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Abstract— In this paper, an XOR binary gravitational search
algorithm is introduced. Gravitational search algorithms, a
physics inspired optimization algorithm, have previously been
successfully applied to different real-valued optimization
problems. In their binary version, the definition of a velocity
vector changes to probability of change in corresponding
dimensions. However, analysis shows that existing velocity
vector update equation for binary gravitational search
algorithm do not direct the particle towards better particle in
certain cases. To apply this algorithm to binary optimization
problems we introduce an XOR operator in the acceleration
term. After a mathematical comparison to existing binary
gravitational search algorithms it is shown that the proposed
modification complies more with the definition of change in
each dimension. Extensive simulations are performed showing
the superiority of the proposed algorithm over other existing
algorithms such as binary particle swarm optimization and an
existing version of binary gravitational search algorithm.

I. INTRODUCTION

Calculus of wvariations, gradient based optimization
methods and linear programming approaches are among the
most successful computational methods to optimize a
nonlinear function. However, there are some cases in which
the cost function is not explicitly defined and/or it is difficult
or even impossible to calculate derivatives due to high
dimensionalities. In such cases, nature inspired optimization
algorithms that rely on implicit functions may be viable
choices. These optimization algorithms start the process from
multiple points and they are less probable to fall in local
minima. Evolutionary based optimization algorithms [1],
swarm based optimization methods [2] and physic inspired
optimization algorithms [3] are different categories of meta-
heuristic optimization methods applied in these cases.

In evolutionary based optimization methods, each
solution is decoded to a chromosome with its dimension
being the same as the number of genes in chromosome.
Inspired by nature, these artificial chromosomes are subject
to crossover, mutation and natural selection models to find
the optimum value of a function. In swarm based
optimization algorithms that try to model the graceful and
unpredictable movement of birds and fish, a position vector
represents every solution. Position vectors are then updated
using a velocity vector that has different terms showing
tendency towards the best experience of the whole swarm
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and the best individual experience of each member of the
swarm. Physics inspired optimization algorithms, unlike
evolutionary optimization algorithms and swarm based
optimization methods, which try to model the behavior of
living species, imitate the interaction between objects in real
life. Examples of physics inspired optimization algorithms
are central force optimization algorithm [4] and gravitational
search algorithm (GSA) [5]. The latter is a stochastic search
algorithm benefiting from superior exploration capability that
may results in superior performance.

GSA, an optimization algorithm inspired by the
interaction between masses in space from Newton
gravitational law, has been successfully applied to different
engineering fields such as optimal design of power systems
[6], allocation of power devices [7] etc. According to
Newton’s gravitational law, the gravitational force between
two masses in space is directly proportional to the
multiplication of two mass and inversely proportional with
the Euclidean distance between them. By studying the
acceleration of two different masses, one can show that the
acceleration of each mass towards another one is proportional
to the mass of the other object. In this case, the small object
moves with higher acceleration towards the big one. This
acceleration causes lighter objects to accelerate towards
heavier ones. In GSA, heavier masses are assigned to
particles with superior cost functions values that causes the
particles with poorer cost functions to be pushed towards
them while scanning the whole space. Meanwhile, if any
other solutions come up with better performance, a big value
of mass is assigned to that particle making it attract other
particles.

The original GSA is designed for real-valued
optimization problems with position and velocity vector
being real-valued. Continuously evolving product design
emerges automated task planning, task assignment and
programing individual tasks for production elements
including robots that may give rise to using intelligent
optimization algorithms. In such examples, decision variables
may be binary rather than real values and the goal may be to
achieve less energy consumption, minimum time and
possibly lower cost. Examples of such applications are
process-planning problem [8], assembly sequence planning
[9] and assembly line design problems [10]. To solve discrete
binary optimization problems, the values of decision
variables in a binary optimization problem are either zero or
one and a vector representing the probability of change in
each dimension is defined instead of velocity vector [11, 12].
The main aim of the vector representing the probability of
change is to direct a particle towards a particle with better
cost function. However, the analysis presented in this paper
show that this does not happen using current update formula
for BGSA.



