
Ant Colony Optimization Algorithm for
Industrial Robot Programming in a Digital Twin

Ridhi Bansal, Mojtaba Ahmadieh Khanesar, David Branson
Faculty of Engineering,

Department of Mechanical, Materials and Manufacturing Engineering,
University of Nottingham, Nottingham, UK

Emails: {eayrr4, ezzma5, ezzdtb}@exmail.nottingham.ac.uk

Abstract— Advanced manufacturing that is adaptable to
constantly changing product designs often requires dynamic
changes on the factory floor to enable manufacture. The
integration of robotic manufacture with machine learning
approaches offers the possibility to enable such dynamic
changes on the factory floor. While ensuring safety and the
possibility of losses of components and waste of material are
against their usage. Furthermore, developments in design of
virtual environments makes it possible to perform
simulations in a virtual environment, to enable human-in-
the-loop production of parts correctly the first time like
never before. Such powerful simulation and control
software provides the means to design a digital twin of
manufacturing environment in which trials are completed at
almost at no cost. In this paper, ant colony optimization is
used to program an industrial robot to avoid obstacles and
find its way to pick and place objects during an assembly
task in an environment containing obstacles that must be
avoided. The optimization is completed in a digital twin
environment first and movements transferred to the real
robot after human inspection. It is shown that the proposed
methodology can find the optimal solution, in addition to
avoiding collisions, for an assembly task with minimum
human intervention.

Keywords- manufacturing; artificial intelligence;
programming robot; digital twin; ant colony optimization,

I. INTRODUCTION

Usage of artificial intelligence approaches in a
manufacturing environment is quite challenging because
of inevitable iterations required to be performed before
success. In a manufacturing environment, such iterations
are highly expensive and may cause serious damages
which make them impossible to implement. A digital twin
is a virtual representation of real world which is designed
for various purposes such as product design, smart
manufacturing, usage monitoring and maintenance, repair
and overhaul [1] of which smart manufacturing
applications fell into the scope of this paper. The complete
production line from raw material to market can be
designed and optimized in a factory floor [1], [2]. Such
virtual environment make trial and errors required by
machine learning and artificial intelligence approaches
possible. An exact and realistic digital twin is desirable to
make sure that the iteratively found solution is applicable
to the system right from the first time.

Many applications require robots to move through
obstacles to reach a desired position. Path planning is
therefore commonly used in navigation for autonomous

cars, UAVs, mobile robots, and satellites to enable
collision free motion [3][4]. Similarly, in manufacturing
tasks autonomous path planning of industrial robots is
required due to product changes. Particularly in assembly
tasks where changing the product design often necessitates
changes in robot movement to accommodate new
variations in production methods, currently done using
manual reprogramming.

Path planning algorithms can be broadly classified as
conventional and heuristic approaches [5]. Conventional
approaches which are old algorithms require manual
programming at some places and are computationally
expensive as compared to heuristic approaches [6].
Examples of conventional approaches [5] are BUG
algorithms, roadmap, cell decomposition, potential fields,
and mathematical programming. Such approaches may
fall in local minima more frequently than heuristic
optimization algorithms. Heuristic path optimization
approaches are autonomous path planning methods that
have recently been developed. A few of the commonly
used heuristic methods [5] are neural network [7], [8] and
[9], genetic algorithms, particle swarm optimization [10],
ant colony optimization (ACO) [11] and [12], stigmergy,
wavelet theory, fuzzy logic [12] and [13], and Tabu
Search. Heuristic approaches are preferred over
conventional methods as they are better in dealing with
complicated problems and local minimum solutions. Ant
colony optimization was used for path planning in this
study as it is easy to employ and adapt to a new problem
[14].

