
A 4D gravity theory and G2-holonomy manifolds

Yannick Herfray(1),(2), Kirill Krasnov(1), Carlos Scarinci(1) and Yuri Shtanov(3)

(1)School of Mathematical Sciences, University of Nottingham, NG7 2RD, UK

(2) Laboratoire de Physique, ENS de Lyon, 46 allée d’Italie, F-69364 Lyon Cedex 07, France

(3)Bogolyubov Institute for Theoretical Physics, 14-b Metrologichna St., Kiev 03680, Ukraine

July 18, 2019

Abstract

Bryant and Salamon gave a construction of metrics of G2 holonomy on the total space
of the bundle of anti-self-dual (ASD) 2-forms over a 4-dimensional self-dual Einstein
manifold. We generalise it by considering the total space of an SO(3) bundle (with
fibers R3) over a 4-dimensional base, with a connection on this bundle. We make
essentially the same ansatz for the calibrating 3-form, but use the curvature 2-forms
instead of the ASD ones. We show that the resulting 3-form defines a metric of G2

holonomy if the connection satisfies a certain second-order PDE. This is exactly the
same PDE that arises as the field equation of a certain 4-dimensional gravity theory
formulated as a diffeomorphism-invariant theory of SO(3) connections. Thus, every
solution of this 4-dimensional gravity theory can be lifted to a G2-holonomy metric.
Unlike all previously known constructions, the theory that we lift to 7 dimensions is
not topological. Thus, our construction should give rise to many new metrics of G2

holonomy. We describe several examples that are of cohomogeneity one on the base.

1 Introduction

The history of G2-geometry is almost as old as that of the exceptional Lie group G2 itself,
see [1] for a nice exposition. The existence of metrics of G2 holonomy was proven in [2]. This
paper also gave a construction of the first explicit example. Several more examples, among
them complete, were constructed in [3]. The first compact examples where obtained in [4].
More local examples can be obtained by evolving 6-dimensional SU(3) structures, see [5].
These examples, as well as many other things, are reviewed in [6]. Metrics of G2 holonomy are
of importance in physics as providing the internal geometries for compactification of M-theory
down to 4 space-time dimensions, while preserving supersymmetry. A nice mathematical
exposition of this aspect of G2 geometry is given in [7].

Our interest in G2 geometry is motivated by the fact that, as we explain in this paper,
solutions of certain 4D gravity theory can be lifted to G2-holonomy metrics. The gravity
theory in question is not General Relativity, but rather a certain other theory whose existence
can be seen by reformulating 4D gravity as a diffeomorphism invariant theory of SO(3)
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connections, as was described in [9, 10], and explained from a more mathematical perspective
in [11]. Once 4-dimensional General Relativity is reformulated in the language of connections,
one finds that there is not one, but an infinite parameter family of theories all resembling
GR in their properties. The G2-holonomy lift that we describe in this paper singles out one
of them, and it is distinct from GR. We describe this theory in details in the main text.

A suggestion as to the existence of a link between some theory in 7 dimensions (referred
to as topological M-theory) and theories of gravity in lower dimensions was made in [12].
That paper reinterpreted the constructions [3] of 7D metrics of G2 holonomy from constant
curvature metrics in 3D and self-dual Einstein metrics in 4D as giving evidence (among other
things) for the existence of such a link. The construction of the present paper is similar in
spirit, but we present a much stronger evidence linking 4D and 7D structures. Thus, our
construction lifts any solution of a certain 4D gravity theory with local degrees of freedom to
a G2 metric. The main difference with the previous examples is that the theory that one is
able to lift to 7D is no longer topological. We find this result to be interesting as it interprets
the full-fledged 4D gravity as a dimensional reduction of a theory of differential forms in 7
dimensions.

We now formulate the main result of this paper. Let Ai, i = 1, 2, 3, be an SO(3) connec-
tion on a 4-dimensional manifold M , and let F i = dAi + (1/2)εijkAj ∧ Ak be its curvature
2-form. Then, fixing an arbitrary volume form v on M , define a 3 × 3 symmetric matrix
X ij by the relation F i ∧ F j = −2X ijv. We will call a connection definite if X ij is a definite
matrix, i.e. all eigenvalues have the same sign. The factor of 2 in the definition of the matrix
X ij is introduced for the future convenience. The minus sign in the same definition has to
do with our later usage of anti-self-dual two-forms rather than self-dual ones.

Let E be an associated vector bundle over M with 3-dimensional fibers. We consider the
following 3-form on the total space of E:

Ω =
1

6
(1 + σy2)−3/4εijkdAy

i ∧ dAyj ∧ dAyk (1)

+ 2σ(1 + σy2)1/4dAy
i ∧ F i.

Here yi are coordinates in the fiber, and dA is the covariant derivative with respect to A,
and σ = ±1 is the sign of the connection to be defined below.

Theorem 1. If A is a definite connection satisfying the second order PDE:

dA
[
(detX)1/3X−1F

]
= 0, (2)

then the 3-form (1) is stable, closed (dΩ = 0) and co-closed (d∗Ω = 0), and hence defines
a metric of G2 holonomy. This metric is of Riemannian signature, and is complete (in the
fiber direction) for σ = +1.

Remark. The object X−1 in (2) is the symmetric matrix inverse to X, and detX is the
determinant of X. Note that the expression under the covariant derivative in (2) is of
homogeneity degree zero in X; therefore, equation (2) does not depend on the particular
choice of the orientation form v used to define X. The sign σ of a definite connection is
defined in Sec. 3.5 below.

As we shall explain below, equation (2) arises as the Euler–Lagrange equation of a certain
diffeomorphism-invariant theory of connections on M . Thus, the theorem states that every
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solution of this theory can be lifted to a G2-holonomy metric in the total space of the bundle.
As we shall also explain below, when the matrix X ij ∼ δij, the connection A is the anti-
self-dual part of the Levi-Civita connection on a self-dual Einstein manifold. In this case,
equation (2) is satisfied automatically as it reduces to the Bianchi identity for the curvature.
The construction in the above theorem in this case reduces to that described in [3].

We also note that the metric in the total space E of the bundle defined by the form (1)
induces a metric on the base M . This metric turns out to be in the conformal class of

gF (ξ, η) ∼ εijkiξF
i ∧ iηF j ∧ F k/v, (3)

where ξ and η are vector fields tangent to the base. The volume form of the metric induced
on the base is a constant multiple of

vF = (detX)1/3 v, (4)

where v is the orientation form used to define the matrix X. It is easy to see that the
expression on the right-hand-side of (4) does not depend on the particular choice of the
orientation form v, hence, is well-defined. The action functional for the theory that gives
rise to (2) is just the total volume of the space as computed using the volume form (4).

Another way to describe the relation between a gravity theory in 4D and theory of 3-forms
in 7D is to compare their actions. The action principle that entails the relation d∗Ω = 0 as
its Euler–Lagrange equation is the total volume of the space as computed using the metric
defined by Ω, see [13] and below. When one computes this 7D functional on the ansatz (1),
one finds a constant multiple of the volume of the 4D base computed using (4). In other
words, on ansatz (1), the 7D action functional reduces to the action of the 4D theory of
connections. This relation between the action functionals makes it less surprising that their
critical points are related.

