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Abstract

We consider an SIR (susceptible → infective → recovered) epidemic in a closed

population of size n, in which infection spreads via mixing events, comprising

individuals chosen uniformly at random from the population, which occur at

the points of a Poisson process. This contrasts sharply with most epidemic

models, in which infection is spread purely by pairwise interaction. A sequence

of epidemic processes, indexed by n, and an approximating branching process

are constructed on a common probability space via embedded random walks.

We show that under suitable conditions the process of infectives in the epidemic

process converges almost surely to the branching process. This leads to a

threshold theorem for the epidemic process, where a major outbreak is defined

as one that infects at least logn individuals. We show further that there exists

δ > 0, depending on the model parameters, such that the probability a major

outbreak has size at least δn tends to one as n→ ∞.
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1. Introduction

A key component of any epidemic model is the assumption made concerning trans-

mission of infection between individuals. In almost all epidemic models it is assumed

that infection spreads via interactions of pairs of individuals, one of whom is infec-

tive and the other susceptible. In some epidemic models, such as network models

(e.g. Newman [15]), this assumption is explicit, whereas in others, such as the so-

called general stochastic epidemic (e.g. Bailey [1], Chapter 6) and many deterministic

models, it is implicit. In the general stochastic epidemic, the process of the numbers of

susceptible and infective individuals, {(S(t), I(t)) : t ≥ 0}, is modelled as a continuous-

time Markov chain with infinitesimal transition probabilities

P((S(t+ ∆t), I(t+ ∆t)) = (s− 1, i+ 1)|(S(t), I(t)) = (s, i)) = βsi∆t+ o(∆t),

P((S(t+ ∆t), I(t+ ∆t)) = (s, i− 1)|(S(t), I(t)) = (s, i)) = γi∆t+ o(∆t),

and all other transitions having probability o(∆t). Here, β is the individual-to-individual

infection rate and γ is the recovery rate. However, it is probabilistically equivalent to

a model in which the infectious periods of infectives follow independent exponential

random variables having mean γ−1 and contacts between distinct pairs of individuals

occur at the points of independent Poisson processes, each having rate β.

In real-life epidemics, people often meet in groups of size larger than two and in

many countries one of the most significant control measures in the Covid-19 pandemic

was to impose limits on the size of gatherings outside of the home. In Cortez [8] and

Ball and Neal [5], the authors independently introduced a new class of SIR (susceptible

→ infective → recovered) epidemic model, in which mixing events occur at the points

of a Poisson process, with the sizes of successive mixing events being independently

distributed according to a random variable having support contained in {2, 3, . . . , n},

where n is the population size. Mixing events are instantaneous and at a mixing event

of size c, each infective present contacts each susceptible present independently with

probability πc and a susceptible becomes infected if they are contacted by at least one

infective. Such an infected susceptible immediately becomes infective, although they

cannot infect other susceptibles at the same mixing event, and remains so for a time

that follows an exponential distribution with mean γ−1. In Cortez [8] and Ball and
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Neal [5], the temporal behaviour of epidemics with many initial infectives is studied,

with [8] considering the mean-field limit of the stochastic epidemic process. In Ball and

Neal [5], the focus was on a functional central limit theorem for the temporal behaviour

of epidemics with many initial infectives and central limit theorems for the final size

of (i) an epidemic with many initial infectives and (ii) an epidemic with few initial

infectives that becomes established and leads to a major outbreak. A branching process

which approximates the early stages of an epidemic with few initial infectives was

described in [5], though no rigorous justification was provided. A key result required

in the proof of the central limit theorem for the final size in case (ii) above, is that

there exists δ > 0 (which depends on model parameters) such that the probability that

an epidemic infects at least a fraction δ of the population, given that it infects at least

log n individuals, converges to one as the population size n → ∞. This result was

simply stated without a proof in [5]. The aim of the present paper is to fill these gaps

for a model that allows more general transmission of infection at mixing events than

that considered in [5].

Approximation of the process of infectives in an epidemic model by a branching

process has a long history that goes back to the pioneering work of Bartlett [7], pp. 147-

148, and Kendall [12], who considered approximation of the number of infectives in the

general stochastic epidemic by a linear birth and death process, with birth rate βN and

death rate γ, where N is the initial number of susceptibles. It leads to the celebrated

threshold theorem (Whittle [17] and Williams [18]), arguably the most important result

in mathematical epidemic theory. The approximation was made fully rigorous by

Ball [2] (c.f. Metz [13]), who defined realisations of the general stochastic epidemic,

indexed by N , with the N th epidemic having infection rate βN−1 and recovery rate

γ, and the limiting birth-and-death process on a common probability space and used

a coupling argument to prove almost sure convergence, as N → ∞, of the epidemic

process to the limiting branching process over any finite time interval [0, t]. The method

was extended by Ball and Donnelly [3] to show almost sure convergence over suitable

intervals [0, tN ], where tN →∞ as N →∞.

