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Abstract 38 

Leukocyte cell-derived chemotaxin-2 (LECT2) and fibroblast growth factor 21 (FGF21) are 39 

hepatokines which are regulated by energy balance and mediate insulin sensitivity and 40 

glycaemic control. This cross-sectional study examined the independent associations of 41 

cardiorespiratory fitness (CRF), moderate-to-vigorous intensity physical activity (MVPA), and 42 

sedentary time, with circulating LECT2 and FGF21. Data were combined from two previous 43 

experimental studies in healthy volunteers (n=141, male=60%, mean  SD age=37  19 years, 44 

body mass index (BMI)=26.1  6.3 kg·m-2). Sedentary time and MVPA were measured via an 45 

ActiGraph GT3X+ accelerometer while magnetic resonance imaging quantified liver fat. CRF 46 

was assessed using incremental treadmill tests. Generalized-linear models examined the 47 

association of CRF, sedentary time and MVPA with LECT2 and FGF21 whilst controlling for 48 

key demographic and anthropometric variables. Interaction terms explored the moderating 49 

influence of age, sex, BMI, and CRF. In the fully adjusted models, each SD increase in CRF 50 

was independently associated with a 24% (95% CI: -37% to -9%, P = 0.003) lower plasma 51 

LECT2 concentration and 53% lower FGF21 concentration (95% CI: -73% to -22%, P = 52 

0.004). Each SD increase in MVPA was independently associated with 55% higher FGF21 53 

(95% CI: 12% to 114%, P = 0.006) and this relationship was stronger in those with lower BMI 54 

and higher levels of CRF. These findings demonstrate that CRF and wider activity behaviours 55 

may independently modulate the circulating concentrations of hepatokines and thereby 56 

influence inter-organ cross-talk. 57 

 58 

 59 

 60 

 61 
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Introduction 62 

The liver plays a central role in system-wide metabolic homeostasis through inter-organ 63 

crosstalk with other tissues (Watt et al., 2019). Many ‘hepatokines’ have been characterised as 64 

vehicles of systemic communication, with important roles in regulating energy/substrate 65 

metabolism, insulin sensitivity, and glycaemic control (Jensen-Cody & Potthoff, 2021). The 66 

regulation of hepatokines has received scientific interest in recent years, with recognition that 67 

anthropometric variables, ectopic lipids, and glycaemic control are associated with many 68 

hepatokines (Jensen-Cody & Potthoff, 2021). Most prominently, experimental studies have 69 

shown that liver fat directly modulates the hepatic proteome (Kirpich et al., 2011; Meex et al., 70 

2015). Emerging evidence indicates that physical activity and cardiorespiratory fitness (CRF) 71 

also influence hepatokine metabolism. However, knowledge in this area is rudimentary 72 

(Ennequin et al., 2019; Weigert et al., 2019). 73 

Leukocyte cell-derived chemotaxin 2 (LECT2) is a hepatokine known to promote insulin 74 

resistance in skeletal muscle and adipose tissue (Jung et al., 2018; Lan et al., 2014). 75 

Observational studies have shown that circulating LECT2 is positively associated with body 76 

mass index (BMI), circulating lipids, and insulin resistance (Okumura et al., 2013). Moreover, 77 

in one analysis, visceral adipose tissue was cited as the strongest predictor of circulating 78 

LECT2 concentrations in humans (Tanisawa et al., 2017). Mechanistically, LECT2 is 79 

negatively regulated by AMP-activated protein kinase (AMPK), therefore energy balance may 80 

also influence LECT2 metabolism (Garcia et al., 2019; Lan et al., 2014). Acute exercise 81 

suppressed circulating LECT2 in rodents (Lan et al., 2014); however, this finding has not been 82 

replicated in humans (Sargeant et al., 2018; Willis et al., 2019). Additional research is needed 83 

to better understand the interaction between physical activity, metabolic status, and LECT2. 84 
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A second hepatokine which has received significant attention is fibroblast growth factor 21 85 

(FGF21). Although the FGF21 protein is produced in several tissues, circulating levels are 86 

predominantly liver-derived (Markan et al., 2014; van Baak et al., 2020). Preclinical studies 87 

have shown that the augmentation of FGF21 action elicits favourable effects on substrate 88 