We now proceed to describing all constructions in more detail. We start by reviewing
some basic facts about 3-forms in 7 dimensions and their relation to G2 holonomy. We then
describe in Section 3 the diffeomorphism-invariant SO(3) gauge theory that gives rise to
(2). In Section 4, we review the construction due to Bryant and Salamon. We present our
generalisation of this construction in Section 5, and give examples of metrics that arise in
this way in Section 6. We conclude with a discussion.

2 3-Forms in 7 dimensions and G2-holonomy manifolds

The material in this section is standard (see, e.g., [13]) and is reviewed for the convenience
of the reader. It was stunning for us to realise that the beautiful geometry reviewed below
has been known for more than a century, see [1]. In particular the characterisation of G2 via
3-forms is a result due to Engel from 1900.

2.1 Stable 3-forms

Let us start with some linear algebra in R7. A 3-form Ω ∈ Λ3R7 is called stable if it lies
in a open orbit under the action of GL(7), see [13]. This notion gives a generalisation
of non-degeneracy of forms and implies that any nearby form can be reached by a GL(7)
transformation. Thus, stable 3-forms can also be called generic or non-degenerate.
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For real 3-forms, there are exactly two distinct open orbits, characterised by the sign of
a certain invariant, see below, each of which is related to a real form of GC

2 . In this paper we
are mostly concerned with the open orbit corresponding to the compact real form G2. For
every such Ω, there exists a set θ1, . . . , θ7 of 1-forms in which Ω is expanded in the following
canonical form:

Ω = θ5 ∧ θ6 ∧ θ7 + θ5 ∧ Σ1 + θ6 ∧ Σ2 + θ7 ∧ Σ3, (5)

where
Σ1 = θ1 ∧ θ2 − θ3 ∧ θ4,

Σ2 = θ1 ∧ θ3 − θ4 ∧ θ2,

Σ3 = θ1 ∧ θ4 − θ2 ∧ θ3.

(6)

Here the particular combinations Σi are motivated in relation to (anti-)self-duality in 4
dimensions and are related to the embedding of SO(3) into SO(4) ⊂ G2. The relation to
anti-self-dual 2-forms in 4 dimensions will be important in the construction below.

The fact of central importance about stable 3-forms in 7 dimensions is that a stabilizer
of such a form in GL(7) is isomoprhic to the exceptional Lie group G2. This group has
dimension 14, and this number arises as the dimension 49 of GL(7) minus the dimension 35
of Λ3R7. Thus, the space of stable 3-forms is the homogeneous group manifold GL(7)/G2.

We can then generalise the notion of stable forms to 3-forms on a 7-dimensional differ-
entiable manifold M . These are forms that are stable at every point.

2.2 The metric

The basic fact about stable 3-forms on a 7-dimensional manifold M is that they naturally
define a metric in M by the relation

gΩ(ξ, η)vgΩ
= iξΩ ∧ iηΩ ∧ Ω. (7)

Here, vgΩ
is the metric volume form, and iξ denotes the operation of insertion of a vector

into a form. The sign of the metric volume form vgΩ
is uniquely fixed by the requirement

that the metric defined by (7) has specific (say, Euclidean) signature. In this way, a 3-form
Ω defines both the metric gΩ and the orientation, corresponding to vgΩ

.
It is then a simple computation that, for a 3-form presented in the canonical form (5),

the arising metric is

gΩ =
7∑
I=1

θI ⊗ θI , (8)

and the orientation is given by θ1 ∧ · · · ∧ θ7. Given that G2 is the stabilizer of (5), it also
stabilizes metric (8). This gives an embedding G2 ⊂ SO(7).

What we have reviewed above concerns the compact real form G2 of GC
2 . There is also

the orbit of real 3-forms that is related to the non-compact real form of GC
2 . Such 3-forms

also have a canonical form similar to (5), but with some signs changed. In exactly the same
way as (7), they give rise to a metric of signature (3, 4).

The counting of components shows that 3-forms contain more information than just that
of a metric. Indeed, to specify a metric in 7 dimensions, we need 7 × 8/2 = 28 numbers,
while the dimension of the space of 3-forms is 35. Thus, there are 7 more components in a
3-form. These correspond to components of a unit spinor, see [7] for more details.
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2.3 A functional

Given a stable 3-form, we construct the metric and the corresponding volume form as above.
We can integrate this volume form over the manifold to get the functional

S[Ω] =

∫
M

vgΩ
. (9)

This functional can also be computed explicitly, without computing the metric, via the
following construction. Let ε̃α1···α7 be the canonical anti-symmetric tensor density that exists
independently of any metric. Then construct

Ωα1β1γ1 · · ·Ωα4β4γ4Ω̃α1···α4Ω̃β1···β4Ω̃γ1...γ4 , (10)

where
Ω̃α1···α4 := ε̃α1···α7Ωα5α6α7 . (11)

Then the object (10) is of homogeneity degree 7 in Ω, and has density weight 3. Its cube root
then has the right density to be integrated over the manifold. The functional constructed in
this way is a multiple of (9).

It is interesting to note that the invariant (10) has been known already to Engel in 1900,
see [1]. This invariant gives a useful stability criterion: a form Ω is stable iff (10) (equivalently
(9)) is non-zero. The sign of this invariant then allows to distinguish between the two GL(7)
3-form orbits described above.

2.4 The first variation

As explained in [13], the first variation of the functional (9) in Ω has a simple form

δS[Ω] ∼
∫
M

∗Ω ∧ δΩ. (12)

The precise numerical coefficient in this equation is of no importance for us. The 4-form ∗Ω
is just the Hodge dual of Ω computed with respect to the metric defined by Ω.

2.5 Holonomy reduction

The fundamental result due to Alfred Gray [8] states: Let Ω ∈ Λ3M be a 3-form on a 7-
manifold. Then Ω is parallel with respect to the Levi-Civita connection of gΩ iff dΩ = 0
and d∗Ω = 0. In other words, the condition of Ω being parallel with respect to the metric it
defines is equivalent to the conditions of Ω being closed and co-closed, where co-closedness
is again with respect to the metric it defines.

The next basic fact is that if a Riemannian manifold (M, g) has a parallel 3-form Ω,
then the holonomy group of M is contained in G2. In this paper, we will not be concerned
whether the holonomy group is all of G2 or is just contained in it, and will simply refer
to 7-manifolds M with 3-forms satisfying dΩ = 0 and d∗Ω = 0 as G2-holonomy manifolds.
Techniques for proving that the holonomy equals G2 can be found in [3].

Combining Gray’s result with the formula (12) for the first variation of the functional
S[Ω], we see that G2-holonomy manifolds are critical points of S[Ω], provided one varies Ω in
a fixed cohomology class δΩ = dB, B ∈ Λ2M . This variational characterisation is explored
in depth in [13].
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3 Diffeomorphism-invariant SO(3) gauge theories

and gravity

In this section, we review how gravity theories in 4D (including General Relativity) can be
described as diffeomorphism-invariant theories of SO(3) connections. This material is mainly
from [9, 10], see also [11] for a more mathematical exposition.

