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Abstract—A large number of deep learning based object
detection algorithms have been proposed and applied in a
wide range of domains such as security, autonomous driving
and robotics. In practical usage, objects being occluded are
common, and can result in reduced accuracy and reliability.
To increase the robustness of object detection algorithms under
occlusion scenarios, it is necessary to consider the influence of
different types of occlusion on the performance of object detection
approaches. Our research revealed a gap in benchmarking
datasets that could provide exemplars of occlusion that covered
a range of occlusion scenarios. In this paper, we present a
new benchmarking dataset that includes a range of exemplars
providing coverage of different types of occlusion cases. This
dataset is designed for object detection of everyday objects in
indoor scenarios, and comprises occlusion in three orthogonal
atomic factors, namely, the degree of occlusion, the location of
occlusion, and classes of occluded object and those occluding
other objects. Our dataset is balanced in terms of classes and
degrees of occlusion, with a total of 5970 sample images. The
effect of these three atomic factors has been investigated on
some classic general object detectors. Using this benchmarking
dataset, we also present results on the impact of the distribution
of the training dataset, in terms of degree of occlusion, on the
robustness of several typical object detection algorithms (e.g.
Fast RCNN, Faster RCNN, and FCOS, etc). The benchmark is
available at ”https://drive.google.com/drive/folders/13VkLgbx6t0-
vA3vRWrlvHcjra-8BS4aL?usp=sharing”. This dataset is seen as
a key contribution to research investigating the influence of
occlusion on the performance of object detectors.

I. INTRODUCTION

Object detection is a crucial task in computer vision, where
the aim is to enable the computer to acquire an ability,
similar to human vision, of recognising and locating objects
of specific classes. Many deep learning based approaches have
been proposed and widely applied to practical scenarios. With
these algorithms, it is possible to locate and classify objects
in multiple categories. However, as for most approaches, the
performance of these algorithms inevitably deteriorates after
being deployed in the practical usage (e.g. security [1], traffic
[3], and robotics [2]), even if they have been well and fully
trained. One common reason is that the distribution of training
data and test data is different, i.e. the features and appearance
of the instance in training datasets are different from that of

test sets. The difference in features and appearance can be
caused by clutter, illumination changes, and occlusion, which
significantly decreases the robustness of object detectors.

Reduced accuracy due to occlusion is particularly common
when it comes to the real-world deployment of object detection
algorithms. Deep learning models are less likely to infer the
existence of an occluded object with just visible parts of it
[2]. In this paper, we describe occlusion as relating to three
orthogonal atomic factors, namely, the extent or degree of
the occlusion (e.g. half of an object is being occluded), the
location of the occlusion (e.g. the left part of an object is
being occluded), and the type of the occlusion (e.g. an object is
being occluded by another object of the same or different class,
such as a cup is being occluded by another cup or bottle). It is
necessary to understand the influence of these atomic factors
of occlusion on object detection to further improve the ability
of models when dealing with occlusion scenarios.

Studying the effect of different distributions of the atomic
factor ”degree of occlusion” in the training set is also of
interest. Most existing datasets consider the scale of each class
(i.e. it is expected to contain a similar number of instances for
each category to make the dataset balanced, or imbalanced
situations are at least claimed and described), while none
of them (to the best of our knowledge) takes the balance
of occlusion into consideration. It is still unknown how the
imbalance of occlusion impacts the performance of models.

Furthermore, the performance of different models deal-
ing with occlusions is likely to vary due to the diverse
mechanisms of object detection algorithms. Exploring and
measuring typical object detection algorithms’ robustness of
detecting occluded objects can illustrate which methods are
more appropriate for specific occlusion scenarios.

To study the aspects mentioned above, a benchmark which
is specifically designed for representing different occlusion
scenarios is indispensable. In this paper, we present NOO-
DLES1 (aNnotated Occluded Objects Dataset for Evaluation
and Learning Series 1) - a benchmark, which includes 5970
images, specifically designed with the representation of the
three orthogonal atomic factors. It is balanced in both classes



and degrees of occlusion. Using this benchmark, the effect of
these three atomic factors on the performance of some classic
general object detectors (e.g. Fast RCNN [4], Faster RCNN
[9], and FCOS [10], etc.) has been investigated. Furthermore,
the impact of the distribution in terms of the degree of
occlusion in the training set, on the robustness of the model
to cope with occlusion, has also been explored.

(a) (b) (c) (d)

Fig. 1. Some examples of occlusion with different degrees. a) Single object
without being occluded; b) Instances being slightly occluded by other objects.
c) Occlusion of a medium degree. d) Examples of heavy occlusion.

In short, the contribution of this work is:
1) a benchmarking dataset has been created for investigating
the impact of atomic factors on object detection algorithms.
2) investigating the influence of the distribution of datasets in
terms of extent (or degree) of occlusion on the performance
of the model under different occlusion scenarios.
3) exploring the challenge of occlusion of each atomic factor
for typical object detection approaches.
4) identifying which object detection designs or mechanisms
are appropriate for object detection under occlusion scenarios.