(glucose and lipid) metabolism, insulin sensitivity, ectopic fat, and energy expenditure (Coskun 89 

et al., 2008; Xu et al., 2009). In clinical trials, FGF21 analogues have conferred positive 90 

metabolic effects in humans (e.g. glycaemic control and lipid metabolism) (Cui et al., 2020). 91 

Counter-intuitively, circulating FGF21 levels are positively related to BMI and the metabolic 92 

syndrome (Chow et al., 2013), which may be a compensatory response to the metabolic stress 93 

of overnutrition (Giralt et al., 2015). Furthermore, FGF21 is acutely regulated by circulating 94 

free fatty acids and the glucagon-to-insulin ratio; factors which are sensitive to physical activity 95 

(Hansen et al., 2015; Mai et al., 2009). Previous research has identified associations between 96 

circulating FGF21, CRF, and habitual physical activity, however, these studies have failed to 97 

separate these associations from the confounding influence of liver fat (Cuevas-Ramos et al., 98 

2010, 2012; Matsui et al., 2019; Taniguchi et al., 2014). Given that liver fat is a key determinant 99 

of circulating FGF21 levels (Okumura et al., 2013), further studies are warranted to disentangle 100 

the relationship between these variables. 101 

Using a sample of precisely phenotyped volunteers, this cross-sectional study examined 102 

independent associations between objectively-measured CRF, physical activity and sedentary 103 

time with circulating LECT2 and FGF21. A secondary aim was to explore whether sex, age 104 

and BMI moderated the associations between exposure and outcome variables. 105 

 106 

 107 

 108 
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Methods 109 

Ethical approval 110 

This cross-sectional study pooled data from two experiments which used identical procedures 111 

for outcomes included in the present analysis (Goltz et al., 2019; Roberts et al., 2022). Both 112 

studies obtained institutional ethical approval and written informed consent from all 113 

participants.  114 

Participants 115 

Data were available for 141 individuals (85 men, 56 women) who were white European or 116 

South Asian. Participants did not smoke, were weight stable, were not taking medications 117 

known to affect study outcomes, and were free of established cardiometabolic disease (e.g., 118 

type 2 diabetes and cardiovascular disease). Pre-menopausal women reported not being 119 

pregnant and their tests were completed during the follicular phase of the menstrual cycle. 120 

Although there was a wide-range, the majority of participants were physically active. 121 

Study procedures 122 

Data collection took place at Loughborough University within laboratory visits that occurred 123 

between November 2016 and September 2019. Although the data included in this manuscript 124 

were pooled from two separate studies, each study was undertaken in the same laboratory using 125 

identical techniques and standard operating procedures. In all cases, participants abstained 126 

from alcohol, caffeine, and structured exercise in the 24 h before data collection. 127 

Anthropometry 128 
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Height and body mass were measured using an integrated stadiometer and scale (Seca Ltd, 129 

Hamburg, Germany). Body mass index was calculated as weight (kg) divided by height (m) 130 

squared. 131 

Measurement of liver fat 132 

Participants underwent an MRI scan to quantify liver fat. Scans used a dual-echo Dixon fat and 133 

water sequence on a 3T MRI scanner (MR750w, GE Healthcare, Chicago, USA). The IDEAL-134 

IQ sequence was used to assess proton density fat fraction (West et al., 2016). After collection, 135 

anonymised scans were analysed by AMRA medical using the AMRATM profiler (AMRA 136 

Medical AB, Linköping, Sweden) (Borga et al., 2015). 137 

Measurement of physical activity and sedentary time 138 

Habitual physical activity and sedentary time were assessed over 7-days using a waist-worn 139 

ActiGraph GT3X+ accelerometer (ActiGraph, Pensacola, USA). For inclusion, participants 140 

were required to submit at least four days of valid wear time (≥ 600 minutes). Data were 141 

analysed over 15 second epochs (ActiLife, Actigraph corporation, Florida, USA) and classified 142 

as: sedentary time < 25 counts per 15 seconds and MVPA ≥ 488 counts per 15 seconds (Byrom 143 

et al., 2016; Freedson et al., 1998). Sixty minutes of continuous zero counts were classified as 144 

non-wear time.  145 

Measurement of cardiorespiratory fitness 146 

Cardiorespiratory fitness was assessed as participants’ peak oxygen uptake (V̇O2 peak) and was 147 

measured directly via indirect calorimetry for 111 individuals. Within these tests, participants 148 

completed an incremental protocol on a treadmill until volitional exhaustion, with heart rate 149 