3.1 Volume functionals from SO(3) connections

As before, let Ai be an SO(3) connection in an associated R3 bundle over a 4-dimensional
manifold M , and let F i = dAi + (1/2)εijkAj ∧ Ak be its curvature. Choose an orientation
(volume) form v on M , and define the matrix X ij via

F i ∧ F j = −2X ijv. (13)

Since different orientation forms are related by multiplication by a nowhere vanishing func-
tion, it is clear that X ij is defined only modulo such multiplication. The factor of 2 here is
for future convenience. The choice of minus sign has to do with later identification of F i’s
with anti-self-dual forms.

Let f(X ij) be a function from symmetric 3× 3 matrices to reals satisfying the following
two requirements: (i) it is gauge invariant f(OXOT ) = f(X), where O ∈ SO(3); (ii) it
is homogeneous of degree one, f(αX) = αf(X) for any real α. It is clear that any such
function can be applied to the wedge product of curvatures

f(F i ∧ F j) := −2f(X ij)v, (14)

and that the result is a well-defined and gauge invariant 4-form on M . Thus, any such
function gives rise to a diffeomorphism and gauge invariant functional of connections

Sf [A] = −1

2

∫
M

f(F i ∧ F j), (15)

where integration is performed with respect to the orientation v. Note that this functional is
just the total volume of M computed using the volume form constructed from the curvature
of A. Thus, any choice of function f gives rise to a diffeomorphism-invariant theory of SO(3)
connections.

It is clear that there are many functions f satisfying the required properties. An easy way
to count is to diagonalise the matrix X. The function f is then a homogeneity degree one
function of the eigenvalues. There are as many such functions as functions of two variables.
We will describe some most interesting choices of f below.

3.2 Euler–Lagrange equations

The extrema of (15) are connections satisfying the following second order PDE’s

dA

(
∂f

∂X ij
F j

)
= 0. (16)
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Note that the matrix of derivatives of the function f with respect to X is homogeneity degree
zero in X, and is hence well-defined even though X is only defined modulo multiplication by
a function. In other words, equations (16) are independent of the choice of the orientation
form v in the definition (13) of X.

3.3 Definite connections and the choice of orientation

A preferred orientation of M can be fixed in the case of an important class of definite
connections, see [11]. A connection Ai is called definite if the corresponding matrix X ij

defined via (13) is definite, i.e., all its eigenvalues are of the same sign. Then a preferred
orientation of M is represented by an orientation form v for which the matrix X is positive
definite.

In what follows, we will always use the orientation provided by the connection. In
particular, we use the orientation that makes X a positive definite matrix in defining the
action (15). Note that this does not mean that the functional (15) is always positive definite.
For example, the function f(X) = −TrX gives a negatively oriented volume form. In this
paper, in order to avoid confusion, we will always use functions f that give volume forms
of the same orientation as is provided by the connection. Thus, our action functionals here
will always be of one (positive) sign.1

3.4 Metrics from definite connections

An SO(3) connection that satisfies a rather weak requirement that it is definite defines a
conformal structure of a Riemannian metric on M . This is the conformal class already
defined in (3). This is often referred to (especially in the physics literature) as the Urbantke
metric, as it was first introduced in [14]. The significance of this (conformal) metric is that
it is the unique conformal structure with respect to which the triple of curvature 2-forms is
anti-self-dual.

To complete the definition of the metric we need to specify the volume form. As is
explained above, any choice of function f (satisfying gauge invariance and homogeneity
properties) gives a volume form. Thus, any choice of f defines a metric in the conformal
class of (3).

Thus, once a choice of f is made, we have a metric defined by the connection. When the
connection satisfies its Euler-Lagrange equations (16), the metric defined by A is constrained.
Below we shall see that Einstein metrics can be obtained in exactly this way, for a certain
choice of f .

3.5 The natural choice

Even though there exists freedom in choosing the conformal factor in (3), there exists a
mathematically natural choice. We shall refer to the mathematically natural choice of the
metric as the Urbantke metric gU.

The connection provides an orientation (in which X is positive definite), and we choose
the metric volume form to be positively oriented. We also require the metric to be of

1While the overall sign of the action is not important in the pure gravity theory, its sign relative to the
action of other fields will, of course, be important.
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Riemannian (all plus) signature. The Urbantke metric is then defined via

gU(ξ, η)vU =
σ

6
εijkiξF

i ∧ iηF j ∧ F k, (17)

where vU is the metric volume form, and where σ = ±1 is the sign that depends on the
connection. This sign σ in (17) is called the sign of the definite connection Ai. It is discussed
in more detail in Section 2.2 of [11], see also below. This sign is necessary in (17) to give the
Urbantke metric the all plus signature.

3.6 A computation

As we know from above, any volume form constructed from the curvature corresponds to
some choice of f . Let us see what this choice is for the Urbantke metric (17).

As we already mentioned above, any metric in the conformal class of (3) makes the triple
of curvature 2-forms anti-self-dual (ASD). Let us choose some metric g in this conformal
class, and introduce a canonical orthonormal basis Σi in the space of ASD 2-forms for the
metric g. Explicitly, given a frame basis, Σi’s are the forms that are given by (6). They
satisfy the following algebraic relations

1

2
Σi ∧ Σj = −δijvg, (18)

Σi
µ
ρΣj

ρ
ν = εijkΣk

µ
ν − δijδµν , (19)

where the space indices are raised by the metric inverse of g. The minus sign in (18) has to
do with our usage of ASD forms rather than SD ones. The volume form vg in (18) is the
metric volume form, positively oriented in the orientation provided by the connection.

Then the curvature 2-forms can be expanded in the basis of Σi as

F i = σ
(√

X
)ij

Σj, (20)

where σ = ±1 is the sign of the definite connection Ai already introduced in the previous
subsection, and

√
X is the positive-definite matrix square root of the positive-definite matrix

X. We stress that the relation (20) can be written for an arbitrary choice of metric g in
the conformal class of (3). This relation can also be used as an alternative definition of the
sign of the definite connection. The decomposition (20) follows using (18). Indeed, we have

F i ∧ F j = σ2
√
X
ik√

X
jl

(−2)δklvg = −2X ijvg.
We now use (20) with Σi’s being those for the Urbantke metric (17). Thus, we now take

X = XU with respect to the volume form of the metric gU. Substituting (20) into (17) and

using (19), we get the relation gU = (detXU)1/2 gU, from which we conclude that

detXU = 1. (21)

As we already remarked, the sign (and even the overall factor) of the Lagrangian function
f(X) in action (15) does not matter in the pure-gravity theory (see, however, footnote 1 on
page 7). We can then always take this function to be positive-valued for positive-definite X.
We then note that for any function f we can use the volume form vf = f(X)v to define X.
One then has vf = f(Xf )vf and hence f(Xf ) = 1. This immediately allows us to translate
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the condition (21) into a choice of the function f . Thus, the condition (21) derived above
corresponds to a homogeneous degree one function

f(X) = (detX)1/3 . (22)

We then note that for this function

∂f

∂X
=

1

3
(detX)1/3X−1, (23)

and so the field equations (16) reduce to (2). As clear from the preceding subsection, a
characteristic property of this function is that f (F ∧ F ) coincides with the volume form of
the Urbantke metric gU defined in (17).

3.7 Einstein connections

There is a different choice of f(X) that gives rise to Einstein metrics [10]. Let us define

fGR =
(

Tr
√
X
)2

. (24)

We then have
∂fGR

∂X
=
(

Tr
√
X
)
X−1/2, (25)

and
∂fGR

∂X ij
F j = σTr

√
X Σi, (26)

where we have used (20). This is valid for X and Σi’s defined as in (20) with respect to
some metric in the conformal class of (3).