In case of industrial robots, it is highly desirable to
make robot autonomously find an optimal collision free
path. This became more important as in new industrial
systems manufacturing customizable products emerge
flexible factory line. Soft computing approaches have
been previously applied to such applications. For instance,
continuous Genetic Algorithms is used to find the
Collision-Free Cartesian Path for robotic manipulators
[15]. Optimal positioning of surgical robot and path
planning of its end-effector in a crowded operating room
is another challenging task to which genetic algorithm is
applied [16]. A 3D working model including surgical
object is designed and the optimization is performed in
such an environment.

In this paper, the ACO is used in a digital twin
environment to find the shortest collision free path in 3D
space for an industrial robot undergoing a pick and place
operation within an environment containing obstacles that

Proceedings of the 25th International Conference on
Automation & Computing, Lancaster University,
Lancaster UK, 5-7 September 2019

must be avoided. To reduce risks and number of
experiments done with the robot, in this case a UR5, a
digital twin of the environment is designed in Gazebo
software. The obstacles designed in the digital twin have
been created to represent the existence of obstacles in a
production environment. The digital twin model has been
created to detect possible collisions and are used to
penalize the cost function when obtaining a collision free
solution. Possible robot movements in 3D space are then
encoded in terms of an array that represent translation and
rotation of the end factor in the virtual environment.
Inverse kinematics is then used to make robot joints move
to the required position, where collisions will result in
displacement of obstacles in the digital twin. By
comparing the initial and final position of obstacles, a
possible collision is detected automatically without
carrying out manual calculations. As multiple calls of the
cost function are required during the optimization process,
the position of the robot and other components in the
digital twin are required to reset to their initial conditions
after each cost function execution. An optimal path was
generated in virtual environment by integrating ACO
algorithms to find a collision free route to fulfill the pick
and place task. The resulting digital twin therefore
provides a means to test obtained movement in a visual
interface by a human expert to guarantee implementability
and safety. In the simulation section, it is shown that the
proposed method is a successful optimization algorithm to
find the optimal path in the presence of obstacles.

This paper is organized as follows. The general ACO
technique is described in Section II. Then the overall
methodology and description of steps taken to perform the
optimization in a digital twin are given in Section III,
simulation results are presented in Section IV, and
concluding marks are provided in Section V.

II. ANT COLONY OPTIMIZATION

ACO is a nature inspired optimization algorithm. It is
based on ant’s behavior to use swarm intelligence to find
food [17]. ACO is a heuristic path planning method used
to find optimal path. In this method, ants deposit
pheromones on the path while travel that are sensed by
other ants. Figure 1 shows a group of ants finding an
optimal path from nest to food. The changes paths taken
can be easily accommodated in ACO as pheromones
evaporate with time. Pheromones deposition speed is
faster than the evaporation rate in the paths visited more
frequently by ants due to that path’s short length. ACO is
easy to implement, adaptable to new problems and can
achieve both local and global minimum solutions [14].
This means that whenever a new feature is added to the
path pheromone levels can be locally initialized by just
changing the pheromone values near the object added or
can be globally initialized by setting all the pheromones
back to original level. ACO equations were used to
employ a group of ants and update pheromone levels to
find desired solution. Equations used (equation 1-4) are
shown below [17]. The probability of ant k located at node
i to go to node j depends on heuristic information and
pheromone update in Equation (1).

Figure 1. Ants finding optimal path to food

 ௜௝݌
௞ ൌ 	ቐ

ሺఛ೔ೕ
ೖ ሻഀሺఎ೔ೕ

ೖ ሻഁ

∑ ሺఛ೔ೕ
ೖ ሻഀሺఎ೔ೕ

ೖ ሻഁ
೗∈ಿ೔

ೖ
			if	݆	 ∈ 	 ௜ܰ

௄		

0																														if	݆	 ∉ ௜ܰ
௄	

 

Heuristic information depends on movements given to
reach target and position number of ways ant can move.
Pheromones remaining due to evaporation are determined
as:

 ߬௜௝	ሺݐ ൅ ሻݐ∆ ൌ ሺ1 െ ሻߩ ൈ 	߬௜௝ሺݐሻ 

where, ߬௜௝ represents pheromones deposited on the path
from nodes i to node j, ρ is pheromone evaporation rate,
and is selected as 0 ≤ ρ ≤ 1. Pheromone levels after a new
pheromone is deposited then become:

 ߬௜௝	ሺݐ ൅ ሻݐ∆ ൌ 	 ߬௜௝	ሺtሻ 	൅ ∑ ∆	߬௜௝
௞௠

௞ୀଵ  

 ∆	߬௜௝
௞ ൌ ଵ

஼ೖ
 

where k represents ant doing path planning and ܿ௞ is
associated with cost or reward ant k gets for choosing this
path. The algorithm evolves for a few iterations to find the
optimal path with highest concentration of pheromones.

III. METHODOLOGY

A. Cost function to be optimized

The digital twin designed in this paper is a replica of
real industrial process which includes industrial
components and machinery. The main goal is to
automatically design the path for a robot end effector to
move from its initial condition to a designated target
position and orientation, without having any collision with
obstacles in the environment. Collision detection is done
automatically in the digital twin using specially written
software in Python. Collision between the robot and
components make the objects move from their initial
position. By comparing initial position of components and
their final position, a flag is returned as a consequence and
can then be used to penalize the cost function. Collisions
during movement are captured using software with the
cost function defined as:

 ܬ ൌ ሺݔ െ ௗሻଶݔ ൅ ሺݕ െ ௗሻଶݕ ൅ ሺݖ െ ௗሻଶݖ ൅
ሺܽ െ ܽௗሻଶ ൅ ሺܾ െ ܾௗሻଶ ൅ ሺܿ െ ܿௗሻଶ ൅ ܲ. ܥ 

where ݔௗ, ,ௗݕ ,ௗݖ ܽௗ, ܾௗ and ܿௗ represent the desired
values of position and orientation of robot, P represent the
penalty term and C which is assigned a discrete value
representing the absolute displacement value of any of
investigated components. The parameters ݔ, ,ݕ ,ݖ ܽ, ܾ and
ܿ are the position and orientation of robot before the last
movement to the destination. Displacement values larger
than software tolerance are considered to be collision.
Two values are assigned for small displacements and large
displacements in components. Following formula
summarizes this logic.

ܥ ൌ ൝
0 ݀ ൏ ݈݋ݐ
ଵܥ ݈݋ݐ ൑ ݀ ൏ ଵܸ
ଶܥ ଵܸ ൑ ݀ ൏ ଶܸ

 

where ܥଵ and ܥଶ represent penalties given for the case
when the sum of absolute values of displacements are
larger than ଵܸ and ଶܸ and ݈݋ݐ is the tolerance of software.

B. Encoding movements

To optimize movements, they need to be encoded into
an evolvable array. The ACO then evolves this array to
find the optimal solution minimizing the cost function.
The python code is then integrated with a gazebo model
and the end effector of the robot moves in 3D space using
an array containing integer values from the set ܵ ൌ
ሼ0,1, … ,11ሽ. To move the robot, joint angles
corresponding to movements are required. Positions of the
end effector were used to find rotation matrix (equation 8-
11) then used to find joint angles of robot using inverse
kinematics equations. The interpretation of movements is
presented in Table I.

TABLE I. INTERPRETATION OF VALUES OF ARRAY GENERATED
BY ACO

Movements Rotations
Value Interpretation Value Interpretation
ݔ 0 ൌ ݔ ൅ 0.1 6 ܽ ൌ ܽ ൅ 5°
ݔ 1 ൌ ݔ െ 0.1 7 ܽ ൌ ܽ െ 5°
ݕ 2 ൌ ݕ ൅ 0.1 8 ܾ ൌ ܾ ൅ 5°
ݕ 3 ൌ ݕ െ 0.1 9 ܾ ൌ ܾ െ 5°
ݖ 4 ൌ ݖ ൅ 0.1 10 ܿ ൌ ܿ ൅ 5°
ݖ 5 ൌ ݖ െ 0.1 11 ܿ ൌ ܿ െ 5°