(Polar T31; Polar Electro, Kempele, Finland) and perceived exertion (Borg, 1973) measured 150 
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throughout. Oxygen uptake was measured continuously during the test via a breath-by-breath 151 

analyser (Metalyzer 3B, Cortex, Leipzig, Germany), with V̇O2 peak determined as the highest 152 

oxygen consumption value averaged over 20 seconds. In the remaining 30 participants, V̇O2 153 

peak was measured indirectly using the Bruce test (Bruce et al., 1973) given their higher cardio-154 

metabolic risk (central obesity). This indirect measure of V̇O2 peak correlates strongly (r = 155 

0.97) with that measured directly (Bruce et al., 1973; Foster et al., 1984). 156 

Biochemical analysis 157 

Fasted venous blood samples were drawn from an antecubital or forearm vein after participants 158 

had rested in a semi-supine position for at least 5 minutes. Samples were collected into pre-159 

chilled EDTA monovettes (Sarstedt, Leicester, United Kingdom) and spun immediately in a 160 

refrigerated centrifuge for 10 minutes (4°C, 1500 x g) (Labofuge 400R, ThermoScientific, 161 

Langenselbold, Germany). The plasma supernatant was collected and stored at -80°C before 162 

analysis. Commercially available enzyme-linked immunosorbent assays (ELISAs) were used 163 

to measure plasma concentrations of LECT2 (BioVendor, Czech Republic) and FGF21 (R&D 164 

Systems, Minneapolis, United States). The coefficient of variation for LECT2 and FGF21 were 165 

4.8% and 5.0%, respectively.  166 

Statistical analyses 167 

A formal sample size calculation was not performed for this exploratory study. Statistical 168 

analyses were carried out using SPSS version 26 (SPSS Inc., Chicago, Illinois). To examine 169 

the distribution of the data, histograms and Kolmogorov-Smirnov tests were used. Data are 170 

presented as the mean  standard deviation (SD) for normally distributed data, median 171 

(interquartile range) for non-normally distributed data, or number (percentage) for categorical 172 

groups. Correlations between physical activity variables, CRF, and liver fat with LECT2 and 173 
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FGF21 were explored using Pearson’s correlation coefficient (r) for normally distributed data, 174 

or Spearman’s correlation coefficient (rho) for non-normally distributed data. LECT2 was 175 

normally distributed, whereas FGF21 was not normally distributed. Generalized linear 176 

modelling was used to examine the independent associations of CRF, sedentary time, and 177 

MVPA with circulating LECT2 and FGF21. All exposure variables were standardised for this 178 

analysis. A normal distribution with a log link was used for LECT2 while a gamma distribution 179 

with a log link was used for FGF21 (due to the right-skewed distribution of the variable). The 180 

consistent use of log links across models and the standardisation (per SD) of exposure variables 181 

allowed for the strength of the association to be reported as a fold change per SD for each 182 

model, allowing direct comparison between models. In model 1, adjustment was made for 183 

demographic variables including study, age (continuous), sex, ethnicity (white European/South 184 

Asian), BMI, plus device wear time (continuous) where accelerometer-measured variables 185 

(sedentary time and MVPA) were included in the model as exposures. Model 2 was adjusted 186 

for the same variables as model 1, as well as for CRF or accelerometer-measured variables 187 

including sedentary time and MVPA (all continuous). Model 3 was adjusted for the same 188 

variables as model 2 plus liver fat (continuous). Multicollinearity between covariates was 189 

assessed using a correlation matrix. Significant associations in model 3 were then explored 190 

further by simultaneously adding interactions terms into the models to assess whether these 191 

associations were modified by sex, age, and BMI. In addition, because interventions to reduce 192 

sedentary behaviour have been shown to be more effective at improving metabolic health in 193 

those with lower fitness (McCarthy et al., 2017), we further assessed interactions between CRF 194 

and physical activity variables. Only significant interactions are presented. To facilitate 195 

interpretation, interactions between continuous variables were also stratified using the median 196 