The paper is organized as follows. Section II introduces the
previous work related to this paper. Section III illustrates the
methods being used in this paper, such as the data collection
method for the benchmark. Section IV indicates the design
of each independent experiment and its corresponding results.
Section V provides the analysis of the experiment results and
gives reasonable suggestions on the future development of
object detection techniques to further improve their ability to
deal with occlusion scenarios. Section VI shows the conclusion
of the paper and potential future work.

II. RELATED WORKS

A. Deep Learning Based Object Detection Techniques

Object detection tasks can be divided into: regressing the
location of a target, and classifying it into single or multi-
ple categories. General CNN (convolutional neural networks)
based object detection algorithms are amongst the most pop-
ular and can be classified into two types: 1) two-stage object
detectors, which firstly propose many regions of interest (RoIs)
representing bounding boxes which possibly cover an object in
an image, and secondly utilize a classifier (e.g. Support Vector
Machine and Fully Connected Layers) to assign a class to
an RoI; 2) one-stage object detectors, which output bounding
boxes and their corresponding classes simultaneously. As
for two-stage object detection models, typical algorithms are
R-CNN [5], Fast-RCNN [4], Faster-RCNN [9] and R-FCN

[6]. In one-stage object detectors, representative models are
YOLO [7], SSD [8], and FCOS [10]. Apart from CNN-
based approaches, recently many algorithms based upon vision
transformer have been proposed, such as DETR [11] and
YOLOS [12]. In this paper, we focus on CNN-based models.

Existing deep learning models adopt different strategies with
respect to regressing the size and coordinates of an object.
One strategy is fine-tuning the size of an RoI (i.e. the model
outputs the offset of an RoI so that the proposed bounding
box maximises the intersection with the ground truth). Such
a strategy has two approaches: 1) leveraging segmentation
techniques (e.g. selective search [5]) to generate around 2000
RoIs for an image and adjusting the size of each RoI which
is classified in a category instead of being considered as
background [4], [5], [13]; 2) assigning multiple anchor boxes
to each pixel of the feature map output by the neural network
which judges whether an anchor box covers a possible target or
not [8], [9] (object detectors based upon such methodology are
named anchor-based models). Another approach is to regress
the size and position of a target directly, which is anchor-free.
Typically there are three different approaches to achieving this
goal: 1) the top-left and bottom-right corners of a target are
output and utilized to represent the location of it by the model
[14]; 2) each pixel on a feature map output by a CNN model
predicts the probability that it is the center of a target and
estimates the height and width of it [3], [15]; 3) each pixel on
a feature map projects the likelihood that it is located in the
bounding box of an object and regresses the distance between
the pixel and boundaries of the predicted bounding box [10].

In this paper, we present the results of experiments using
some of the different approaches described above, measuring
their ability to cope with the different occlusion scenarios
contained in our benchmark. Showing which one is more or
less appropriate for tackling occlusion will help to further
direct the design of object detection models.

B. Data Collection

Data collection and labeling is not possible for occlusions
of every instance in each category. As a result, most of the
research has been conducted on synthetic datasets [2]. A
commonly used method is to overlay random instances of
an object on the image which has objects, that eventually
causes occlusion [16]. Neural networks can then be trained
to produce the occlusion mask, using the occluded regions’
coordinates as labels. Another strategy is image augmentation,
achieved by randomly selecting a region and adjusting its
pixel value to zero [17]. This strategy enhances the robustness
of models while handling occlusion. There are few datasets
whose images are not synthetic and annotations are fully
labeled manually. An example is KINS [18] which provides
images of natural occlusion scenarios labeled by professional
annotators. However, KINS is a large-scale dataset of outdoor
scenarios. According to [2], there is no dataset comprised of
real indoor scenes and well-labeled with annotations available.



Fig. 2. The structure of the dataset.

C. Occlusion Detection

Occlusion detection refers to the recognition of whether an
object is being obscured or not in an image. Qi et al. [18]
proposed a Multi-Level Coding network which is designed to
produce the visible and invisible parts of instances in an image.
Specifically, an occlusion classification branch to predict the
existence of occlusion is applied to boost the performance
of the model. The model is trained on the KINS dataset.
Similarly, the annotation of KINS also provides information
on the existence and order of occlusion (e.g. the object which
occludes other objects and the object being occluded), which
can be leveraged to train a model predicting the occurrence of
occlusion.

D. Techniques for Dealing with Occlusion

There are two main strategies to cope with partial occlusion
when considering object detection. One is by the complement
of occluded regions, and the other is by increasing the robust-
ness of object detection techniques.

The complement of occluded regions may shrink the chal-
lenge of downstream tasks, e.g semantic segmentation and
object detection. The general process can be divided into:
1) estimation of regions that are occluded; 2) repainting
the occluded part of the object with RGB content. As, for
the former, a model extended from Mask RCNN has been
proposed by Follman et al. [19] to predict the mask of
occluded regions. An unsupervised encoder-decoder network
has been proposed by Zhen et al. [20] to estimate the area

of occlusion. As for the latter, Zhan et al. [20] and Pathak
et al. [21] utilized the encoder-decoder for the complement
of the occluded regions’ content. SeGAN [22] was proposed
segmentation and generation of invisible areas.