In this paper, BGSA and its update formulas for
acceleration, velocity and position are fully analyzed and the
motivation behind writing this paper is established utilizing
mathematical models. It is shown that in the existing BGSA,
the update equation for the probability vector of BGSA does
not direct particles towards better particles as it is expected
from the algorithm. To solve the problems with BGSA, the
velocity vector is modified using an XOR operator. The
proposed optimization algorithm is validated in simulation
against a number of benchmark optimization problems. It is
shown that the proposed algorithm is capable of optimizing
various benchmark optimization problems including
unimodal and multi-modal cost functions with several local
optimum points, resulting in superior performance when it is
compared to BGSA [12], novel binary particle swarm
optimization (NBPSO) [13], improved binary swarm
optimization (IBPSO) [14] and binary particle swarm
optimization (BPSO) [11].

This paper is organized as follows. In Section II, real-
valued GSA is discussed. The current version of BGSA is
presented and analyzed in Section III. In Section IV, the
proposed XOR BGSA is introduced and analyzed. The
proposed algorithm is then compared with several existing
optimization algorithms for the optimization of several
benchmark examples. Finally, the concluding marks are
presented in Section V.

II. GRAVITATIONAL SEARCH ALGORITHM

GSA is a population based optimization method which
imitates the behaviour of interaction between masses due to
universal gravitational forces between them. Unlike the basic
version of particle swarm optimization (PSO) in which each
particle is represented by its position and velocity, particles
used in GSA benefit from more features such as acceleration
and mass [5]. As particles with better cost functions are
assigned higher values of mass they attract other particles.
The particles with worse cost functions are absorbed by better
particles which results in exploiting the search space. The
mass of particles is continuously updated based on their cost
function, if during exploitation, the cost function
corresponding to a particle becomes better than the
previously found better solution, a larger value is assigned to
its mass which results in other particles to be accelerated
towards newly updated better solution. After a few iterations,
all solutions are converged towards the heaviest mass
resulting in termination of the algorithm. The algorithm is
described mathematically using the following few lines.

The solution to problem is defined as the positions of
particles in d —dimensional search space as:

Xp= @b xd o xl, o ax®)i=1,..,N (1)

where xl.j is the j®" component of the position of the particle
and N is the total number of populations. The mass of
particles are updated and normalized at t" iteration as [5]:

Mi(t) = 5 mi() )

=1 Mk(®)
where m;(t) is non-normalized mass value corresponding to
ith particle at iteration number t which represents the quality
of solution and is defined as [5]:

f&X)—fworst(t) (3)
fhest()—fworst(t)

where f,,ors: (t) is the fitness function value corresponding to
the worst particle and fp.s(t) represents the best fitness
function observed by any of the particles. The parameters
fworse () and fpqs (t) are updated at every iteration as:

my(t) =

frest(t) = min{f (X)) }i=1,.n 4)

It is to be noted that in this case the best and worst
particles are defined based on minimization problem.
Furthermore, k; best solutions are selected at each iteration
as the masses which absorb the other masses. Hence, in this
case m;(t) belongs to the interval of [0, 1] which m;(t) =0
being the mass of the worst particle which does not absorb
any particle and m;(t) = 1 represents the mass of the best
particle.

The overall gravitational force acting on the i particle is
obtained as:
MM (1) (X ()-X;())
I1X;(0) =X j(OITP+e

)

where k;, represents the number of best solution selected, |. ||
stands for Euclidean norm, & is a small value added to
prevent division by zero, 7, is the power considered for the
Euclidean distance between two particles, G(t) is the
gravitational constant and r; € [0, 1] is a uniform random
value. The gravitational constant is updated at each iteration
using the following equation.

G(t) = Gyexp (—ﬁ tmtax) (6)

where G has a constant real value and t,,,, is the maximum
value of the iterations of the algorithm. According to
Newton’s second law of motion the acceleration of particles
are calculated by dividing the applied force to i*" mass by its
value of mass as:

Fi(t)
A (D) = o Yjeft,..kp} G ()

M;(©)(X;(®)-Xi(©))
I1X;(6) =X j(E)ITP+e

(7

where A;(t) € R* d —dimensional acceleration of the
particles. Considering the fact that velocity of particle can be
calculated as the discrete integral of its acceleration, the
following equation is obtained for the velocity of the
particles.