We can then fix the metric gGR in the conformal class of (3) so that

Tr
√
XGR = 1. (27)

Once the metric is fixed in this way, the field equations (16) become dAΣi
GR = 0, where

Σi
GR is the basis (6) of ASD forms for the metric gGR. This equation is equivalent to the

statement that the connection A is the anti-self-dual part of the Levi-Civita connection for
the metric with the basis of ASD 2-forms Σi

GR. We then have a metric with the curvature
of the ASD part of the Levi-Civita connection being ASD as a 2-form. This is known to be
equivalent to the Einstein condition. The arising metrics are Einstein with the cosmological
constant Λ = 3σ.

For more information about General Relativity in the language of connections the reader
is referred to exposition in [11]. The choice of f(X) that leads to GR is not to play any
further role in this paper, and is described here just to illustrate the statement that it is
the mathematically more natural choice (22) that plays role in the construction of the G2

holonomy metrics, not (24).
Another way to state that a pure-connection theory with Lagrangian (22) is not GR is to

say that connections satisfying (2) give rise to metrics (17) that are not Einstein. It would
be interesting to characterise the arising metrics is some way.
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3.8 Generality of the volume functionals

Even though this has little to do with the main subject of this paper, let us remark that the
parametrisation (20) of the curvature makes it clear that the only gauge-invariant volume
form that can be constructed from the curvature of the connection is of the type (14) for some
function f . This follows from the fact that the volume form can only be constructed from
factors of the curvature and the anti-symmetric tensor ε̃µνρσ that has density weight one and
that exists on any manifold. Using (20) to parametrise the curvature, as well as the fact that
Σ’s are anti-self-dual, one can convince oneself that all contractions of the spacetime indices
are taken care of by the algebra (19), and that what remains is some gauge-invariant scalar
built from factors of the matrix

√
X. Thus, for SO(3) connections that define a conformal

class of metrics, all gauge-invariant functions of the curvature are of the type (14). One
can easily generalise the construction (14) to other gauge groups, but in that case there are
functions of the curvature that do not reduce to (14). One should keep in mind this special
character of the SO(3) theory.

3.9 Instanton solutions

For any function f(X), connections satisfying X ij ∼ δij give rise to metrics that are self-dual
Einstein. Indeed, in this case the field equations (16) reduce to the Bianchi identity for the
curvature and are automatically satisfied for any f(X). When X ij ∼ δij, there exists a
metric with respect to whose volume form F i = σΣi. The Bianchi identity then states that
dAΣi = 0 and, therefore, A is the ASD part of the Levi-Civita connection. It is clear that
the corresponding metric is Einstein, as there is no SD part in the curvature 2-form of A.
Also, because F i = σΣi, the ASD part of the Weyl tensor vanishes (Weyl− = 0), and we
have a self-dual Einstein metric of scalar curvature 12σ.

Thus, self-dual Einstein metrics corresponding to connections with X ij ∼ δij are solutions
of (16) for any f(X). In particular, these solutions are shared by theory (22) and GR (24).

3.10 More general solutions

Even though we are far from understanding all Einstein metrics on 4-
manifolds, some intuition as to how many solutions there exist comes from the Lorentzian
version of the theory. Indeed, GR with Lorentzian signature is a theory with local degrees
of freedom, and so the space of solutions is infinite-dimensional. For example, solutions can
be obtained by evolving the initial data.

A similar description is also possible in the Riemannian context, in particular in the
setting of asymptotically hyperbolic metrics. Then, as is well known from the work [15],
one can solve for asymptotically hyperbolic Einstein metrics in the form of an expansion
in powers of the ‘radial’ coordinate. The free data for this expansion are a conformal class
of metric on the boundary (modulo boundary diffeomorphisms), together with a symmetric
traceless transverse tensor that appears as free data in some higher order of the expansion.
There are 2 + 2 free functions on the boundary as free data, and this is the Riemannian
analog of the statement that GR has 2 propagating degrees of freedom.

A similar expansion in the language of connections was developed in [16]. One outcome
of the analysis of this paper is that the expansion is universal for the whole class of theories
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(15), whatever the function f is. Only the details of the expansion at sufficiently high order
in the radial coordinate start to depend on f . In the first few orders, the expansion is
completely independent of f . In particular, the count of free data that seeds the expansion
is f -independent. This means that the free data to be prescribed to get an asymptotically
hyperbolic solution of theory (22) (locally near the boundary) are 2 + 2 free functions on the
3-dimensional asymptotic boundary. This illustrates the statement that the theory (22) has
as many solutions as GR.

Some explicit cohomogeneity one asymptotically hyperbolic solutions of theory (22) are
described below.

4 Bryant–Salamon construction

We now review the construction of [3] using the notation compatible with our discussion of
the SO(3) formulation of gravity.

4.1 Ansatz

Let (M, g) be a self-dual Einstein 4-manifold, and let Σi, i = 1, 2, 3, be the basis of ASD
2-forms satisfying properties (18) and (19). For example, the 2-forms Σi can be constructed
from the frame 1-forms via (6). Let Ai be the ASD part of the Levi-Civita connection. This
is an SO(3) connection that satisfies

dAΣi = 0. (28)

The self-dual Einstein condition translates into

F i = σΣi, σ = ±1, (29)

where we have normalised our metric so that the scalar curvature is 12σ.
An arbitrary ASD 2-form can be written as Σ(y) = Σiyi, and so the quantities yi are the

fiber coordinates in the bundle of ASD 2-forms over M . We make the following ansatz for
the calibrating 3-form:

Ω =
1

6
α3εijkdAy

i ∧ dAyj ∧ dAyk + 2αβ2dAy
i ∧ Σi, (30)

where dAy
i = dyi + εijkAjyk is the covariant derivative with respect to A, and α and β are

functions of y2.

4.2 Closure

We now require the form Ω to be closed. Because Ω does not have any internal indices we
can apply the covariant derivative instead of the exterior one. When differentiating the first
term, we only need to differentiate the quantities dAy

i, as differentiating α would lead to
exterior products of four one-forms from the triple {dAyi}, which are zero. In the second
term, we do not need to apply the derivative to Σi because it is covariantly closed. We also
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do not need to differentiate dAy
i since this produces a multiple of εijkF jyk ∧ Σi, which is

equal to zero due to (29) and (18). We thus get

dΩ =
1

2
α3εijkεilmF lym ∧ dAyj ∧ dAyk (31)

+ 2
(
αβ2

)′ (
2yidAy

i
)
∧
(
dAy

j ∧ Σj
)
.

We now use (29) and decompose the product of two epsilon tensors into products of Kronecker
deltas. We obtain

dΩ =
[
−σα3 + 4

(
αβ2

)′] (
yidAy

i
)
∧
(
dAy

i ∧ Σj
)
. (32)

Thus, we must have
4
(
αβ2

)′
= σα3 (33)

in order for the form to be closed. The quantity σ = ±1 is the sign already encountered
above, see (20).

