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Abstract— Advanced manufacturing that is adaptable to 
constantly changing product designs often requires dynamic 
changes on the factory floor to enable manufacture. The 
integration of robotic manufacture with machine learning 
approaches offers the possibility to enable such dynamic 
changes on the factory floor. While ensuring safety and the 
possibility of losses of components and waste of material are 
against their usage. Furthermore, developments in design of 
virtual environments makes it possible to perform 
simulations in a virtual environment, to enable human-in-
the-loop production of parts correctly the first time like 
never before. Such powerful simulation and control 
software provides the means to design a digital twin of 
manufacturing environment in which trials are completed at 
almost at no cost. In this paper, ant colony optimization is 
used to program an industrial robot to avoid obstacles and 
find its way to pick and place objects during an assembly 
task in an environment containing obstacles that must be 
avoided. The optimization is completed in a digital twin 
environment first and movements transferred to the real 
robot after human inspection. It is shown that the proposed 
methodology can find the optimal solution, in addition to 
avoiding collisions, for an assembly task with minimum 
human intervention. 
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I.  INTRODUCTION 

Usage of artificial intelligence approaches in a 
manufacturing environment is quite challenging because 
of inevitable iterations required to be performed before 
success. In a manufacturing environment, such iterations 
are highly expensive and may cause serious damages 
which make them impossible to implement. A digital twin 
is a virtual representation of real world which is designed 
for various purposes such as product design, smart 
manufacturing, usage monitoring and maintenance, repair 
and overhaul [1] of which smart manufacturing 
applications fell into the scope of this paper. The complete 
production line from raw material to market can be 
designed and optimized in a factory floor [1], [2]. Such 
virtual environment make trial and errors required by 
machine learning and artificial intelligence approaches 
possible. An exact and realistic digital twin is desirable to 
make sure that the iteratively found solution is applicable 
to the system right from the first time.   

Many applications require robots to move through 
obstacles to reach a desired position. Path planning is 
therefore commonly used in navigation for autonomous 

cars, UAVs, mobile robots, and satellites to enable 
collision free motion [3][4]. Similarly, in manufacturing 
tasks autonomous path planning of industrial robots is 
required due to product changes. Particularly in assembly 
tasks where changing the product design often necessitates 
changes in robot movement to accommodate new 
variations in production methods, currently done using 
manual reprogramming. 

Path planning algorithms can be broadly classified as 
conventional and heuristic approaches [5]. Conventional 
approaches which are old algorithms require manual 
programming at some places and are computationally 
expensive as compared to heuristic approaches [6]. 
Examples of conventional approaches [5] are BUG 
algorithms, roadmap, cell decomposition, potential fields, 
and mathematical programming. Such approaches may 
fall in local minima more frequently than heuristic 
optimization algorithms. Heuristic path optimization 
approaches are autonomous path planning methods that 
have recently been developed. A few of the commonly 
used heuristic methods [5] are neural network [7], [8] and 
[9], genetic algorithms, particle swarm optimization [10], 
ant colony optimization (ACO) [11] and [12], stigmergy, 
wavelet theory, fuzzy logic [12] and [13], and Tabu 
Search. Heuristic approaches are preferred over 
conventional methods as they are better in dealing with 
complicated problems and local minimum solutions. Ant 
colony optimization was used for path planning in this 
study as it is easy to employ and adapt to a new problem 
[14]. 

In case of industrial robots, it is highly desirable to 
make robot autonomously find an optimal collision free 
path. This became more important as in new industrial 
systems manufacturing customizable products emerge 
flexible factory line. Soft computing approaches have 
been previously applied to such applications. For instance, 
continuous Genetic Algorithms is used to find the 
Collision-Free Cartesian Path for robotic manipulators 
[15]. Optimal positioning of surgical robot and path 
planning of its end-effector in a crowded operating room 
is another challenging task to which genetic algorithm is 
applied [16]. A 3D working model including surgical 
object is designed and the optimization is performed in 
such an environment.  

In this paper, the ACO is used in a digital twin 
environment to find the shortest collision free path in 3D 
space for an industrial robot undergoing a pick and place 
operation within an environment containing obstacles that 
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must be avoided. To reduce risks and number of 
experiments done with the robot, in this case a UR5, a 
digital twin of the environment is designed in Gazebo 
software. The obstacles designed in the digital twin have 
been created to represent the existence of obstacles in a 
production environment. The digital twin model has been 
created to detect possible collisions and are used to 
penalize the cost function when obtaining a collision free 
solution. Possible robot movements in 3D space are then 
encoded in terms of an array that represent translation and 
rotation of the end factor in the virtual environment. 
Inverse kinematics is then used to make robot joints move 
to the required position, where collisions will result in 
displacement of obstacles in the digital twin. By 
comparing the initial and final position of obstacles, a 
possible collision is detected automatically without 
carrying out manual calculations. As multiple calls of the 
cost function are required during the optimization process, 
the position of the robot and other components in the 
digital twin are required to reset to their initial conditions 
after each cost function execution. An optimal path was 
generated in virtual environment by integrating ACO 
algorithms to find a collision free route to fulfill the pick 
and place task. The resulting digital twin therefore 
provides a means to test obtained movement in a visual 
interface by a human expert to guarantee implementability 
and safety. In the simulation section, it is shown that the 
proposed method is a successful optimization algorithm to 
find the optimal path in the presence of obstacles.  