Vit + 1) =p; Vi(t) + A;(t) ®)

where V;(t) € R d —dimensional acceleration of the
particles at t" iteration and p; € [0, 1] is a uniform random
number. Finally, the newer position of each particle is
updated as:

X+ =X +Vit+1) ©)

III. BINARY GRAVITATIONAL SEARCH ALGORITHM

A. Description of the algorithm

Similar to BPSO [10] in BGSA the velocity in each
direction changes its meaning to the probability of change in
each dimension. In other words, a large absolute value for
velocity in a dimension means that the current state is not



suitable and needs to be changed to result in a better solution.
Based on such a description, the function P(Vi] ) is defined to

implement an approach as [12]:

P(V/) = tanh(|V/]), i=1,..,N, j=1,...,d (10)
where tanh(.) represents hyperbolic tangent function and is
defined as:

1-e™*
1+e™*

tanh(x) = (11)

Calculating the P(Vij ), the probability of change in every
dimension, the next state in each dimension is calculated as
[12]:

X)) if ¥ <P))
x](t) Otherwise

E+1) = (12)

where X/ (t) represents the complement of xij (t) and rij € [0,
1] has a uniform random value.

B. Analysis of Binary Gravitational Search Algorithm

As mentioned earlier, to be able to apply GSA to binary
problems, the meaning of velocity changes based on the
probability of change in each dimension while the other
equations remain the same. Hence, the acceleration in each
dimension is calculated using (7). The analysis of algorithm
is done based on this equation.

Since the parameter X,(t), k=1,...,N only accept
binary values of zero and one, the subtraction X;(t) — X;(t)
in each dimension may have one of four possible conditions.

1,2) If X/ () =X () =0 or X (t) =X/(t) =1, in
these cases X[(t) —X/(t) =0 which results in no
acceleration for the dimension k which is quite desirable.

3) If X[(t) = 1, X[(t) = 0, X[(t) — X[(t) = 1 which
results in positive acceleration term. In this case if the
velocity in k" dimension is positive, this acceleration term
works fine and adds up to the speed. However, if the velocity
in k" dimension is negative, the acceleration term decreases
the absolute value of velocity and makes the probability of
change smaller which is completely undesirable.

4) If Xf()=0, XM =1, X@®-X1t)=-1
which results in negative acceleration term. In this case if the
velocity in k" dimension is positive, this acceleration term
works decreases the velocity and consequently the probability
of change. This case is undesirable. On the other hand, if the
velocity in k" dimension is negative, the acceleration term
increases the absolute value of velocity and makes the
probability of change larger which is desirable.

Motivated by the problems caused in the third and forth case,
in this paper, BGSA is modified to have an acceleration term
with XOR operator. It will be shown that using such
approach, it is possible to avoid undesirable cases which are
reviewed previously.

IV. PROPOSED XOR BINARY GRAVITATIONAL SEARCH
ALGORITHM

To overcome the aforementioned problems in the analysis
part of binary GSA, the algorithm is modified to benefit from
an XOR operator in acceleration vector. The acceleration
term is modified as:

Fi(t)
A;i(t) = m = Zje{l ..... kp} 156G (1)

M;O)X;OBX;(t)
1X;(0)=X;(OITP +¢

(13)

where @ represents the XOR operator acting bitwise on
X;(t) and X;(t). The truth table for XOR operator is defined
as in Table I.
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Figure 1. Flowchart of proposed XOR binary gravitational search

algorithm

TABLE L TRUTH TABLE FOR XOR OPERATOR
A B ADB
0 0 -1
0 1 1
1 0 1
1 1 -1

Furthermore, the function P(Vij ) is modified as follows:
P(V’) = 0.5+ 0.5tanh(0.5V/), i = 1,...,N,
j=1,...,d(14)

where tanh(.) is defined as in (11). The remaining parts of
the algorithm remain unchanged and the velocity vector as
well as position vector in the XOR BGSA are updated as (8)
and (12), respectively. The flowchart of the proposed binary
optimization method is depicted in Fig. 1.

A. Analysis of proposed binary optimization algorithm

In this section, the proposed BGSA is analysed to show
that the previous problems mentioned in the analysis part of
BGSA do not exist any more. Similar to BGSA, in the case of



proposed algorithm, since the parameter X, (t), k =1,...,N
only accept binary values of zero and one, the subtraction
X;j(t) — X;(t) in each dimension may have one of four
possible conditions.