4.3 Canonical form

We now compute the metric defined by Ω, as well as its Hodge dual. The easiest way to do
this is to write the 3-form in the canonical form, so that the metric and the dual form are
immediately written. Thus, let θ1, . . . , θ7 be a set of 1-forms such that the 3-form Ω is

Ω = θ5 ∧ θ6 ∧ θ7 + θ5 ∧
(
θ1 ∧ θ2 − θ3 ∧ θ4

)
(34)

+ θ6 ∧
(
θ1 ∧ θ3 − θ4 ∧ θ2

)
+ θ7 ∧

(
θ1 ∧ θ4 − θ2 ∧ θ3

)
.

Then the 1-forms θ are an orthonormal frame for the metric determined by Ω

gΩ =
(
θ1
)2

+ · · ·+
(
θ7
)2
, (35)

and the Hodge dual ∗Ω of Ω is given by

∗Ω = θ1 ∧ θ2 ∧ θ3 ∧ θ4 −
(
θ1 ∧ θ2 − θ3 ∧ θ4

)
∧ θ6 ∧ θ7 (36)

−
(
θ1 ∧ θ3 − θ4 ∧ θ2

)
∧ θ7 ∧ θ5 −

(
θ1 ∧ θ4 − θ2 ∧ θ3

)
∧ θ5 ∧ θ6.

4.4 Calculation of the metric and the dual form

We now put ansatz (30) into the canonical form (34), and compute the associated metric
and the dual form. The canonical frame is easily seen to be

θ4+i = αdAy
i, θI = β

√
2eI , I = 1, 2, 3, 4, (37)

where eI is the orthonormal frame such that the basis of ASD 2-forms is given by (6). The
metric is then

gΩ = α2
∑
i

(
dAy

i
)2

+ 2β2
∑
I

(
eI
)2
, (38)

and the dual form is

∗Ω = −2

3
β4Σi ∧ Σi − β2α2εijkΣi ∧ dAyj ∧ dAyk. (39)

12



4.5 Co-closure

We now demand the 4-form (39) also to be closed. The first point to note is that when we
apply the covariant derivative to the factor β2α2 in the second term, we generate a 5-form
proportional to the volume form of the fiber. There is no such term arising anywhere else,
and we must demand

αβ = const (40)

in order for (39) to be closed. Differentiation of the rest of the terms gives

d∗Ω = −2

3

(
β4
)′ (

2yidAy
i
)
∧ Σj ∧ Σj (41)

− 2β2α2εijkΣi ∧ εjlmF lym ∧ dAyk.

We now use (29) and (18) to get

d∗Ω = −2

3

[(
β4
)′ − σβ2α2

] (
2yidAy

i
)
∧ Σj ∧ Σj, (42)

and so we must have (
β4
)′

= σβ2α2. (43)

4.6 Determining α and β

The overdetermined system of equations (33), (40) and (43) is nevertheless compatible.
Without loss of generality, we can simplify things and rescale yi (and therefore α) so that

αβ = 1. (44)

With this choice, we have only one remaining equation to solve, which gives

β4 = k + σy2,

where k is an integration constant. We can then further rescale y and β, keeping αβ = 1,
to set k = ±1 at the expense of multiplying the 3-form Ω by a constant. After all these
rescalings, we get the following incomplete solutions:

σ = 1, β = (y2 − 1)1/4, y2 > 1,
σ = −1, β = (1− y2)1/4, y2 < 1,

(45)

as well as a complete solution for the positive scalar curvature:

σ = 1, β = (1 + y2)1/4. (46)

The two most interesting solutions, the incomplete solution for σ = −1 and the complete
solution for σ = +1, can be combined together as

β = (1 + σy2)1/4. (47)

5 Construction in Theorem 1

We now give details of our generalisation of the Bryant–Salamon construction.

13



5.1 Ansatz and closure

We parametrise the 3-form by an SO(3) connection in an R3 bundle over M :

Ω =
1

6
α3εijkdAy

i ∧ dAyj ∧ dAyk + 2σαβ2dAy
i ∧ F i, (48)

where the factor σ = ±1 is the sign of the definite connection. It is introduced in the ansatz
so that (48) reduces to (30) for instantons (29). It is then easy to see, using the Bianchi
identity dAF

i = 0, that the condition of closure of (48) is unmodified and is still given by
(33).

5.2 The canonical form and the metric

We now put (48) into the canonical form (34). To this end, we use the parametrisation (20)

of the curvature. It is then clear that the 1-forms θ4+i are some multiples of α
√
X
ij
dAy

j.
The correct factors are easily found, and we have

θ4+i = (detX)−1/6 α
(√

X
)ij

dAy
j, θI = β

√
2 (detX)1/12 eI , (49)

where eI are the frame 1-forms for the metric which makes F i anti-self-dual and whose
volume form is used to define the matrix X ij, see (13).

The metric determined by (48) is then

gΩ = α2 (detX)−1/3 dAy
iX ijdAy

j + 2β2 (detX)1/6
∑
I

(
eI
)2
. (50)

5.3 The dual form and the co-closure

The dual form reads

∗Ω = −2

3
β4 (detX)1/3 (X−1F

)i ∧ F i (51)

− σβ2α2 (detX)1/3 (X−1F
)i
εijk ∧ dAyj ∧ dAyk,

where again we expressed all ASD 2-forms on the base in terms of the curvature 2-forms using
(20). Note that, in both terms, the curvature appears either as itself, or in the combination

(detX)1/3 (X−1F )
i
. It is now easy to see that the same steps we followed in the Bryant–

Salamon case can be repeated provided

dA

[
(detX)1/3X−1F

]
= 0. (52)

This is the field equation for theory (22) already quoted in (2). The Theorem stated in the
Introduction is proven.
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5.4 Complete indefinite G2 metrics for σ = −1

We can modify our construction by not putting the sign σ in front of the second term in
(48). Then all of the construction goes unchanged except that σ does not appear either in
Ω or in ∗Ω. The differential equations for α and β then give β = (1 + y2)1/4, and the metric
is then complete in the fiber direction for either sign. But the price one pays in this case is
that the second term in (50) will appear with a minus sign in front for σ = −1. This will
give a complete (in the fiber direction) metric of G2 holonomy, but of signature (3, 4) rather
than a Riemannian metric.

5.5 Metric induced on the base

The 3-form (48) defines the metric (50) on the total space of the bundle. The metric induced
on the base is in the conformal class that makes the curvature 2-forms F i anti-self-dual. The
conformal factor can be read off from (50). In particular, the corresponding volume form is

vΩ = 4
(
1 + σy2

)
(detX)1/3 ε, (53)

where ε is the orientation form used to define the matrix X. Thus, for a constant y2 the
induced metric is a multiple of the metric that we already encountered in the context of
diffeomorphism-invariant SO(3) gauge theory defined by the function (22).

We now remark that, in the context of SO(3) gauge theory, the metric interpretation is
possible, but nothing forces us to introduce this metric, as the theory itself is about gauge
fields, and metric is a secondary object. However, after embedding into 7D, we see that the
connection is a field that parametrises the closed 3-form Ω, and the 3-form naturally defines
a metric in the total space of the bundle. In the context of 7D theory, the metric arises
more naturally and unavoidably. Since this 7D metric induces a metric on the base, the
7D construction provides an explanation why the metric should also be considered in the
context of 4D SO(3) gauge theory.

