, which is intrinsically related to better temporal resolution (essential for ICA denoising). 
However, it is not possible to implement ICA on a single delay 3D GRASE due to the insufficient time 
points. For this reason, our conclusions regarding the benefits of ICA denoising are not necessarily 
generalizable to studies using 3D readouts and background suppression. Moreover, alternative 
denoising methods should be considered such as the Outlier Removal tool of ExploreASL [28] that 
eliminates outliers and the Enable volume selection tool of Quantiphyse 
(https://eng.ox.ac.uk/quantiphyse/) that resorts to the removal of data time points. Compared to 
Quantiphyse, our approach does not exclude data, which can be seen as an advantage.   
Furthermore, even though manual IC quantification has been extensively implemented [14], [29], it is 
dependent on the operator’s expertise and very time-consuming. The possibility to automate this 
process should be contemplated, although it might be difficult due to the wide range of ASL acquisition 
protocols and scanners.  
 
Conclusion 

Our results suggest that the use of ICA denoising of multi-PLD ASL data to improve the quality of CBF 
and ATT estimates, and further suggest that it may differentially affect data collected from patients 
and controls, significantly influencing the statistical analysis of group differences in perfusion related 
parameters. ICA denoising appears to have more impact in the patient group, most likely because 
these are more prone to artifacts such as head motion. The analysis and comparison of various ASL 
post-processing strategies, along with the different kinetic modeling options, offers understanding 
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into their usability to studies related to ASL and haemodynamic parameter estimation. This study 
highlightsthe great discrepancy in ASL results when following different pre-processing and modeling 
approaches, which will be of great relevance in the analysis of future ASL datasets.  
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