1,2) If X£() =X (t) =0 or X[ (©) =Xf(t) =1, in
these cases X[(t) @ X/(t) = —1. According to (13), in
these cases negative acceleration occurs for the dimension k
which is quite desirable as it decreases the probability of
change.

3) In the case X/(t) = 1, X[(t) = 0, X[(t) ® X[(t) =
1 the desired condition is that a positive acceleration which
increases the value of velocity vector and consequently
results in higher probability of change.

4) In the case when X]-k(t) =0, Xk@) =1, X]-k(t) &)
Xk¥(t) = 1. Similar to the previous case, this term contributes
a positive value to the acceleration term and would result in
higher change probability. This is highly desirable as the bit
in the correponding value of bit in better particle is different
than that of current particle. Hence change needs to be
accelerated.

Hence in the case of XOR BGSA, the problems visited in
the previous version of BGSA do not exist any more.

V. SIMULATION RESULTS

A. Implementation of XOR BGSA on various benchmark
examples

The proposed XOR BGSA is implemented on binary
minimization of several benchmark problems. In all of
simulations, 20 bits are used to decode numerical values into
binary domain. The number of solutions considered
(population size) are selected as to be equal to 50, maximum
number of generations are selected to be equal to 1000. The
results obtained using the proposed XOR BGSA are
compared with that of BGSA [12], NBPSO [13], IBPSO [14]
and BPSO [11].

The considered optimization problems are a collection of
functions with single optimum problem and functions with
multiple local optimums. In these instances, while function
number 1 has a single global optimum, function number 6
suffers from multiple local minimums. On the other hand,
although function number 10 has a single global minima, the
function changes far from the global optimum are very small
making it hard to find its global minima. The parameter N
represents the dimension of these optimization problems
which is considered to be equal to 3, 5 and 10 to test the
optimization algorithms for different dimensions. These
dimensions are multiplied by the number of bits taken for
decoding real values, which results in optimization in 60,
100 and 200 dimensional space. The mathematical formula
for the test functions are as:

(X)) =3, xf (15)

fo(X) = L, ix? (16)

X)) =2N (G —xP)?P+ A —x)*  (17)
f(X) =10.N + YN, x? — 10cos(2nx;)  (18)

fs(X) = = XLy xsin(f1x]) (19)
foX) = oy 2 + T cos (“2F2) +1(20)
£ = 3N, |xl* 1)

fe(X) = —20exp (%w/ N xlz) +20 + exp(1)

+exp (% N cos(cxi)) (22)
fo(X) = = XN, sin(x)(sin(ix?/m))*°  (23)
— _y'30 1
flO(X) - i=1 Z;y:l (xj_aij)2+cj (24)
where:
a1=¢=1a,=¢c=2 a3=¢c=3
A =C, =4, a5 =c5 =5 (25)

The optimization results are presented in Table II,
optimization in each case are repeated 10 times and the mean
values are reported in tables. It can be seen that the proposed
optimization algorithm performs well in optimizing unimodal
as well as multi modal optimization problems. Overall table
illustrates that XOR BGSA generally outperforms most of
other optimization algorithms. In the cases when it is not the
best optimization algorithm, it is still very close to the desired
results and often outperforms the others.

TABLE II COMPARISON RESULTS FOR MINIMIZING SOME
BENCHMARK OPTIMIZATION PROBLEM

D XOR BGSA NBPSO IBPSO BPSO

BGSA [12] [13] [14] [11]