5.6 Relation between the 7D and 4D action functionals

As is well-known (see [13]), the co-closure condition d∗Ω can be obtained by minimising
a certain volume functional of Ω with respect to variations of Ω by an exact form. The
functional in question is just the volume of the 7D manifold computed using the metric
defined by Ω. For our ansatz (48), the metric is given by (50). The fiber part gives the volume

element α3(dy)3, while the base part gives 4β4 (detX)1/3 ε. Thus, the volume functional
reduces for our ansatz to

S[Ω] = 4

∫
d3y

(
1 + σy2

)1/4
∫
M

(detX)1/3 ε. (54)

This is proportional to the action of the SO(3) gauge theory on the base. In the incomplete
case σ = −1, the integral over the fiber (from y = 0 to y = 1) can be taken and is finite,
and we get

Sσ=−1[Ω] =
16
√
π Γ2(1/4)

21
√

2

∫
M

(detX)1/3 ε. (55)
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In either case, the volume functional for the 3-form (48) in 7 dimensions is a multiple of
the volume functional for the SO(3) connection in 4D. Thus, there is a relation not only
between solutions of the two theories, but also between the action functionals.

Let us note that we can also get relation (55) to work in the case σ = +1 at the expense
of making the 7D metric indefinite of signature (3, 4). This is achieved just by putting the
minus sign in front of the second term in (48) also for the σ = +1 case. The 7D metric is
then indefinite, but induces a Riemannian signature metric on the base. In this case, the

function β = (1− y2)
1/4

, and so we get an incomplete metric in the fiber direction, and a
finite multiple relation (55) between the volumes.

6 Examples

We now describe some examples of 7D metrics obtained from the above construction. We
build 7D metrics from cohomogeneity one metrics on the base. We describe two easy ex-
amples in which the base metrics are asymptotically hyperbolic. In our first example, the
asymptotic metric on the conformal boundary is that of R3, while, in the second example,
it is S1 × S2. Finally, we attempt the Bianchi IX case, but find ourselves unable to solve
the arising ODE’s even in the bi-axial case. We still describe this example, as it is likely the
most interesting one from the mathematical viewpoint.

6.1 Bianchi I

The simplest, but still non-trivial example to consider is that of co-
homogeneity one on the base, with the base manifold having the structure R3×R. Thus, let
dx1,2,3 be the one-forms in the R3 directions, and let r be the coordinate in the remaining
direction, which we call ‘radial.’ We make the following ansatz of the connection:

A1 = a1(r)dx1, etc. (56)

The curvature forms read

F 1 = a′1dr ∧ dx1 + a2a3 dx
2 ∧ dx3, etc. (57)

We get the Euler–Lagrange equations by first evaluating the action of the full theory on this
ansatz, and then performing the variation. Due to the symmetry of the problem, one gets
the same equations as would follow by substituting the ansatz into (2). The volume action
evaluated on the above ansatz is then a multiple of

S ∼
∫
dr
(
a′1a

′
2a
′
3a

2
1a

2
2a

2
3

)1/3
. (58)

The arising Euler–Lagrange equations read

−
(
L

a′1

)′
+

2L

a1

= 0, etc, (59)

where L is the Lagrangian in (58). They can easily be solved by choosing the radial coordi-
nate so that

L ≡
(
a′1a

′
2a
′
3a

2
1a

2
2a

2
3

)1/3
= 1. (60)
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This gives
a1 = c1(r − r1)1/3, etc, (61)

where ci and ri are integration constants.
The corresponding matrix X, calculated with respect to the orientation form ε = dr∧d3x,

is given by

X =
1

3
c1c2c3 [(r−r1)(r−r2)(r−r3)]1/3 diag

(
1

r−r1

,
1

r−r2

,
1

r−r3

)
. (62)

We want our connection to be definite. Let us now assume that c1c2c3 = 3, which is always
possible for c1c2c3 > 0 by rescaling the metric. We can always order the integration constants
so that r3 < r2 < r1. Then we get a definite connection for r > r1 and r < r3.

Under these assumptions, we can easily compute the associated basis of ASD 2-forms
Σ = σX−1/2F . In order for the basis of Σ’s to take the canonical form in the orientation of
dr ∧ d3x, we need to take

σ = −1. (63)

We get

Σ1 = − [(r − r2)(r − r2)])−1/6 (64)

×

 c1dr ∧ dx1

3(r − r1)1/3
+ c2c3

(∏
i

(r − ri)

)1/3

dx2 ∧ dx3

 ,
etc. We can then easily determine the orthonormal basis for the metric:

θr = −1

3

[∏
i

(r − ri)

]−1/3

dr, (65)

θ1 = c1 [(r − r2)(r − r2)]1/6 dx1, etc,

so that the metric is

ds2
4 =

1

9

[∏
i

(r − ri)

]−2/3

dr2

+

[∏
i

(r − ri)

]1/3 [
c2

1(dx1)2

(r − r1)1/3
+

c2
2(dx2)2

(r − r2)1/3
+

c2
3(dx3)2

(r − r3)1/3

]
.

For large r, the matrix X approaches the identity matrix, so we have an asymptotically
self-dual Einstein solution. We can introduce the new coordinate r1/3 = exp ρ, in terms of
which the asymptotic metric takes the form ds2 = dρ2 + e2ρ

∑
i c

2
i (dx

i)2. This is the metric
of the 4D hyperbolic space with Λ = −3. The 7D lift of the full metric is given by (50):

ds2
7 =

[(r − r1)(r − r2)(r − r3)]1/3

(1− y2)1/2
(66)

×
∑
i

1

r − ri

[
dyi +

∑
j,k

εijkcj(r − rj)1/3dxjyk

]2

+ 2
(
1− y2

)1/2
ds2

4.

17



6.2 Spherically symmetric solution

We take the following spherically symmetric ansatz:

A1 = a(R)dt+ cos θ dφ, A2 = −b(R) sin θ dφ, A3 = b(R)dθ, (67)

where R is some radial coordinate. The curvatures are

F 1 = −a′dt ∧ dR +
(
b2 − 1

)
sin θ dθ ∧ dφ,

F 2 = ab dθ ∧ dt− b′ sin θ dR ∧ dφ,
F 3 = −ab sin θ dt ∧ dφ+ b′dR ∧ dθ.