C. Kinematic and inverse kinematics of UR5

The values obtained from the movement array need to
be translated in terms of robot movements. To enable this
a transformation matrix that represents position and
orientation of robot needs to be obtained [18] [19]. The
transformation matrix for frame 6 with respect to frame 0
is as:

ܶሺߠଵ, ,ଶߠ ,ଷߠ ,ସߠ ,ହߠ ଺ሻ଴ߠ
଺ ൌ ൤ ܴ଺

଴ ܲ଺
଴

0 1
൨ ൌ

																																	

ۏ
ێ
ێ
ێ
ۍ
෠ܺ௫଺

଴ ෠ܻ௫଺
଴ መܼ௫଺

଴
௫ܲ଺

଴

෠ܺ௬଺
଴ ෠ܻ௬଺

଴ መܼ௬଺
଴

௬ܲ଺
଴

෠ܺ௭଺
଴ ෠ܻ௭଺

଴ መܼ௭଺
଴

௭ܲ଺
଴

0 0 0 1

					

ے
ۑ
ۑ
ۑ
ې


where ෠ܺ଺
଴ , ෠ܻ଺

଴ and መܼ଺
଴ are unit vectors defining the axis of

frame 6 in relation to frame 0 and:

ܴ ൌ ܴ௫	ሺܽሻܴ௬ሺܾሻܴ௭ሺܿሻ଺
଴

in which the rotational matrices are obtained as follows:

 ܴ௫ ൌ ൥
1 0 0
0 ݏ݋ܿ ܽ െ ݊݅ݏ ܽ
0 ݊݅ݏ ܽ ݏ݋ܿ ܽ

൩ 

 ܴ௬ ൌ ൥
ݏ݋ܿ ܾ 0 ݊݅ݏ ܾ
0 1 0

െ	݊݅ݏ ܾ 0 ݏ݋ܿ ܾ
൩ 

 ܴ௭ ൌ ൥
ݏ݋ܿ ܿ െ ݊݅ݏ ܿ 0
݊݅ݏ ܿ ݏ݋ܿ ܿ 0
0 0 1

൩ 

Inverse kinematics is then used to find joint angles of
robot to move to position given by ACO. The angles of
robot are then obtained as [18] [19]:

ଵߠ ൌ 2൫݊ܽݐܽ ܲହ௬
଴ , ܲହ௫

଴ ൯ ൅ acos	ቌ ௗర

ට ௉మ	ା	ఱೣ
బ ௉మ	ఱ೤

బ
ቍ ൅ గ

ଶ


ଶߠ ൌ 2ሺെ݊ܽݐܽ ܲସ௭
ଵ , െ ܲସ௫

ଵ ሻ െ ௦௜௡	ቀି௔య	݊݅ݏܽ ఏయ
| ௉రೣ೥

భ |
ቁ

ଷߠ ൌ േܽܿݏ݋	ቀ
| ௉రೣ೥

భ |మି	௔మమ	ି	௔యమ	

ଶ௔మ௔య
ቁ

ସߠ ൌ 2൫݊ܽݐܽ ෠ܺ	ସ௬
ଷ , ෠ܺ	ସ௫

ଷ ൯
ହߠ ൌ േܽܿݏ݋ ൬

௉ ௦௜௡ ఏభ	ି		లೣ
బ ௉ ௖௢௦ఏభ	ି	ௗర	ల೤

బ

ௗల
൰

଺ߠ ൌ ଶሻܯ,ଵܯ2ሺ݊ܽݐܽ
where:

ଵܯ ൌ
െ ෠ܺ ݊݅ݏ ଵߠ 	൅	଴௬

଺ ෠ܻ ݏ݋ܿ ଴௬		ଵߠ
଺

݊݅ݏ ହߠ

ଶܯ ൌ
෠ܺ ݊݅ݏ ଵߠ 	െ	଴௬

଺ ෠ܻ ݏ݋ܿ ଴௬		ଵߠ
଺

݊݅ݏ ହߠ

D. Collision detection

To evaluate the cost function, it is required to detect
collisions and penalize the optimization routine
accordingly. The position of components are published
from Gazebo 7.0, which can be used to detect collision by
comparing final positions with initial positions of the
components. This is automatically done within the
software as the position of components are reported as
rostopic which can be used to detect possible collisions.
Figure 2 illustrates a possible collision generated by robot
moving according to a solution generated by ACO. As can
be seen from the figure, Gazebo completely simulates
such collisions and considers physical interaction between
components including friction and gravitational force.

Figure 2. Collision due to movement generated by an ACO solution in

digital twin

E. Methodology

Figure 3 demonstrates the steps taken to perform
automatic path planning for UR5 in digital twin using
ACO. The green box in this figure represent the steps
related to the evaluation of the cost function.

Figure 3. Steps taken for 3D path planning in simulation environment

Figure 4. The digital twin of environment including UR5 robot vrrsus
real robot

SIMULATION RESULTS

The results obtained for 3D path planning of industrial
robots in digital twin using ACO is presented in this
section. The cost function and the movements are as
defined in Section III. Number of movements are
considered to be equal to 20, number of ant agents
considered is equal to 10 and the optimization algorithm is
iterated for 100 times.

Figure 4 compares the real world and the digital twin
designed for that. Figure 5 illustrates the method used for
this simulation. The ACO is implemented under python
software that communicates with ROS using rostopics.
The results of simulations in terms of final distance
between the end effector and desired position as well as
possible displacement in obstacles are reported back in
terms of corresponding rostopics that are then used in
Gazebo to evaluate movements. The whole algorithm is
iterated for 100 iterations before its convergence. The

Figure 5. Communication between Python and ROS

movements are implemented in digital twin using
/trajectory_controller/command rostopic in terms of robot
joint angles. The positions of obstacles are reported back
using /gazebo/modelstates rostopic. The rostopic
/gazebo/reset_world is used to reset the position of objects
after each evaluation of the cost function.

Figure 6 illustrates the evolution of cost function versus
iterations. As can be seen from this figure, ACO has
effectively been successfully in reducing the value of cost
function. As can be seen from the figure ACO has
successfully reduced the value of cost function from 1.37
to 0.31 which is 77% of improvement. The result of doing
optimization in terms of motion time-lapse of robot is
presented in Fig. 7. This figure shows that the final motion
obtained is collision free and end effector successfully hits
its target destination.

Figure 6. The evolution of cost function versus iterations

Figure 7. Motion time-lapse of robot for a successful run (every 3
seconds)

IV. CONLUSIONS

To implement product changes rapidly on the factory
floor, manufacturing elements are required to learn to
perform given tasks autonomously with minimum human
intervention. Machine learning typically requires trial and
error approaches that in most cases cannot be performed
directly on the factory floor due to factors such as health
and safety and to reduce waste. The utilization of a digital
twin of a robotic manufacturing system provides the mean
for performing multiple learning iterations at almost no
cost. In such ACO as a successful, nature inspired, method
to deal with path planning problems is utilized here in the
planning of a pick and place task. The task is encoded for
ACO and a cost function is considered to plan a path to
the desired position without any collisions with
environmental objects. Simulation results demonstrate that
ACO can successfully perform the optimization in the
digital twin using the proposed procedure.

ACKNOWLEDGMENT

This work is funded and supported by the Engineering
and Physical Sciences Research Council (EPSRC) under

grant number: EP/R021031/1 - New Industrial Systems:
Chatty Factories.

REFERENCES
[1] H. Zhang, Q. Liu, X. Chen, D. Zhang, and J. Leng, “A

Digital Twin-Based Approach for Designing and Multi-
Objective Optimization of Hollow Glass Production Line,”
IEEE Access, vol. 5, pp. 26901–26911, 2017.