This paper is organized as follows. The general ACO 
technique is described in Section II. Then the overall 
methodology and description of steps taken to perform the 
optimization in a digital twin are given in Section III, 
simulation results are presented in Section IV, and 
concluding marks are provided in Section V. 

II. ANT COLONY OPTIMIZATION 

ACO is a nature inspired optimization algorithm. It is 
based on ant’s behavior to use swarm intelligence to find 
food [17]. ACO is a heuristic path planning method used 
to find optimal path. In this method, ants deposit 
pheromones on the path while travel that are sensed by 
other ants. Figure 1 shows a group of ants finding an 
optimal path from nest to food. The changes paths taken 
can be easily accommodated in ACO as pheromones 
evaporate with time. Pheromones deposition speed is 
faster than the evaporation rate in the paths visited more 
frequently by ants due to that path’s short length. ACO is 
easy to implement, adaptable to new problems and can 
achieve both local and global minimum solutions [14]. 
This means that whenever a new feature is added to the 
path pheromone levels can be locally initialized by just 
changing the pheromone values near the object added or 
can be globally initialized by setting all the pheromones 
back to original level. ACO equations were used to 
employ a group of ants and update pheromone levels to 
find desired solution. Equations used (equation 1-4) are 
shown below [17]. The probability of ant k located at node 
i to go to node j depends on heuristic information and 
pheromone update in Equation (1). 

 

 

 

 
Figure 1.  Ants finding optimal path to food 
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Heuristic information depends on movements given to 
reach target and position number of ways ant can move. 
Pheromones remaining due to evaporation are determined 
as: 

 ߬௜௝	ሺݐ ൅ ሻݐ∆ ൌ ሺ1 െ ሻߩ ൈ 	߬௜௝ሺݐሻ 

where, ߬௜௝ represents pheromones deposited on the path 
from nodes i to node j, ρ is pheromone evaporation rate, 
and is selected as 0 ≤ ρ ≤ 1. Pheromone levels after a new 
pheromone is deposited then become: 
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where k represents ant doing path planning and ܿ௞ is 
associated with cost or reward ant k gets for choosing this 
path. The algorithm evolves for a few iterations to find the 
optimal path with highest concentration of pheromones. 

III. METHODOLOGY 

A. Cost function to be optimized 

The digital twin designed in this paper is a replica of 
real industrial process which includes industrial 
components and machinery. The main goal is to 
automatically design the path for a robot end effector to 
move from its initial condition to a designated target 
position and orientation, without having any collision with 
obstacles in the environment. Collision detection is done 
automatically in the digital twin using specially written 
software in Python. Collision between the robot and 
components make the objects move from their initial 
position. By comparing initial position of components and 
their final position, a flag is returned as a consequence and 
can then be used to penalize the cost function. Collisions 
during movement are captured using software with the 
cost function defined as: 
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where ݔௗ, ,ௗݕ ,ௗݖ ܽௗ, ܾௗ and ܿௗ represent the desired 
values of position and orientation of robot, P represent the 
penalty term and C which is assigned a discrete value 
representing the absolute displacement value of any of 
investigated components. The parameters ݔ, ,ݕ ,ݖ ܽ, ܾ and 
ܿ are the position and orientation of robot before the last 
movement to the destination. Displacement values larger 
than software tolerance are considered to be collision. 
Two values are assigned for small displacements and large 
displacements in components. Following formula 
summarizes this logic. 

ܥ  ൌ ൝
0 ݀ ൏ ݈݋ݐ
ଵܥ ݈݋ݐ ൑ ݀ ൏ ଵܸ
ଶܥ ଵܸ ൑ ݀ ൏ ଶܸ

 

where ܥଵ and ܥଶ represent penalties given for the case 
when the sum of absolute values of displacements are 
larger than ଵܸ and ଶܸ and ݈݋ݐ is the tolerance of software.   

B. Encoding movements 

To optimize movements, they need to be encoded into 
an evolvable array. The ACO then evolves this array to 
find the optimal solution minimizing the cost function. 
The python code is then integrated with a gazebo model 
and the end effector of the robot moves in 3D space using 
an array containing integer values from the set ܵ ൌ
ሼ0,1, … ,11ሽ. To move the robot, joint angles 
corresponding to movements are required. Positions of the 
end effector were used to find rotation matrix (equation 8-
11) then used to find joint angles of robot using inverse 
kinematics equations. The interpretation of movements is 
presented in Table I. 