(68)

The action evaluated on the ansatz reads

S ∼
∫
dR

[
a′
(
b2 − 1

)
a2
((
b2 − 1

)′)2
]1/3

. (69)

Minimizing it with respect to a and b2−1, and again choosing the radial coordinate in which
L = 1, we get

−
(

1

a′

)′
+

2

a
= 0, −

[
2

(b2 − 1)′

]′
+

1

b2 − 1
= 0. (70)

This integrates to

a = C1 (R−R1)1/3 , b2 − 1 = C2 (R−R2)2/3 , (71)

where C1,2 and R1,2 are integration constants. The corresponding matrix X ij, determined
with respect to the orientation form ε = −dt ∧ dR ∧ sin θ dθ ∧ dφ, is

X =
C1C2

3
diag

[(
R−R2

R−R1

)2/3

,

(
R−R1

R−R2

)1/3

,

(
R−R1

R−R2

)1/3
]
. (72)

Let us now set C1C2 = 3. The components of the metric are determined by computing
Σ = −X−1/2F , where we need to choose σ = −1 to get the canonical expressions for the
ASD 2-forms Σi. We then get the frame fields

θt =
C1√
C2

√
1 + C2(R−R2)2/3dt,

θR =

√
C2dR

3
√

1 + C2(R−R2)2/3(R−R1)1/3(R−R2)1/3
,

θθ =
√
C2(R−R1)1/6(R−R2)1/6dθ,

θφ =
√
C2(R−R1)1/6(R−R2)1/6 sin θ dφ,

and so the metric reads

ds2
4 =

C2
1

C2

(1 + C2(R−R2)2/3)dt2 (73)

+
C2dR

2

9(1 + C2(R−R2)2/3)(R−R1)2/3(R−R2)2/3

+ C2(R−R1)1/3(R−R2)1/3dΩ2,
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where, as usual, dΩ2 is the unit sphere metric. Asymptotically for large R, introducing√
C2R

1/3 = r we get the following metric: ds2
4 = r2[(C2

1/C2)dt2 + dΩ2] + dr2/r2. This is the
hyperbolic space metric with the conformal structure of the boundary being that of S1×S2,
provided we identify the ‘time’ coordinate t periodically. It is now easy to write the lift (50)
of the metric (73). We get

ds2
7 =

(
1− y2

)−1/2

[(
R−R2

R−R1

)2/3 [
dy1 − b(R) sin θ dφ y3 − b(R)dθ y2

]2
+

(
R−R1

R−R2

)1/3 [
dy2 + b(R)dθ y1 − (a(R)dt+ cos θ dφ)y3

]2
+

(
R−R1

R−R2

)1/3 [
dy3 + (a(R)dt+ cos θ dφ)y2 + b(R) sin θ dφ y1

]2]
+ 2

(
1− y2

)1/2
ds2

4, (74)

with a(R) and b(R) given by (71).

6.3 Bianchi IX

As we already mentioned, our treatment of this case is incomplete, because we are unable to
solve the arising ODE’s. The main result of this subsection is the ODE (101) to which the
problem reduces in the bi-axial case. If one can solve this ODE (e.g. numerically) one would
obtain cohomogeneity one 4D metrics that asymptote to Bianchi IX bi-axial instantons –
the Taub-NUT metrics.

6.3.1 Ansatz

Let e1, e2, e3 be the standard basis of su(2) left-invariant one-forms on S3 with structure
equations de1 = e2 ∧ e3 etc. Consider the ansatz

A1 = h1e
1, A2 = h2e

2, A3 = h3e
3, (75)

where hi are functions of the ‘radial’ coordinate r. The curvature components are

F 1 = h′1dr ∧ e1 + (h1 + h2h3) e2 ∧ e3, etc. (76)

6.3.2 The metric

Our first aim is to calculate the appropriately normalized (Euclidean) metric in which the
curvature components are anti-self-dual. As before, we do this computation by computing
the matrix of curvature wedge products F i ∧ F j = 2X ijdr ∧ e1 ∧ e2 ∧ e3:

X = diag [h′1(h1 + h2h3), h′2(h2 + h1h3), h′3(h3 + h1h2)] . (77)

We assume all hi and their derivatives h′i to be positive, so that the connection is definite. We
then get Σ = −X−1/2F , and read off the basis of frame 1-forms by comparing the resulting
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Σ’s with (6). Note that the sign of the connection must be chosen to be σ = −1 to identify
the curvature 2-forms with ASD forms. We get the metric of the form

ds2 = N2 (dr)2 +
3∑
i=1

a2
i

(
ei
)2
, (78)

with

N2 =
(h′1h

′
2h
′
3)2/3

[(h1 + h2h3) (h2 + h3h1) (h3 + h1h2)]1/3
, (79)

a2
1 =

(h′1)2/3

(h′2h
′
3)1/3

[(h2 + h3h1) (h3 + h1h2)]2/3

(h1 + h2h3)1/3
, etc. (80)

6.3.3 The action

The action of the theory is

S =

∫
f (F ∧ F ) (81)

= VS3

∫ [
h′1h

′
2h
′
3 (h1 + h2h3) (h2 + h3h1) (h3 + h1h2)

]1/3

dr,

where VS3 =
∫
S3 e

1 ∧ e2 ∧ e3. Variation of this action with respect to hi, i = 1, 2, 3, gives
equations of motion. Choosing the ‘radial’ coordinate r so that the Lagrangian in (81)
becomes constant (equal to unity), we obtain the following system of equations:(

1

h′1

)′
=

1

h1 + h2h3

+
h3

h2 + h3h1

+
h2

h3 + h1h2

, (82)

and equations obtained by cyclic transmutation of indices. A particular solution of these
equations for all positive and increasing hi asymptotically tends to the shape-preserving
expansion:

h1 ∝ h2 ∝ h3 ∝ r1/3 as r →∞. (83)

6.3.4 Self-dual case

In the particular self-dual case, characterised by the condition F i ∧ F j ∝ δij, we have

h′1 (h1 + h2h3) = h′2 (h2 + h3h1) = h′3 (h3 + h1h2) = 1, (84)

and equations (82) are satisfied identically. As for the metric components (79) and (80), we
have

N2 = h′1h
′
2h
′
3, a2

1 =
h′1

2

N2
, etc. (85)

Equations (84) imply the relation

h2
1 + h2

2 + h2
3 + 2h1h2h3 = 6r, (86)

where a particular shift of the variable r was made to absorb the integration constant.
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6.3.5 Self-dual bi-axial case

One can find a family of exact solutions with the biaxial ansatz

h1 = a, h2 = h3 = b. (87)

In this case, equations (84) read

a′(a+ b2) = bb′(1 + a), (88)

and have an integral
b2 = k(1 + a)2 − 2a− 1, (89)

where k is the integration constant. Relation (86) then determines the radial coordinate as
a function of a:

r =
k(1 + a)3

3
− (1 + a)2

2
+

1

6
. (90)

The metric components of this solution read

N2dr2 =
kx− 1

x [1 + x (kx− 2)]
dx2, (91)

a2
1 =

x [1 + x (kx− 2)]

kx− 1
, (92)

a2
2 = a2

3 = x (kx− 1) , (93)

where we have introduced a new radial variable x = 1 + a.
By changing the radial variable from x to ρ as

x = 2n2
(

1∓ ρ

n

)
, n =

1

2
√
k
, (94)

we bring the metric into the form presented in [17]:

ds2 =
ρ2 − n2

∆
dρ2 +

4n2∆

ρ2 − n2

(
e1
)2

+
(
ρ2 − n2

) [(
e2
)2

+
(
e3
)2
]
, (95)

where
∆ = (ρ∓ n)2 [1 + (ρ± 3n)(ρ∓ n)] . (96)

It describes the self-dual (upper sign) or anti-self-dual (lower sign) Taub–NUT–anti-de Sitter
metric.