A number of approaches have been proposed for increasing
the robustness of object detectors. A data augmentation
technique named ’Cutout’ proposed by Devries and Taylor
[23], fabricates artificial occlusion by setting the value of
pixels to zero in the region randomly selected in an image.
By applying such an approach, the model is less likely to
overfit in case of occlusion. Adversarial Networks were used
by Wang et al. [24] for feature mapping of normal objects
to the features of deformed and occluded objects to augment
the performance of Fast-RCNN [4] to detect occluded
instances. Another strategy uses partial semantic information
to refer only to the visible parts for object detection. In
particular, Xiao et al. [25] proposed a comparison between
features of visible parts and class patterns to segregate the
irregular responses caused by the occlusion. In a series of
works by [26]–[28], for partial regions, the generation of
feature vectors with similar visual and semantic concepts was
achieved through visual concepts [29].

Most of the previous work has been conducted to address
occlusion in object detection, but to the best of our knowledge,
no work has been done to understand the atomic factors of
occlusions, or the impact these cause on an object detector’s
performance. In this paper, this gap is being addressed by
starting to identify which factors (e.g. the location, degree, and
appearance of occlusion) reduce the performance of a model,
and in what way they impair the object detector’s ability
(proposing regions of interest, classification, and location), and
to what extent they affect the robustness of the model.

III. CREATION OF THE BENCHMARK

To investigate the influence of atomic factors of occlusion
on object detection, a bespoke benchmark designed for this
research is needed. In this section, the methods used to
design, collect, and label the images in our benchmark dataset
NOODLES1 is introduced.

A. Atomic Factors of Occlusion

In this paper, three atomic factors are considered: the
degree of occlusion, the location of occlusion, and the type
of occlusion.

1) Degree of Occlusion: The degree of occlusion refers to
the ratio of the invisible part and visible part of the target
object. To be more specific, there are 4 different degrees of
occlusion in this paper, i.e. none (the object has no occlusion),
slight (less than 20% of the object is occluded), medium (20%
- 60% of the object is occluded), and heavy (over 60% of the
object is occluded). Fig 1 shows some samples of the four
different degrees selected randomly from our benchmark.

2) Location of Occlusion: The location of occlusion is
defined as the position of the invisible part of an object
being occluded. In this paper, it is divided into five different



parts: left, right, top, bottom, and center. Fig 3(a)(b)(c)(d)(e)
illustrates some examples of these four invisible locations.

3) Types of Occlusion: The type of occlusion atomic
factor refers to the class of the occluded object in relation
to the class of the occluding object. In total, there are three
types of occlusion considered in this paper: 1) different,
which represents that an object is occluded by an object of a
different class. For example, a cup occluded by a bottle; 2)
same, which refers to an object being occluded by an object
of the same class, e.g. a bowl occluded by another bowl; 3)
sundry, meaning an object occluded by an object whose class
is not included within the dataset. Four valid classes exist in
our benchmark: bottle, cup, bowl, and plate. An example of
sundry occlusion would be a plate occluded by a towel. Fig
3(f)(g)(h) gives some images of these three types of occlusion.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3. Examples of occlusion at different locations: left (a), right (b), top
(c), bottom (d), and center (e). Examples of occlusion of three types: Objects
occluded by instances of other classes f), Instances occluded by objects from
the same category g), and Objects occluded by sundries h).

B. Dataset Structure

The NOODLES1 benchmark was designed to contain four
classes, namely: bottle, cup, bowl, and plate, since these are
common objects in many practical scenarios and easy to
obtain. There are five different instances of objects contained
for each class. When it comes to sundries, five different kinds
of items were chosen, i.e. tissue, towel, pot, hand, and spoon.
We included two or three instances of each item.

In terms of the structure of the benchmark, for any occlusion
scenario, the three atomic factors are always present, i.e. for
an object being occluded, the occlusion is of a certain degree,
location, and type of occlusion. It is necessary to make the
benchmark balanced (e.g. the number of images of each atomic
factor should be approximately same) so that the influence
on the performance of the object detector caused by each

Fig. 4. Examples of masks which contain only the content of objects.

atomic factor is commensurable when the model is being
trained with the images in the benchmark. To achieve this
goal, a tree structure was utilized to organize the dataset. Fig
2 gives the information about that structure. The root node
”Dataset” has four children related to the degree of occlusion.
For each degree node, there exist four nodes representing each
of the object classes. After that is the layer of locations, i.e.
there are five location nodes under each class. Finally, each
location node contains three types of occlusion nodes, which
are considered as the leaf nodes of the tree. Each leaf node
contains 25 images, i.e. five photos of each instance (there are
five instances per class). The structure of the sub-tree whose
root node is the degree ”none” is different. Since there are no
occlusions in this case, the layer of class nodes becomes the
leaf nodes, under which 375 images are directly attached.