[2] R. Rosen, G. Von Wichert, G. Lo, and K. D. Bettenhausen,
“About the importance of autonomy and digital twins for
the future of manufacturing,” IFAC-PapersOnLine, vol.
28, no. 3, pp. 567–572, 2015.

[3] M. A. P. Garcia, O. Montiel, O. Castillo, R. Sepúlveda, and
P. Melin, “Path planning for autonomous mobile robot
navigation with ant colony optimization and fuzzy cost
function evaluation,” Appl. Soft Comput. J., vol. 9, no. 3,
pp. 1102–1110, 2009.

[4] T. T. Mac, C. Copot, D. T. Tran, and R. De Keyser,
“Heuristic approaches in robot path planning: A survey,”
Rob. Auton. Syst., vol. 86, pp. 13–28, 2016.

[5] M. K. A. A. S. H. Tang, W. Khaksar, N. B. Ismail, “A
Review on Robot Motion Planning Approaches,”
Pertanika J. Sci. Technol., vol. 20, no. 1, pp. 15–29, 2012.

[6] B. Beklisi, K. Ayawli, R. Chellali, A. Y. Appiah, and F.
Kyeremeh, “An Overview of Nature-Inspired ,
Conventional , and Hybrid Methods of Autonomous
Vehicle Path Planning,” vol. 2018, 2018.

[7] O. Avoidance, “Neural Network Dynamics for Path
Planning and Obstacle Avoidance,” 1995.

[8] H. Li, S. Member, S. X. Yang, S. Member, and M. L. Seto,
“Neural-Network-Based Path Planning for a Multirobot
System With Moving Obstacles,” vol. 39, no. 4, pp. 410–
419, 2009.

[9] E. Engineering, “Neural network and genetic algorithm
based global path planning in a static environment,” vol. 4,
no. 6, pp. 549–554, 2005.

[10] J. Han and Y. Seo, “Mobile robot path planning with
surrounding point set and path improvement,” Appl. Soft
Comput. J., vol. 57, pp. 35–47, 2017.

[11] U. Cekmez, M. Ozsiginan, and O. K. Sahingoz, “Multi
Colony Ant Optimization for UAV Path Planning with
Obstacle Avoidance,” 2016 Int. Conf. Unmanned Aircr.
Syst., pp. 47–52, 2016.

[12] M. Fakoor, A. Kosari, and M. Jafarzadeh, “Humanoid
robot path planning with fuzzy Markov decision
processes,” Rev. Mex. Trastor. Aliment., vol. 14, no. 5, pp.
300–310, 2016.

[13] M. Wang and J. N. K. Liu, “Fuzzy logic based robot path
planning in unknown environment,” vol. 1, no. August, pp.
18–21, 2005.

[14] Y. Hsiao, C. Chnang, and C. Chien, “Ant Colony
Optimization for Best Path Planning,” vol. 2004, no. 1,
2004.

[15] Z. S. Abo-Hammour, O. M. Alsmadi, S. I. Bataineh, M. A.
Al-Omari, and N. Affach, “Continuous genetic algorithms
for collision-free Cartesian path planning of robot
manipulators regular paper,” Int. J. Adv. Robot. Syst., vol.
8, no. 6, pp. 14–36, 2011.

[16] Q. C. Nguyen, Y. Kim, and H. D. Kwon, “Optimization of
layout and path planning of surgical robotic system,” Int. J.
Control. Autom. Syst., vol. 15, no. 1, pp. 375–384, 2017.

[17] M. Brandi, M. Masudai, N. Wehner, and X. Yu, “Ant
Colony Optimization Algorithm for Robot Path Planning,”
2010, vol. 3, no. 2010 International Conference On
Computer Design And Appliations (ICCDA 2010), pp.
436–440.

[18] K. P. Hawkins, “Analytic Inverse Kinematics for the
Universal Robots,” 2013.

[19] Andersen RS. Kinematics of a UR5. Aalborg University.
2018 Mar