6.3.6 General bi-axial case

In the general case with biaxial ansatz (87), equations of motion (82) read(
1

a′

)′
=

1

a+ b2
+

2

1 + a
,

(
1

b′

)′
=

1

b
+

b

a+ b2
. (97)

It is convenient to change the variables to

x = 1 + a, y = b2 − 1, (98)
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so that these equations become(
1

x′

)′
=

1

y + x
+

2

x
,

(
1

y′

)′
=

1

2(y + x)
. (99)

We can obtain a closed differential equation for the trajectory y(x). We have

d2y

dx2
=

1

x′

(
y′

x′

)′
=
y′′

x′2
+

(
1

x′

)′
y′

x′
= −

(
1

y′

)′(
y′

x′

)2

+

(
1

x′

)′
y′

x′
. (100)

Now, using equations (99), we get

d2y

dx2
+

1

2(y + x)

(
dy

dx

)2

−
(

1

y + x
+

2

x

)
dy

dx
= 0. (101)

This equation looks very difficult to solve. Note that its partial solution y(x) = kx2 − 2x is
precisely the self-dual solution (89).

We also have the constraint reflecting our choice of radial variable:

x′y′2(y + x)x2 = 4. (102)

It is only needed to determine the original radial variable r along the trajectory:

dr =

[
1

4

(
dy

dx

)2

(y + x)x2

]1/3

dx. (103)

While we are unable to solve the general bi-axial case analytically (apart from the already
known self-dual case), the ODE (101) can be used for a numerical solution, which can then
be lifted to 7D.

7 Discussion

In this paper we generalised the construction of [3] by parametrising the 3-form in 7 dimen-
sions with an SO(3) connection on the 4-dimensional base instead of a self-dual Einstein
metric. We get a G2 holonomy metric in 7 dimensions provided the connection satisfies
the Euler-Lagrange equations of the theory (22). Our construction then intersects with
that of Bryant-Salamon precisely for self-dual Einstein metrics – instantons. These are also
the solutions that are shared by the theory (22) and GR. The solutions of (22) that are
not instantons give metrics on the base that are not Einstein. Our work interprets these
non-Einstein metrics as restrictions of 7 dimensional Ricci flat metrics to the 4-dimensional
base.

Our construction shows that a certain theory of gravity in 4D can be understood as arising
via a dimensional reduction of a theory of differential forms in 7 dimensions. This realisation
of a 4D gravity theory as coming from a theory of a very different nature appears to be the
most interesting aspect of our work. While the proper interpretation of our dimensional
reduction is still to be developed, we give some comments in this direction, leaving the final
word to future studies.
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If we are to interpret a 4D gravity as arising by some sort of Kaluza–Klein reduction from
a higher-dimensional theory of differential forms, the must first answer the question what
this theory of forms is. As we have already described in the main text, a (stable) 3-form in 7
dimensions naturally defines a metric, and one can compute the volume of the manifold with
respect to this metric. This leads to functional (9) whose critical points are 3-forms that
are co-closed d∗Ω = 0, provided one varies the 3-form within a fixed cohomology class Ω =
Ω0 + dB, B ∈ Λ2E. Thus, one possible interpretation of theory (9) is as a theory of 2-forms
B in 7 dimensions, with the action constructed from their field strength Ω = dB. Viewed
in this light, it becomes an analog of Maxwell’s theory, where the basic field is a 1-form
A, and the action is constructed from the field strength F = dA. The principal difference
between these two cases is that Maxwell’s theory requires a metric for its formulation, while
the theory of 2-forms in 7 dimensions exists on an arbitrary differentiable manifold without
any extra structure. Moreover, the field strength Ω = dB itself defines a metric on E, and
this is why such a theory can ultimately be given, as in our construction, some gravitational
interpretation. Considering this theory on classes of forms of type Ω = Ω0 + dB with fixed
non-trivial Ω0, one can interpret this as a theory around different vacua, with different
cohomology classes to be summed over in the path integral.

Having defined the 7-dimensional theory as a diffeomorphism-invariant analog of elec-
tromagnetism in 7 dimensions (but now for 2-forms rather than one-forms), we can discuss
the meaning of our ansatz (48) in which we parametrised Ω by a connection 1-form on the
4-dimensional base. Our first remark is that, because our ansatz (48) is closed, it can locally
be written as Ω = dB, with some B parametrised by the connection field. This way of
writing Ω is of course not unique, because B is only defined modulo B → B + dθ, θ ∈ Λ1E.
We can now get some insight into the meaning of our ansatz (48) if we consider the manifold
E to have the structure of a product manifold with 3-dimensional fibers and a 4-dimensional
base. Then the 21 components of B decompose as follows: we get 3 components of B that
is a 2-form in the fiber, these should be interpreted as scalars from the point of view of the
base; we get the components of B that are basic 1-forms, as well as 1-forms in the fiber
direction, these are interpreted as three 1-forms on the base; finally, there is the component
that is a 2-form on the base. Counting the numbers we get 3 + 3× 4 + 6 = 21 components
as required.

It is then clear that if we make an assumption that B is invariant under an action of
some group in the fiber directions, we get a structure of a fiber bundle with the basic 1-form
components of B receiving the interpretation of a connection in this bundle. In our ansatz
(48), we have parametrised Ω and thus B just by these connection components, thus setting
to zero all other possible fields that could have been present. This led us to a diffeomorphism-
invariant SO(3) gauge theory with the Lagrangian (detX)1/3 on the base. It would be very
interesting to keep all the components of the 2-form B, and find the resulting theory. This
is to be described elsewhere.

It thus appears that the right interpretation of our construction is that we have made
a particular Kaluza–Klein ansatz (48) for some 7-dimensional theory, and saw how the 7-
dimensional field equations impose some 4D field equations on our ansatz. This is not
yet Kaluza–Klein reduction, in which one would instead make an assumption that the 7-
dimensional field is invariant with respect to some group action, and determine all the fields
and their dynamics that arise in lower dimensions. To put it differently, what we have
obtained is analogous to the Kaluza–Klein ansatz that obtains gravity plus Maxwell in 4
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dimensions from gravity in 5 dimensions, while setting the other field necessarily present in
this dimensional reduction — the scalar field — to zero by hand. It is very interesting to
determine the full content and dynamics of the 7D theory (9) dimensionally reduced to 4D.

A potentially more difficult question is to study the dimensional reduction without any
symmetry assumptions, and thus take into account the full infinite set of modes that arise
by decomposing the field dependence on the ‘internal’ coordinates into appropriate spherical
harmonics. In the usual Kaluza–Klein story, the fields with non-trivial dependence on the
internal coordinates get interpreted as massive modes. It would be very interesting to see if
the same interpretation persists for the 7-dimensional theory of differential forms.

Finally, the most interesting physics question that arises in this context is whether Gen-
eral Relativity (24) can arise by a similar dimensional reduction from a higher-dimensional
theory of differential forms. This could be precisely GR in its form (24), or, perhaps, a
theory that only resembles GR in some appropriate range of energies, but differs from it in
general. At the moment of writing this, it appears to us that this last possibility is the most
likely one.

Whatever the final word on this story will be, it appears clear to us that there is a very
interesting class of dynamically non-trivial theories of differential forms in higher dimensions,
e.g., 3-forms in 7 and 8 dimensions, see [5] for details of how the action functional is defined
in 8D. The construction presented in this paper makes it clear that these theories, when
dimensionally reduced, are related to dynamically non-trivial gravity theories in 4 dimen-
sions. The main question now is what gravity theories can arise in this way, and what kind
of other fields that accompany gravity arise in such a dimensional reduction. Our paper can
be viewed as a first step in answering these questions.
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