With the above structure, retrieving images of specific
classes and atomic factors is easy, enabling research into the
influence on the model from each atomic factor.

C. Dataset Balancing Scheme

Making the dataset balanced requires the number of images
of each instance to be almost equal and each instance to be
occluded by another instance of a specific occlusion type with
the same probability (except for those of the degree ”none”).
Taking the class ”cup” as an example, there are five instances
of the cup, i.e. cup1, cup2, cup3, cup4, and cup5. As for the
type of occlusion ”same”, cup1 can be occluded by any other
cups with an even probability which equals 25%. In terms
of the type of occlusion ”different”, cup1 can be occluded
by any other instances of a different class (plate, bottle, and
bowl) with an even probability equaling to 1

15 ( 13 ×
1
5 , where 3

refers to the number of the other classes and 5 represents the
number of instances of one class). In addition, the number of
times an instance is occluded should be similar. For example,
cup1 should be occluded around 225 times in total. When it
comes to the instance whose occlusion degree is ”none”, each
instance is one of 75 photos taken from different angles and
aspects, so that the number of images of each occlusion degree
is the same, which equals 1500. In this paper, the dataset
scheme is generated randomly based on the probability and
number of instances mentioned above.

D. Data Collection

This dataset is designed to restrict the variety of other
factors (as well as atomic factors) which may influence the



performance of object detection algorithms. There are two as-
pects constrained in this dataset: background and illumination.

Variation in background results in an uncertainty of data
distribution, causing difficultly in judging whether detection
failure is caused by occlusion or changes in the background.
To avoid such confusion, firstly, the training set and test set
are required to share a similar data distribution. Secondly,
variation in image backgrounds should be limited. To achieve
this, all images were taken in the same room whose layout,
decoration, and furniture remained unchanged.

Changes in illumination levels can result in similar con-
fusion, making it difficult to judge whether incorrect results
are caused by occlusion or unstable illumination situations.
Therefore, all images were taken using only artificial light
sources to maintain consistency.

Around 1500 images were taken for each degree of oc-
clusion. For the degree of occlusion categories, ”slight”,
”medium”, and ”heavy”, images were captured manually.
Only two instances were allowed to be included in a single
image, i.e. only one occlusion occurs per image, so that
the number of occlusions for each combination of atomic
factors is approximately same (i.e. the dataset is balanced).
The content of each image (class of each instance, location
of the occlusion, degree of the occlusion, and arrangement
order of each instance) was set in strict accordance with the
dataset scheme mentioned in section III-C. In terms of the
degree ”none”, a video was taken for each instance, and 75
frames were chosen randomly and saved as the images of the
instance. This approach significantly reduces the time of data
collection for a single instance.

none slight medium heavy total (each class)
plate 375 364 375 375 1489
bowl 375 370 378 376 1499
bottle 375 367 371 375 1488
cup 375 373 370 376 1494

total (each degree) 1500 1474 1494 1502 overall 5970

TABLE I
THE OVERVIEW OF THE BENCHMARK.

Note that the location of occlusion ”center” (i.e. the invisible
part of an instance situated at its center) is more difficult
to obtain. Due to the principles of perspective, an instance
can only be partially occluded by objects smaller than it,
and it is possible to increase the degree of the occlusion
by reducing the distance between the object occluding the
target and the camera or by increasing the distance between
the camera and the instance being occluded. However, when
the distance between two objects is zero, it is impossible to
further reduce the degree of occlusion by adjusting the distance
between them and the camera. With two objects of similar
sizes, it is difficult to obtain the image in which the occlusion
degree is ”slight” and ”medium”. To address this, pseudo data
was generated. Masks containing only the content of objects,
instead of background, were generated, as illustrated in Fig 4.
Graph Cut [30] was utilized to make these masks.

The segmentation mask of each instance can be used to
generate pseudo data by putting it in the center of an object
of another image. To make sure that each image (those whose

occlusion degrees are ”slight”, “medium”, and “heavy” and the
location of occlusion is center) only contains two objects, the
pseudo data was generated by combining the image whose
occlusion degree is “none” (i.e. only one object is in each
image) with a segmentation mask (as detailed above). This
task should be completed post-annotation, since the size and
location of instances, whose occlusion degree is ”none”, is
required in order to place the segmentation mask.

E. Labelling

Since NOODLES1 is designed for supervised learning tech-
niques, it is necessary to generate labels for corresponding
images. Each label is able to be represented by bounding
boxes with classes. In this paper, the software LabelImg [31]
is utilized to generate annotations for all the images. After
manually labeling the instances, an ”.xml” file is generated
and saved in the local path by the software, in a style similar
to PASCAL VOC [32].