f1 3 | 273e-10 | 2.73e-10 | 2.73e-10 | 0.022604 | 0.083856
f2 3 4.51e-30 4.51e-30 4.51e-30 5.79e-09 8.35e-08
3 3 1.6053 0.44184 | 0925724 | 41.76314 | 2.387039
f4 3 1.4754 0.458256 5.41e-08 4.28478 2.798389
f5 3 | -11.8285 | -11.8336 | -11.8267  -11.8108 | -11.8153
f6 3 1.3472 1.344182 1.344182 1.346191 1.348781
f7 3 9.10e-11 9.10e-11 9.10e-11 0.108468 0.025637
18 3 | -38.2848 | -38.3066 | -38.3066 & -37.9596 & -37.9904
f9 3 -2.73276 -2.87440 -2.93843 -2.53957 -2.57601
f10 3 | -4.9265 -5.00000 | -5.00000 & -4.64909 | -4.90473
f1 5 4.55e-10 1.20e-06 1.20e-06 0.648581 2.397748
f2 5 7.47e-49 7.47e-49 5.63e-40 3.41e-12 8.47e-06
f3 5 66.9187 2.552033 3.938883 161.9952 249.0183
4 5 5.9657 1.989918 | 0.497177 | 13.55983 26.4738
f5 5 | -19.6977 | -19.7242 | -19.6962 -19.396 | -19.2005
f6 5 1.2804 1.273324 1.272846 1.288415 1.28603
f7 5 | 9.0e-11 | 9.0e-11 | 1.78e-10  2.092338 2.80811
f8 5 -24.2369 -24.2549 -24.2356 -23.8808 -23.2707
f9 5 | -4.4281 469137 | -4.76623  -4.07088 | -2.92115
f10 5 -1.8449 -2.00000 -1.99984 -1.61175 -1.73352
f1 10 | 9.09e-10 | 7.98e-02 | 0.054912 = 12.77626 | 28.04486
f2 10 1.41e-94 3.13e-86 3.08e-34 1.68e-05 24.49671
f3 10 83.8356 16.98277 30.5305 4663.245 21640.31
4 10 | 258926 | 5.579333 | 17.68303 61.1481 109.696
f5 10 -39.4067 -39.4207 -39.3882 -37.7965 -31.9411
f6 10 1.2112 1197717 | 1204262 | 1.233218 | 1.264858
f7 10 9.10e-11 9.10e-11 1.72e-04 1222.224 856.3973
8 10 -13.5442 -13.5509 -13.5343 -12.2016 -11.0112
f9 10 -8.5318 -9.28633 -7.74886 -5.72851 -3.78485
f10 | 10 | -0.8714 -1.00000 | -0.95560 | -0.63312 | -0.44705

B. Implementation of XOR BGSA on knapsack problem
(MKP)

For the second class of optimization problem the knapsack
problem is considered. In the knapsack problem, it is
desirable to maximum the profit while the capacity for
resources is limited. Example applications of knapsack
problem are databases in a distributed computer system,



project selection, cargo loading, and cutting stock problems
[15]. The problem is formulated in an explicit way as:

f(x) = max Yi., pix;
st X <C,j=1,..,m
x; € {0,1} Vi € {1, ...,n} (26)

where n is the number of items, m is the number of
constrains, p; = 0 represents the profit value for each item,
resource consumption is expressed by 7;; and the capacity is
denoted by C;. The constrained optimization problem can be
converted to unconstrained one as:

fx) =Xk, pixi + B X1y XLy min(C; — 1i;x;,0)(27)

where the parameter [ is penalty coefficient considered to be
equal to 101°. There exist several databases for knapsack
optimization problem which specify some values for p;’s,
C;’s and 13;’s. Among them weing [16] and weish [17] are
selected for performance comparison of the proposed XOR
BGSA approach with existing optimization algorithms in
literature. The number of particles taken for swarms are
selected to be equal to 50 with maximum number of iteration
selected equal to 1000.