TABLE I.  INTERPRETATION OF VALUES OF ARRAY GENERATED 
BY ACO 

Movements Rotations 
Value Interpretation  Value Interpretation 
ݔ 0 ൌ ݔ ൅ 0.1 6 ܽ ൌ ܽ ൅ 5°
ݔ 1 ൌ ݔ െ 0.1 7 ܽ ൌ ܽ െ 5°
ݕ 2 ൌ ݕ ൅ 0.1 8 ܾ ൌ ܾ ൅ 5°
ݕ 3 ൌ ݕ െ 0.1 9 ܾ ൌ ܾ െ 5°
ݖ 4 ൌ ݖ ൅ 0.1 10 ܿ ൌ ܿ ൅ 5°
ݖ 5 ൌ ݖ െ 0.1 11 ܿ ൌ ܿ െ 5°

C. Kinematic and inverse kinematics of UR5 

The values obtained from the movement array need to 
be translated in terms of robot movements. To enable this 
a transformation matrix that represents position and 
orientation of robot needs to be obtained [18] [19]. The 
transformation matrix for frame 6 with respect to frame 0 
is as: 
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where ෠ܺ଺
଴ , ෠ܻ଺

଴  and መܼ଺
଴  are unit vectors defining the axis of 

frame 6 in relation to frame 0 and: 

ܴ ൌ ܴ௫	ሺܽሻܴ௬ሺܾሻܴ௭ሺܿሻ଺
଴  

in which the rotational matrices are obtained as follows: 
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Inverse kinematics is then used to find joint angles of 
robot to move to position given by ACO. The angles of 
robot are then obtained as [18] [19]:  
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D. Collision detection 

To evaluate the cost function, it is required to detect 
collisions and penalize the optimization routine 
accordingly. The position of components are published 
from Gazebo 7.0, which can be used to detect collision by 
comparing final positions with initial positions of the 
components. This is automatically done within the 
software as the position of components are reported as 
rostopic which can be used to detect possible collisions. 
Figure 2 illustrates a possible collision generated by robot 
moving according to a solution generated by ACO. As can 
be seen from the figure, Gazebo completely simulates 
such collisions and considers physical interaction between 
components including friction and gravitational force. 



 
Figure 2.  Collision due to movement generated by an ACO solution in 

digital twin  

E. Methodology 

Figure 3 demonstrates the steps taken to perform 
automatic path planning for UR5 in digital twin using 
ACO. The green box in this figure represent the steps 
related to the evaluation of the cost function. 

 
Figure 3.  Steps taken for 3D path planning in simulation environment 

Figure 4.  The digital twin of environment including UR5 robot vrrsus 
real robot  

SIMULATION RESULTS 

The results obtained for 3D path planning of industrial 
robots in digital twin using ACO is presented in this 
section. The cost function and the movements are as 
defined in Section III. Number of movements are 
considered to be equal to 20, number of ant agents 
considered is equal to 10 and the optimization algorithm is 
iterated for 100 times.  

Figure 4 compares the real world and the digital twin 
designed for that. Figure 5 illustrates the method used for 
this simulation. The ACO is implemented under python 
software that communicates with ROS using rostopics. 
The results of simulations in terms of final distance 
between the end effector and desired position as well as 
possible displacement in obstacles are reported back in 
terms of corresponding rostopics that are then used in 
Gazebo to evaluate movements. The whole algorithm is 
iterated for 100 iterations before its convergence. The  

 
Figure 5.  Communication between Python and ROS 

movements are implemented in digital twin using 
/trajectory_controller/command rostopic in terms of robot 
joint angles. The positions of obstacles are reported back 
using /gazebo/modelstates rostopic. The rostopic 
/gazebo/reset_world is used to reset the position of objects 
after each evaluation of the cost function.  

Figure 6 illustrates the evolution of cost function versus 
iterations. As can be seen from this figure, ACO has 
effectively been successfully in reducing the value of cost 
function. As can be seen from the figure ACO has 
successfully reduced the value of cost function from 1.37 
to 0.31 which is 77% of improvement. The result of doing 
optimization in terms of motion time-lapse of robot is 
presented in Fig. 7. This figure shows that the final motion 
obtained is collision free and end effector successfully hits 
its target destination. 



 
Figure 6.  The evolution of cost function versus iterations 

 

   

   

   

Figure 7.  Motion time-lapse of robot for a successful run (every 3 
seconds) 

IV. CONLUSIONS 

To implement product changes rapidly on the factory 
floor, manufacturing elements are required to learn to 
perform given tasks autonomously with minimum human 
intervention. Machine learning typically requires trial and 
error approaches that in most cases cannot be performed 
directly on the factory floor due to factors such as health 
and safety and to reduce waste. The utilization of a digital 
twin of a robotic manufacturing system provides the mean 
for performing multiple learning iterations at almost no 
cost. In such ACO as a successful, nature inspired, method 
to deal with path planning problems is utilized here in the 
planning of a pick and place task. The task is encoded for 
ACO and a cost function is considered to plan a path to 
the desired position without any collisions with 
environmental objects. Simulation results demonstrate that 
ACO can successfully perform the optimization in the 
digital twin using the proposed procedure.  
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