F. Comparison with Existing Benchmarks

To highlight the novelty and contribution of the benchmark
proposed in this paper, this section compares some existing
representative datasets with ours. Table II shows the compari-
son between our dataset and seven other existing benchmarks,
namely, OpenLORIS [33], KINS [18], CityPersons [34], PAS-
CAL VOC2011 [32], CIFAR-100 [35], CUB-200 [36], and
ARID [37]. Eleven dimensions are considered here, as shown
below:
Context - indoor or outdoor based dataset.
Classes - number of classes covered by each dataset.
Scale - number of images in each dataset.
Illumination - diversity of illumination across image samples.
Background - diversity of backgrounds across image samples.
Occlusion Frequency - how often occlusion occurs.
Occlusion Labeled - presence of occlusion annotation.
Occlusion Decomposition - classification of images by atomic
factors (degree, location, and type).
Balance - shows if the dataset is balanced in relation to the
representation across the atomic factors.
Annotation Level - sophistication of annotation.
Fully Labeled - completeness of annotation.

The aim of the benchmark is to enable evaluation of the
weakness and robustness of object detection algorithms under
occlusion scenarios, not just overall performance. To enable
research into robustness and the impact of occlusion (e.g. the
influence of each atomic factor of occlusion), a benchmark
should meet the following conditions:
1) illumination and background in images should be consistent,
since it is difficult to judge whether a false negative or false
positive is caused by the illumination/background difference
between the training and test dataset or the invisibility result-
ing from occlusion. Stability in illumination and background
enables evaluation without this interference.
2) occluded objects should be identified by annotations,
enabling researchers to evaluate a model’s performance in
detecting occluded objects.



Dataset Context Classes Scale Illumination
& Background

Occlusion
Frequency

Occlusion
Labeled

Occlusion Decomposition Balance Annotation
Level

Fully
Labeleddegree location type class degree location type

OpenLORIS indoor 40 1106424 various many % explicitly % % ! % % % bounding boxes & masks %

KINS outdoor 2 14991 various many ! implicitly implicitly implicitly ! % bounding boxes & masks !

CityPersons outdoor 30 5000 various many ! implicitly implicitly % % bounding boxes & masks %

VOC2011 both 20 17125 various many ! % % % % % % % bounding boxes & masks %

CIFAR-100 outdoor 100 60000 various none % % % % ! % % % instances !

CUB-200 outdoor 200 6033 various few % % % % % % % % rough outlines !

ARID indoor 51 6000 various few ! % % % bounding boxes !

NOODLES1 indoor 4 5970 similar many " explicitly explicitly explicitly " " " " bounding boxes "

TABLE II
THE COMPARISON BETWEEN NOODLES1 AND OTHER EXISTING DATASETS. AS FOR OCCLUSION DECOMPOSITION, ”EXPLICITLY” REFERS TO THE

DATASET INCLUDING LABELS ILLUSTRATING OCCLUSION’S DEGREE, LOCATION, AND TYPES. ”IMPLICITLY” INDICATES THAT ALTHOUGH THERE ARE NO
LABELS THAT GIVE INFORMATION ABOUT OCCLUSION’S ATOMIC FACTORS, IT IS POSSIBLE TO DEDUCE THESE FACTORS FROM THE GIVEN LABELS.

3) Annotation labels should indicate the occluded objects’
corresponding atomic factors. The label should cover the
degree, location, and type of the occluded part. As a result,
the influence of each atomic factor on the model’s training and
test performance can be investigated.
4) The dataset should be balanced in terms of both class and
atomic factors, by virtue of which the influence of sample
imbalance on model performance can be eliminated.

Table II indicates that only our proposed benchmark, NOO-
DLES1, fulfills all of the conditions introduced above, whereas
other existing benchmarks meet only partial requirements. This
can be utilized for research investigating the influence of each
factor on the performance of object detectors. The overall
composition of the benchmark is presented in Table I.

Fig. 5. The precision-recall curve of each algorithm.

IV. EXPERIMENT

In this section, various approaches were implemented using
training and test data from NOODLES1, with the corre-
sponding results presented and analysed. Representative mod-
els were chosen to conduct the experiment in this paper:
a Selective Search [5], [40] based model, i.e. Fast-RCNN
[4], two RPN based (anchor-based) two-stage frameworks
(Faster-RCNN [9] and R-FCN [6]), two anchor-based one-
stage approaches, namely, SSD300 [8] and SSD300-FPN [38],
and two anchor-free one-stage algorithms (CSP [3] and FCOS
[10]).