TABLE IIL COMPARISON RESULTS FOR MAXIMIZING KNAPSACK
PROBLEM WITH WEIGHTS SELECTED AS WEING [17]
D  Proposed  BGSA[13]  NBPSO IBPSO PSO [7]
BGSA 18] [16]
weingl 28 139580 139891.1 134389.7 | 127604.3 136823.1
weing2 28 125255 126077.6 117380.6 | 103826.5 120795.3
weing3 28 92425 78883.3 72343 61822.1 80410.4
weingd 28 112142.3 115346.3 105057.1 99356.4 110500.5
weing5 28 94144 90822.5 80585.5 62798.6 87978.7
weing6 28 | 128372.7 126995.3 120242.9 | 109656.4 121342.8
weing7 28 1077578 1082671 1016653 | 913986.3 889170.2
weing8 28 | 4389217 455145.8 255033.7 | -3.7E+12 “T1E+12
TABLE IV. COMPARISON RESULTS FOR MAXIMIZING KNAPSACK
PROBLEM WITH WEISH [17] PARAMETER VALUES
D  Proposed BGSA[13]  NBPSO IBPSO BPSO [7]
BGSA 18] [16]
weish01 30 4486.0 4261 3665.1 3640.6 3903.3
weish02 30 4437.0 4370.2 3822.4 3266.1 3969.7
weish03 30 4070.7 3865.8 2887.4 2905.1 3402.8
weish04 30 4542.3 4048.3 2984.7 2683.8 3099
weish05 30 4173.0 3693.1 2565.1 2391.5 2973.2
weish06 40 5458.3 5285.9 4364 4271.8 4612.2
weish07 40 53343 5111.6 3813.7 3621 4600.6
weish08 40 5410.3 5422.6 4296.2 4228.7 4676.1
weish09 40 5095.0 4880.6 2768.9 2872.7 35283
weish10 50 6095.7 5692.1 3389.7 3551.2 3496.7
weish11 50 5201.7 4848 2564.4 3.5e+11 S5.4etl1
weish12 50 5975.7 5637.1 3406 -7e+09 3371.8
weish13 50 5883.3 5646.9 2852.7 3040.9 3208.4
weish14 60 6279.3 6153.2 3744.8 -letll -7.1e+10
weish15 60 6822.7 6471.6 33285 -3.8e+10 2e+1l
weish16 60 7033.0 6517.4 3892.9 4191.5 4131.9
weish17 60 8546.3 8421.5 6706.5 71315 7101.7
weish18 70 9087.6 9121.3 6515.3 7262 7046.6
weish19 70 7017.3 6611.4 33282 -1.7e+11 -7.7e+11
weish20 70 8985.0 8556.4 5960.3 5606 5699.6
weish21 70 8394.7 7948.5 4525.6 4691.1 4674.6
weish22 80 8467.7 7489.1 3937.2 4917.3 -9.6e+10
weish23 80 7542.7 6932.2 3710.5 4.7e+11 “L4e+12
weish24 80 9826.0 9674.5 6997.2 7434.3 7677.6
weish25 80 9386.0 8842.2 5621.8 6023 5518
weish26 90 8572.3 7647.9 4767.2 -5.6e+10 -9.7e+11
weish27 90 8683.7 8021.3 4860.1 5081.3 -6.5¢+11
weish28 90 8276.6 7855.5 4592.1 -73e+11 -1.9¢+12
weish29 90 8586.0 7687.7 4789.6 44e+ll -1.9¢+12
weish30 90 107283 10304.8 7097.8 7104.5 7459.9

Tables III and IV summarize the results with D being the
dimension of the problem and best results made boldfaced.
The experiments are repeated 10 times and mean values are
reported. Tables III and IV show that the proposed

optimization algorithm outperform other binary optimization
algorithms specially in cases when the dimension of the cost
function is high. It is further observed that in the cases when
it does not obtain the best results, the ranking of the proposed
algorithm is rwo within studied algorithms.

VI. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In this paper, the binary version of GSA has been
analysed and some of the cases for which its probability
update rule did not behave as expected are discussed. Based
on this analysis, a novel version for BGSA is proposed that
benefits from an acceleration term with an XOR operator.
Analysis shows that such modification can alleviate the
shortcomings of BGSA in that in the proposed algorithm
particles stochatically approach best particles in all cases. The
proposed XOR BGSA is compared with a number of other
optimization algorithms on the optimization of number of
unimodal and multimodal optimization problems as well as
optimizing knapsack problems. It is shown that results
obtained using the proposed algorithm outperform BGSA
[12], NBPSO [13], IBPSO [14] and BPSO [11] techniques.
Hence the modification proposed in this paper will perform
well in binary optimization problems.

B. Future Works

In a flexible manufacturing system, automatic task
planning of production elements including robots is required
to be done automatically in an efficient and minimum time.
As a future work, inspired by appreciable results obtained in
this paper, the proposed optimization algorithm will be
utilized in the task planning of an assembly application. The
assembly task to be optimized will include pick and place of
objects, such as fastening nuts and bolts, and a sealing
operation. The order of performing basic tasks in this process
will be important, resulting in a constrained optimization
problem.
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