split. Coefficients were back-transformed to generate fold-change. All data for the regression 197 
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analyses are presented as fold change (95% confidence intervals). Statistical significance was 198 

set at P < 0.05 for main effects and interactions.    199 

Results 200 

The characteristics of included participants are shown in Table 1. Due to technical issues with 201 

the accelerometer, sedentary time and MVPA are presented for n = 130. Additionally, liver fat 202 

could not be determined in 15 participants due to motion artefacts; therefore, these data are 203 

presented for n = 126. Moreover, circulating FGF21 data for one participant were removed 204 

from the analysis due to being an outlier (z-score = 7); therefore, these values are presented for 205 

n = 140.  206 

 207 

Insert Table 1 208 

 209 

Simple correlations between LECT2, FGF21 and key study variables 210 

Figure 1 shows the simple correlations of LECT2 and FGF21 with CRF, sedentary time, 211 

MVPA, and liver fat. Pearson’s correlation coefficients revealed that plasma LECT2 was 212 

negatively associated with CRF (r = -0.38, P < 0.001) and positively associated with liver fat 213 

(r = 0.35, P < 0.001). Plasma LECT2 was not associated with sedentary time or MVPA (P > 214 

0.05). Furthermore, Spearman’s correlation coefficients revealed that plasma FGF21 was 215 

negatively associated with CRF (rho = -0.42, P < 0.001) and positively associated with both 216 

sedentary time (rho = 0.23, P = 0.007) and liver fat (rho = 0.47, P < 0.001). Plasma FGF21 was 217 

not associated with MVPA (P > 0.05). 218 
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Independent associations of LECT2 with CRF, sedentary time and MVPA 219 

Adjusted associations of plasma LECT2 with CRF, sedentary time, and MVPA are shown in 220 

Table 2 and Figure 2. After adjustment for demographic variables in model 1, only CRF was 221 

associated with plasma LECT2 (P = 0.001). Each SD increase in CRF was associated with a 222 

26% (95% CI: -40% to -11%) lower plasma LECT2 concentration. After additional adjustment 223 

for sedentary time, MVPA and liver fat in model 3, the association remained statistically 224 

significant (P = 0.003) such that each SD increase in CRF was associated with a 24% (95% CI: 225 

-37% to -9%) lower plasma LECT2 concentration. There were no associations between LECT2 226 

and sedentary time, or MVPA.  To study the relationship further, interaction analyses with sex, 227 

age, and BMI were performed; however, no significant interactions were observed.  228 

 229 

Insert Table 2 230 

 231 

Independent associations of FGF21 with CRF, sedentary time and MVPA 232 

Associations of plasma FGF21 with CRF, sedentary time, and MVPA are shown in Table 2 233 

and Figure 2. After adjustment for demographic variables (model 1), the association with CRF 234 

was statistically significant for plasma FGF21 (P = 0.007). Each SD increase in CRF was 235 

associated with a 51% (95% CI: -71% to -19%) lower plasma FGF21 concentration. This 236 

association remained in the fully adjusted model (model 3) (P = 0.004), where each SD increase 237 

in CRF was associated with a 53% (95% CI: -73% to -22%) lower plasma FGF21 238 

concentration. Additionally, there was a statistically significant association between plasma 239 
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FGF21 and MVPA (P = 0.006), whereby each SD increase in MVPA was associated with a 240 

55% (95% CI: 12% to 114%) higher plasma FGF21 concentration.  241 

Interaction analyses showed that the relationship between plasma FGF21 and MVPA was 242 

moderated by BMI (P = 0.052) (Table 3). Specifically, each SD increase in MVPA (per 30 243 

minute) was associated with an 86% (95% CI: -48% to 576%) higher plasma FGF21 244 

concentration in those with a lower BMI (< 26.1 kg∙m-2), whereas no relationship was evident 245 

in those with a higher BMI (≥ 26.1 kg∙m-2) (Table 3). Additionally, CRF also moderated the 246 

relationship between plasma FGF21 and MVPA (P = 0.088), such that each SD increase in 247 

MVPA (per 30 minute) was associated with a 104% (95% CI: 35% to 202%) higher plasma 248 

FGF21 concentration in those with a higher CRF (≥ 40.1 mL∙kg-1∙min-1) (Table 3). 249 