When it comes to training models, the Adam optimization
method [39] was used to adjust the parameter of the model
with a learning rate of 0.0001, mini-batch size of 16, and
weight decay of 0.005. Transfer learning was applied to the
backbone parameters with a learning rate of 0.000001. Images

RoI Proposal Mechanism Model Backbone Recall Precision F1score mAP
Two-stage

Selective Search based Fast-RCNN VGG16 [41] 0.75 0.53 0.62 0.65

Anchor-based

Faster-RCNN VGG16 0.66 0.84 0.74 0.62
R-FCN VGG16 0.52 0.81 0.63 0.44

One-stage
SSD300-FPN VGG16 0.85 0.83 0.84 0.82

SSD300 VGG16 0.83 0.82 0.82 0.79

Anchor-free CSP ResNet50 [42] 0.35 0.55 0.43 0.29
FCOS ResNet50 0.87 0.91 0.89 0.86

TABLE III
THE OVERALL PERFORMANCE OF MODELS TRAINED AND TESTED ON THE

BENCHMARK BEING PROPOSED IN THIS PAPER.

are normalized and resized to 300×300 before being input into
the model. All the models were trained for 50 epochs. During
the measurement of precision, recall and mAP (mean Average
Precision), an IoU (Intersection over Union) threshold of 0.5
was utilized to judge if a bounding box covers another one
(i.e. a bounding box covers another one if the IoU between
them is greater than 0.5). The training set and test set was split
randomly with a ratio of 4:1 to maintain a similar distribution
of background (the dividing scheme of training set and test set
has been released with the images and annotations together).

A. Robustness of Object Detection Mechanisms

Table III illustrates the overall performance of each model.
Additionally, Fig 5 gives information about the precision-recall
curve of each approach. Compared with other models, FCOS
shows the best performance in tackling occlusion scenarios,
while CSP and R-FCN fail to detect most instances in the test
dataset correctly. As for anchor-based models, the one-stage
models perform better than two-stage models. The precision
between two-stage and one-stage models is similar. However,
when it comes to recall, one-stage models are significantly
better than two stage-models. The possible reason is that RPN
(Region Proposal Network [9]) is not able to propose enough
RoIs to cover all the instances in an image of occlusion
scenarios. By contrast, the precision of Fast-RCNN is lower
than most of other models because selective search proposes
too many RoIs, which results in many negative samples (RoIs
which do not cover any instances) kept by the classifier. That
is because the accuracy of the classifier is fixed, and more RoIs
to be classified causes more RoIs being classified incorrectly.

Overall, Fig 5 indicates that the mechanism of FCOS is
appropriate for coping with occlusion scenarios, while that of
R-FCN and CSP is not fit for that. The reason for it is going
to be further discussed in Section V.



B. Challenges of Atomic Factors

The challenge of dealing with the different atomic factors
of occlusion has been considered in this paper. Each of
the seven models, i.e. Fast-RCNN, Faster-RCNN, R-FCN,
SSD300, SSD300-FPN, CSP, and FCOS, were trained with
all of the images in the training set ensure a balance of
classes and degrees of occlusions. All the models were trained
for 50 epochs before being tested with the test set. When
it comes to the evaluation, recall has been selected as the
key performance indicator, since the challenge of occlusion
can be represented by the percentage of occluded instances
being detected correctly. Only the recall of occluded instances
has been evaluated, while the instance without occlusion or
occluding other objects has not been counted during the
evaluation. That is because, when measuring the ability of
the object detector to detect the occluded object, whether the
occluded object is correctly detected is noteworthy, instead of
those occluding others, and can be represented by recall.

Fig. 6. The recall of instances of different occlusion degrees of each model.

1) Degree of Occlusion: After training the model, recall of
each model on test instances of different degrees of occlusion
was measured, as shown in Fig 6. If the curve of CSP and R-
FCN is not considered (since they show a poor performance
when dealing with occlusion scenarios, and so we are unable
to infer anything concrete regarding occlusion scenarios), then
a clear pattern of difficulty relating to the different degrees of
occlusion can be seen in Fig 6. Scenarios without occlusion
are easiest (since all the models show the best performance
on instances with no occlusion). Then all the models’ recall
show a slight decrease in terms of ”slight” occlusion. After
that, unexpectedly, the recall of the majority of models does
not further decrease as for ”medium” occlusion, instead, they
experience a minute increase (at least fluctuate or maintain
this level). Finally, the recall of all models drops considerably
when it comes to instances of ”heavy” occlusion.

To summarise, the recall of CNN-based object detectors
does not decrease linearly with the increase in the degree of
occlusion, but initially decreases gradually and fluctuates, and
then drops significantly when the occlusion is higher.

2) Locations of Occlusion: In this section, the recall of
each approach on test instances whose invisible regions are
situated in different locations has been evaluated, as shown
in Fig 7. Unexpectedly, although CNN is well known for its
rotation in-variance, CNN-based object detectors show various
recalls when detecting objects being occluded in different
orientations. Discarding CSP and R-FCN, all the anchor-based

Fig. 7. The recall of instances with invisible parts in different locations.

Fig. 8. The distribution of datasets which are leveraged to research into the
importance of images of different occlusion degrees during training models.

models (i.e. SSD300, SSD300-FPN and Faster-RCNN) share
the same pattern. The occlusion of ”left” and ”right” share a
similar difficulty, and are harder than the occlusion of ”top”.
In the vertical direction, occlusion of ”top” is easier than that
of ”bottom”. Finally, the occlusion of ”center” is the easiest
for all anchor-based frameworks.

Fig. 9. The recall of instances with occlusion of different types.

3) Types of Occlusion: The recall of samples which are
occluded by instances of different types has been evaluated
after training the model, as shown in Fig 9. There is no
fixed pattern shared by all the models. As a result, it can be
speculated that the challenge of different occlusion types is
the same for CNN-based object detectors.

C. Distribution’s Occlusion Imbalance

In this paper, the influence of the dataset with different
distributions has been investigated. Concretely, the impact of
the proportion of images of different occlusion degrees was
explored by investigating the influence of occlusion imbalance.
For this experiment, it was necessary to make the training set
balanced in terms of categories and to adjust the percentage
of images of different degrees of occlusion. An example is
illustrated in Fig 8. The number of images of each class is
equal and fixed to make the training set balanced in the case of
categories. As for the baseline (control group), the proportion
of occlusion degree of each category is 25%. 1200 images
have been selected randomly from the training set to train the
model. Consequently, there are 300 images of each degree of
occlusion in the baseline. When it comes to the experimental



group, only images comprising the three degrees of occlusion
are kept, with 400 samples for each degree. The training set
is balanced in terms of classes, i.e. the number of samples
of each class is the same. Two models, namely, SSD300 and
SSD300-FPN have been selected to be trained with the dataset
of each distribution. Each model of SSD300 has been trained
for 80 epochs, and those of SSD300-FPN have been trained
for 50 epochs (The loss function of SSD300-FPN converges
faster than that of SSD300 during training). Fig 10 shows
the performance of them after being trained on the dataset of
different distributions mentioned above.

Fig. 10. The mAP of SSD300 and SSD300-FPN after they have been trained
on the dataset of different distributions.

As shown in Fig 10, compared with the baseline which
is balanced in terms of distribution, the absence of samples
of ”slight”, ”medium” and ”heavy” occlusion results in the
degradation of the performance of the model. Especially, the
images of ”slight” occlusion play the most important role
in training the model, without which the performance of the
model deteriorates most. By contrast, the model shows a better
accuracy of detection than the baseline when it is trained with
the dataset without occlusion. One possible reason is that the
absence of ”none” data leads to more samples of occlusion of
different degrees, which significantly increases the robustness
of the model when dealing with occlusion scenarios.

V. DISCUSSION

In this section, the applicability of different object detection
mechanisms to occlusion scenarios are analysed based on the
experiment results presented in the previous section. Following
this, suggestions for the construction of the dataset and the
design of models are introduced which could lead to further
improvement of the robustness of object detectors.

Fig. 11. Examples of success and failure of Position-sensitive RoI pooling.

A. Analysis of Mechanisms of Object Detection
In this section, the question of why the mechanism of CSP

and R-FCN fail to maintain robustness in occlusion scenarios,
and why FCOS works, are going to be answered.

1) Reasons for Failure of CSP and R-FCN: As shown in
Table III, both CSP and R-FCN show poor performance on
the test set of occlusion scenarios due to both being position-
sensitive mechanisms. R-FCN utilizes Position-sensitive RoI
pooling (PSRP) as the classifier, which considers all com-
ponents of targets of a class, i.e. it outputs confidence for
each component, and the final confidence of an RoI is the
summation of the confidence of each component. For example,
Fig 11 (a) indicates that PSRP outputs high confidence of
class ”bowl” if the instance is not occluded. However, when
it comes to situations like Fig 11 (b) and (c), PSRP cannot
give high confidence because only blocks of green colour are
considered and contribute to the summation (confidence of the
RoI), while the confidence of red blocks output by the model is
very small leading to a low summation. Since many samples
in the training set are of occlusion scenarios, it is likely to
induce confusion in the model. For example, as per Fig 11,
the left block is for detecting the left components of the bowl,
during the training stage, sometimes it receives features of
a left component of a bowl (as shown in Fig 11 (a)), while
sometimes it receives features of a top-left component of a
bowl (such as Fig 11 (b)). Such a phenomenon results in an
error that a block cannot always receive features corresponding
to its responsibility, which significantly disrupts training.

Fig. 12. The positive and negative samples are not fixed in different images
when a CSP model is being trained.

Similarly, the reason for the failure of CSP is its position-
sensitive nature. During training, it only considers the center
point of the bounding box (annotations) and its eight neigh-
bours as positive samples, even if they do not belong to the
ground truth. By contrast, other pixels in ground truth are
always treated as negative samples, even though they are part
of the object. For instance, as shown in Fig 12 (a), only the
center and its eight neighbors (red points) are considered as
positive samples, and other pixels (e.g. green points in Fig
12 (a)) are negative samples. However, when it comes to the
situation of Fig 12 (b), the red pixels, which are considered as
negative samples in Fig 12 (a) (the green points), are seen as
positive samples in Fig 12 (b), i.e. regions with similar visual
appearance and features can be chosen as positive samples
or negative samples in different circumstances. Such conflicts
make the model fail in distinguishing between objects and
backgrounds correctly. In Fig 12 (c), during training of a
CSP model, red points belonging to sundry are improperly
selected as positive samples, while green pixels, part of the
target, are considered as negative samples. As a result, models



based on the detection of mechanisms of CSP show poor
performance on object detection under occlusion scenarios,
especially where the invisible part is centered.