 250 

Insert Table 3 251 

 252 

Discussion 253 

This study examined the associations of circulating LECT2 and FGF21 with CRF, sedentary 254 

time, and MVPA. The primary findings are that circulating concentrations of LECT2 and 255 

FGF21 are inversely associated with CRF. Importantly, these relationships were apparent after 256 

controlling for liver fat and other anthropometric, demographic, and accelerometer-measured 257 

variables, each of which are key mediators of circulating hepatokine concentrations. Whilst 258 

observational in nature, these data suggest that an individual’s CRF may be an additional 259 

mediator of hepatokine metabolism.  260 
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LECT2 is a hepatokine that has several detrimental effects on metabolic homeostasis (Slowik 261 

& Apte, 2017). Specifically, LECT2 has been shown to promote skeletal muscle and adipose 262 

tissue insulin resistance in preclinical models (Jung et al., 2018; Lan et al., 2014) and has most 263 

recently been implicated in the development of hepatic inflammation (Takata et al., 2021). In 264 

humans, circulating LECT2 concentrations are elevated in individuals with obesity (Okumura 265 

et al., 2013), type 2 diabetes (Zhang et al., 2018) and NAFLD (Yoo et al., 2017), and are 266 

positively associated with adiposity, dyslipidaemia, and markers of insulin resistance (Lan et 267 

al., 2014; Okumura et al., 2013; Zhang et al., 2018). Liver fat is thought to be a key mediator 268 

of LECT2 production given that LECT2 mRNA is almost exclusively expressed in the liver 269 

and circulating concentrations are positively associated with the presence of NAFLD 270 

(Yamagoe et al., 1998; Yoo et al., 2017). Our data support and extend these findings as we 271 

observed novel positive associations between circulating LECT2 and MRI-derived liver fat in 272 

both simple correlations and fully adjusted generalised linear models (data not shown in results 273 

tables). 274 

In the present study, we report for the first time that circulating concentrations of LECT2 are 275 

inversely and independently associated with CRF. Only one previous study has examined the 276 

relationship between circulating LECT2 and CRF, and the authors reported no statistically 277 

significant associations after adjusting for age and visceral adipose tissue (Tanisawa et al., 278 

2017). We opted to adjust our models for liver fat given the importance of liver fat in the 279 

regulation of LECT2. Furthermore, discrepancies between the studies may be related to the 280 

more homogenous population of middle-aged and elderly men in the study by Tanisawa et al. 281 

(2017), and cultural/lifestyle differences between their Japanese population and our European 282 

population. Importantly, our findings were independent of liver fat, suggesting that CRF may 283 

be an additional mediator, and raises the possibility that improving CRF through exercise 284 
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training could potentially reduce circulating LECT2 concentrations. Previous research has 285 

demonstrated that an acute, exhaustive bout of exercise in mice can reduce hepatic LECT2 286 

expression and secretion via increasing phosphorylation of hepatic AMPK (Lan et al., 2014); 287 

however, human studies are yet to replicate these findings (Sargeant et al., 2018; Willis et al., 288 

2019). Experimental studies are required to determine whether improvements in CRF reduce 289 

circulating LECT2 concentrations in humans. 290 

No previous studies have explored the associations of circulating LECT2 with objectively 291 

measured physical activity and sedentary time. In our fully adjusted model, we found no 292 

statistically significant associations between circulating LECT2 and sedentary time, or MVPA. 293 

Whilst it may be expected that MVPA would be negatively associated with circulating LECT2 294 

given our observed association with CRF, it is important to note that CRF is determined by 295 

both genetic factors and habitual physical activity, in which vigorous intensity is a key 296 

determinant (Bouchard et al., 2015). Notably, our objective measurement of MVPA does not 297 

enable us to differentiate between these two intensities; thus, it is possible that the inclusion of 298 

moderate intensity physical activity dampened our ability to detect differences. Therefore, 299 

further research is warranted to specifically examine the associations of circulating LECT2 300 

with more purposeful physical activity of vigorous intensity.  301 

FGF21 is another hepatokine that has gained extensive attention due to its favorable effects on 302 

glucose and lipid metabolism (BonDurant & Potthoff, 2018). Synthetic FGF21 analogues have 303 

shown promise as novel medicinal therapies for metabolic disease (Cui et al., 2020). 304 

Administration of recombinant FGF21 reduces body weight, liver fat content and circulating 305 

glucose and lipid concentrations, and improves insulin sensitivity in mice with obesity and type 306 

2 diabetes (Berglund et al., 2009; Coskun et al., 2008; Kharitonenkov et al., 2005). FGF21 is 307 

considered a marker of physiological stress since its production may be induced by several 308 
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acute metabolic stress signals such as fasting (Nygaard et al., 2018), (Sargeant, et al., 2018; 309 

Willis et al., 2019), and overfeeding (Lundsgaard et al., 2017; Willis et al., 2020). Notably, 310 

however, circulating FGF21 concentrations are chronically elevated in obesity, the metabolic 311 

syndrome (Zhang et al., 2008), type 2 diabetes (Chavez et al., 2009), and NAFLD (Dushay et 312 

al., 2010), potentially as a compensatory mechanism to alleviate the obesity-related metabolic 313 

dysfunction. Similar to LECT2, liver fat may also be an important determinant of circulating 314 

FGF21 concentrations (Okumura et al., 2013). Our data corroborate this notion as circulating 315 

FGF21 was positively associated with liver fat in our sample of volunteers. 316 

Furthermore, we found circulating FGF21 to be negatively associated with CRF independent 317 

of anthropometric, demographic, physical activity variables, and liver fat. This finding is in 318 

agreement with two previous studies reporting inverse associations between circulating FGF21 319 

and V̇O2 peak in middle-aged and elderly men and women (Matsui et al., 2019; Taniguchi et 320 

al., 2014). These data are also consistent with experimental research by Taniguchi et al. (2016) 321 

who showed that five weeks of exercise training reduces circulating FGF21 concentrations 322 

alongside improvements in CRF and reductions in liver fat content (Taniguchi et al., 2016). In 323 

a subsequent regression analysis, the authors concluded that the liver fat reduction may be 324 

mediating the exercise-induced decrease in circulating FGF21. Importantly, our regression 325 

analysis demonstrated that the negative association between FGF21 and CRF was independent 326 

of liver fat. Henceforth, this raises the possibility that interventions aimed at improving CRF 327 

may be able to reduce FGF21 independent of changes in liver fat. Due to the observational 328 

nature of the present study, future studies are needed to confirm this in experimental trials. 329 

Additionally, we found that circulating FGF21 concentrations were independently positively 330 

associated with greater objectively measured MVPA. Given our inverse association between 331 

circulating FGF21 and CRF, the positive association observed with MVPA may appear 332 
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unexpected. However, our data are consistent with the work of others  (Cuevas-Ramos et al., 333 

2010, 2012) who have previously observed positive associations between circulating FGF21 334 

and MVPA when measured using self-report questionnaires. However, the study by Cuevas-335 

Ramos et al. (2012) demonstrated that two weeks of daily supervised physical activity was 336 

sufficient to increase circulating FGF21 concentrations. Consequently, our observed positive 337 

association with MVPA could represent a more transient acute response to recent physical 338 

activity, whereas CRF is a global marker of longer-term trends in higher intensity physical 339 

activity and healthy lifestyle practices. In contrast to our findings, Matsui et al. (2020) recently 340 

reported an inverse association between circulating FGF21 concentrations and objectively 341 

measured MVPA after adjustment for potential confounders (Matsui et al., 2020). It must be 342 

noted, however, that this association was only evident in their older cohort (mean age = 70 343 

years), whilst the participants in the present study ranged from 18 to 59 years; thus, older age 344 

may be an important factor mediating this relationship.  345 

Interestingly, although represented as statistical tendencies, our interaction analyses showed 346 

that the relationship between circulating FGF21 and MVPA may be modified by both BMI and 347 

CRF. Specifically, the positive association between circulating FGF21 and MVPA was 348 

stronger in those with lower BMI, and higher levels of CRF. This finding is in agreement with 349 

Slusher et al. (2015) who observed that the circulating FGF21 response to an acute bout of 350 

exercise was blunted in individuals with overweight or obesity, potentially due to the greater 351 