Fig. 13. Relationships between a pixel and the ground truth. Red points refer
to pixels selected as positive samples, belonging to the ground truth. Yellow
points are chosen as positive samples, not belonging to the target. Green points
are pixels of negative samples, belonging to the background.

2) Causes of Success of FCOS: As shown in Table III,
FCOS shows the best performance on the test set because
the mechanisms of the positive sample selection strategy are
appropriate for occlusion scenarios. As shown in Fig 13, there
are three states of a pixel: 1) red pixels are part of an object
and correctly selected as positive samples; 2) yellow pixels
belong to the background but are improperly seen as positive
samples; 3) green pixels are in the background and correctly
treated as negative samples. These three states have different
influences on training. Red points and green points are with
positive roles, with the former enabling the model to classify
different objects, and the latter distinguishing between fore-
ground and background. By contrast, yellow points mislead
training as they belong to the background, but the training
process treats them as positive samples (foreground). Since the
number of green points is much greater than that of yellow
points, the model can still gain a robust ability to classify
between foreground and background. Additionally, red points
are always chosen as positive samples during training. Taking
Fig 13 (a) and (b) as examples, in (a), the bowl is not occluded,
and the red points at the top are considered as positive samples.
In Fig 13 (b), points in the top of the bowl are still selected
as positive samples. The problem for mechanisms of CSP
mentioned previously never happens during the training of
FCOS, which makes the pattern of features of positive samples
always stable and easy to be recognized by CNN.

B. Model Development Suggestions for Occlusion Scenarios
1) Data Collection: As illustrated with Fig 10, when prac-

titioners collect datasets to develop object detectors intended
for deployment in occlusion scenarios, only making the dataset
balanced in terms of classes is insufficient. If the scale of the
dataset is limited, then it is suggested to reduce the proportion
of instances without occlusion. It is not recommended to
reduce the proportion of samples of slight occlusion in the
dataset, as slight occlusion can provide both relatively com-
plete features of an instance and information about occlusion.
Fig 10 indicates that reducing the percentage of instances of
slight occlusion is highly likely to cause models deteriorate in
occlusion scenarios.

2) Model Design: Considering the design of CNN-based
models for occlusion scenarios, position-sensitive mechanisms
(e.g. PSRP and CSP) should not be selected as core modules of
the RoIs proposal, and it is not appropriate for models which
are highly likely to be deployed in scenarios of occlusion. By
contrast, anchor-based RPN and mechanisms of FCOS (judg-
ing if a pixel is part of an object and proposing the distance
between this pixel and four boundaries of the bounding box
of the target ) have been shown to give a robust performance
on object detection tasks in occlusion scenarios, and should
be considered for difficult occluded object detection.

VI. CONCLUSION

In this paper, occlusion scenarios in object detection have
been systematically analyzed. In order to achieve this, a new
benchmark dataset, NOODLES1, which includes samples of
occlusion as per three atomic factors (degree, location, and
type) with additional conditions i.e. similar illumination and
background, has been created and described. NOODLES1
contains 5970 images. It is balanced in both categories and
all the atomic factors of occlusion to enable the research into
the impact of different factors. Using this dataset, the impact
of different kinds of occlusions and their distribution are
considered on the performance of CNN-based object detectors.
The findings are as follows:
1) With increasing degrees of occlusion, the detection accuracy
of the model does not decrease linearly. For slight and medium
occlusions, the performance of the model degrades little com-
pared with that of the scenarios without occlusion. When the
degree of occlusion is considerably higher, the performance of
the model decreases significantly;
2) When NOODLES1 is used to test model performance, top
occlusion (invisible parts at the top of occluded objects) is
simpler than horizontal occlusion (left or right of occluded
object) for anchor-based models;
3) The type of occlusion (class of object occluding other
instances) has no significant effect on detection accuracy;
4) The proportion of samples with different degrees of oc-
clusion in the training set also affects the performance of the
model. Reducing the proportion of samples without occlusion
significantly improves the model performance. In addition, the
lack of slightly occluded samples in the training data reduces
the accuracy of the detector significantly;
5) Object detectors of position-sensitive mechanisms (e.g.
PSRP and CSP) are not robust enough to cope with tasks
of occlusion scenarios;

This research is not without drawbacks. First, the number
of instances in each class is limited. Second, only CNN-based
models have been investigated. Third, mechanisms for tackling
occlusion of object detection (as introduced in Section II) have
not been considered. As a result, future research will focus on:
1) extending the benchmark by increasing the number of
classes and the number of instances in each class;
2) evaluating the performance of ViT-based [43] object detec-
tors to further research into the impact of atomic factors of
occlusion on those models;



3) trialling other approaches designed for dealing with oc-
clusion scenarios, and testing their effectiveness against the
NOODLES1 benchmark presented in this paper.
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