FGF21 resistance in these individuals (Slusher et al., 2015). Therefore, when split based on 352 

median CRF and BMI, the fitter and leaner individuals in our study cohort may possess a 353 

greater FGF21 sensitivity and are thus more responsive to regular bouts of physical activity. 354 

This supports the idea that chronic exercise training may act as an FGF21 sensitizer (Fletcher 355 

et al., 2012), potentially through increasing CRF and reducing body weight, which in turn could 356 



17 

 

increase the responsiveness of FGF21 to regular physical activity. Appropriately designed 357 

rodent and human studies are required to test this hypothesis in an experimental setting. 358 

A crucial strength of the present study is our robust measurement of physical activity variables 359 

and sedentary time using accelerometers, and the use of MRI to quantify liver fat percentage. 360 

Furthermore, our sample is a diverse group of community volunteers spanning a wide range of 361 

demographic and physical variables. Some limitations of this study must also be recognized, 362 

however. The cross-sectional nature of the present study means that causality cannot be 363 

inferred. Notably, CRF is a global marker of overall health status that reflects genetic, 364 

environmental, and behavioural factors. Therefore, the associations reported here, could be 365 

confounded by unmeasured determinants of CRF. Additionally, the study participants were 366 

free from chronic disease; thus, future studies are needed to test our identified associations in 367 

clinical populations such as type 2 diabetes and NAFLD. Finally, whilst this study examined 368 

whether activity behaviours were independently associated with hepatokines, future studies 369 

should determine the interactive effects of sedentary time and physical activity (Julian et al., 370 

2022). 371 

In conclusion, the present study found that in a sample of community volunteers, CRF is 372 

negatively associated with both circulating LECT2 and FGF21 concentrations. Furthermore, 373 

circulating FGF21 is positively associated with MVPA, and this relationship may be stronger 374 

in those with a lower BMI and higher CRF. These findings suggest that independent of key 375 

demographics, sedentary time, physical activity, and liver fat, CRF is an important determinant 376 

of circulating concentrations of LECT2 and FGF21. Additional studies are now required to 377 

determine if reported association are in causal nature by undertaking interventions aimed at 378 

increasing CRF through chronic structured exercise training in both community volunteers and 379 

clinical populations. 380 
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Table 1. Participant characteristics. 643 

Data are presented as mean  SD, median (interquartile range) or number [column percentage]. BMI, 644 

body mass index; CRF, cardiorespiratory fitness; MRI, magnetic resonance imaging; MVPA, moderate-645 

vigorous intensity physical activity; LECT2, leukocyte cell–derived chemotaxin 2; FGF21, fibroblast 646 

growth factor 21. aPlease note n = 130 for physical activity data, n = 126 for liver fat data and n = 140 647 

for FGF21 data648 

Demographic variables  

Combined 

(n = 141) 

Female 

(n = 56) 

Male 

(n = 85) 

Ethnicity (white European) 119 [84] 51 [91] 68 [80] 

Age (years) 37.0 (19.0) 34.5 (14.7) 38.0 (17.0) 

Height (cm) 172.8  8.9 165.2  6.1 177.8  6.6 

Body mass (kg) 80.9  19.7 66.5  11.1 90.3  18.3 

Anthropometric variables       

BMI (kg∙m-2) 26.1 (6.3) 24.1 (4.9) 27.4 (6.4) 

MRI-derived variables       

Liver fat (%) a 1.8 (2.1) 1.3 (0.9) 2.3 (5.8) 

Cardiorespiratory fitness, sedentary time, and physical activity  

CRF (mL∙kg-1∙min-1)  40.8  9.8 38.9  6.0 42.1  11.5 

Sedentary time (mins∙d-1) a 580  95 557  82 595  100 

MVPA (mins∙d-1) a 50 (41) 46 (41) 50 (41) 

Device wear time (mins∙d-1) a 925 (73) 917 (63) 926 (83) 

Hepatokines 

LECT2 (ng∙mL-1) 25  6 25  5 25  7 

FGF21 (pg∙mL-1) a 116 (162) 88 (107) 145 (211) 
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Table 2. Associations of cardiorespiratory fitness and objectively measured sedentary time and physical activity with circulating 649 

hepatokines  650 

Data were back-transformed to show fold-change (95% CI). Model 1 adjusted for study, sex, ethnicity, age, BMI, and device wear time. Model 2 651 

adjusted for all of the previous plus aCRF, bsedentary time, or cMVPA. Model 3 adjusted for all of the previous covariates plus liver fat. CRF, 652 

cardiorespiratory fitness; MVPA, moderate-vigorous intensity physical activity; LECT2, leukocyte cell–derived chemotaxin 2; FGF21, fibroblast 653 

growth factor 21. 654 

 CRF (mL∙kg-1∙min-1)bc Sedentary time (per 30 mins)ac MVPA (per 30 mins)ab 

 Fold-change (95% CI) P-value Fold-change (95% CI) P-value Fold-change (95% CI) P-value 

Model 1 

   LECT2 (ng.mL-1) 0.74 (0.60 to 0.89) 0.001 1.10 (0.95 to 1.23) 0.233 1.00 (0.89 to 1.12) 0.971 

   FGF21 (pg.mL-1) 0.49 (0.29 to 0.81) 0.007 1.20 (0.85 to 1.70) 0.306 1.20 (0.91 to 1.62) 0.202 

Model 2 

   LECT2 (ngm.L-1) 0.72 (0.59 to 0.87) 0.001 1.10 (0.95 to 1.26) 0.178 1.07 (0.95 to 1.20) 0.234 

   FGF21 (pgm.L-1) 0.42 (0.25 to 0.71) 0.001 1.35 (0.93 to 1.91) 0.109 1.12 (1.12 to 2.09) 0.009 

Model 3 

   LECT2 (ngm.L-1) 0.76 (0.63 to 0.91) 0.003 1.07 (0.93 to 1.23) 0.276 1.10 (0.98 to 1.23) 0.130 

   FGF21 (pgm.L-1) 0.47 (0.27 to 0.78) 0.004 1.29 (0.91 to 1.78) 0.150 1.55 (1.12 to 2.14) 0.006 
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Table 3. Statistically significant interaction analyses with body mass index, cardiorespiratory fitness and objectively measured physical 655 

activity.  656 

 Outcome Variable n 

P-value for 

interaction 

Category 1 

Fold-change      

(95% CI) 

Category 2 

Fold-change     

(95% CI) 

     BMI    < 26.1 kg∙m-2 ≥ 26.1 kg∙m-2 

                     FGF21 (pg∙mL-1) MVPA (per 30 mins)ab 129 0.052 1.86 (0.52 to 6.76) 0.83 (0.46 to 1.51) 

    Cardiorespiratory fitness    < 40.1 mL∙kg-1∙min-1 ≥ 40.1 mL∙kg-1∙min-1 

    FGF21 (pg∙mL-1) MVPA (per 30 mins)ab 129 0.088 1.07 (0.91 to 2.82) 2.04 (1.35 to 3.02) 

Models adjusted for study, sex, ethnicity, age, device wear time, BMI, interaction term and all previous plus aCRF and bsedentary time. Data are 657 

presented as P-values for the interaction term and as fold-changes (95% confidence intervals) for categorical variables and variables stratified 658 

using the median split. BMI, body mass index; CRF, cardiorespiratory fitness; FGF21, fibroblast growth factor 21; LECT2, leukocyte cell–derived 659 

chemotaxin 2; MVPA, moderate-vigorous intensity physical activity. 660 
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 661 

 662 

Figure 1. Correlations of plasma LECT2 and FGF21 with CRF (a, e), sedentary time (b, f), 663 

MVPA (c, g), and liver fat (d, h). CRF, cardiorespiratory fitness; FGF21, fibroblast growth 664 

factor 21; LECT2, leukocyte cell–derived chemotaxin 2; MVPA, moderate-vigorous intensity 665 

physical activity. 666 



34 

 

 667 

 668 

 669 

 670 

Figure 2. Forest plot showing the associations of cardiorespiratory fitness, sedentary time and 671 

objectively measured moderate-vigorous physical activity with plasma LECT2 and FGF21. 672 

Values represent fold-change and 95% CI for each SD change in CRF and physical activity 673 

metrics (model 3). CRF, cardiorespiratory fitness; FGF21, fibroblast growth factor 21; LECT2, 674 

leukocyte cell–derived chemotaxin 2; MVPA, moderate-vigorous intensity physical activity. 675 

 676 