The key idea of Ball [2] is to construct a realisation of the epidemic process for

each N from the same realisation of the limiting branching process. Moreover, this

coupling is done on an individual basis, in that the behaviour of an infective in the
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N th epidemic model is derived from the behaviour of a corresponding individual in the

branching process. The method is very powerful and applicable to a broad range of

epidemic models. However, it cannot be easily applied to epidemics with mixing groups

because the mixing groups induce dependencies between different infectives. Thus

instead, we generalise the method of Ball and O’Neill [6], which involves constructing

sample paths of the epidemic process, indexed by the population size n, and the

limiting branching process (more precisely, the numbers of infectives in the epidemic

processes and the number of individuals in the branching process) via a sequence of

i.i.d. (independent and identically distributed) random vectors. The generalisation is

far from straightforward since Ball and O’Neill [6] consider only epidemics in which the

number of infectives changes in steps of size 1, as in the general stochastic epidemic,

whereas in the model with mixing events although the number of infectives can only

decrease in steps of size 1, it can increase in steps of any size not greater than the

population size n. We improve on the coupling given in [6] by coupling the time of

events in the limiting branching process and epidemic processes, so that the event

times agree with high probability, tending to 1 as the population size n → ∞, rather

than having the event times in the epidemic processes converge in the limit, as the

population size n → ∞, to the event times of the branching process. Finally, we use

the coupling to prove the above-mentioned result concerning epidemics of size at least

log n, which was not addressed in [6].

The remainder of the paper is structured as follows. The model with mixing groups

E(n) is defined in Section 2. The approximating branching process B and the main

results of the paper are given in Section 3. The branching process B is described

in Section 3.1, where some of its basic properties are presented. The offspring mean

of B yields the basic reproduction number R0 of the epidemic E(n). The extinction

probability and Malthusian parameter of B are derived. The main results of the paper

are collected together in Section 3.2. Theorem 3.1 shows that the number of infectives

in the epidemic process E(n) converges almost surely to the number of individuals alive

in the branching process B on [0, tn) as n→∞, where tn =∞ in the case the branching

process goes extinct and tn = ρ log n for some ρ > 0 otherwise. A major outbreak is

defined as one that infects at least log n individuals. Theorem 3.2 (a) shows that the

probability of a major outbreak converges to the survival probability of B as n→∞.
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Theorem 3.2 (b) shows that if R0 > 1, so a major outbreak occurs with non-zero

probability in the limit n→∞, then there exists δ > 0 such that the probability that

a major outbreak infects at least a fraction δ of the population tends to one as n→∞.

Moreover, we show that there exists δ′ > 0 such that the fraction of the population

infectious at the peak of the epidemic exceeds δ′ with probability tending to one as

n→∞. The proofs of Theorems 3.1 and 3.2 are given in Sections 4 and 5, respectively.

Brief concluding comments are given in Section 6.

2. Model

We consider the spread of an SIR epidemic in a closed population of n individuals,

with infection spread via mixing events which occur at the points of a homogeneous

Poisson process having rate nλ. The sizes of mixing events are independent and iden-

tically distributed according to a random variable C(n) having support {2, 3, . . . , n}.

If a mixing event has size c then it is formed by choosing c individuals uniformly at

random from the population without replacement. Suppose that a mixing event of

size c involves i susceptible and j infective individuals, and hence c − i − j recovered

individuals. Then, the probability that w new infectives are created at the event is

πc(w; i, j). The only restrictions we impose on πc(w; i, j) are the natural ones that,

for w > 0, πc(w; i, 0) = 0, infections can only occur at a mixing event if there is at

least one infective present, and for w > i, πc(w; i, j) = 0, the maximum number of new

infectives created at a mixing event is the number of susceptibles involved in the event.

Mixing events are assumed to be instantaneous. The infectious periods of infectives

follow independent Exp(γ) random variables, i.e. exponential random variables having

rate γ and hence mean γ−1. There is no latent period, so newly infected individuals

are immediately able to infect other individuals. (The possibility of them being able

to infect other susceptibles during the mixing event at which they were infected can

be incorporated into the πc(w; i, j).) All processes and random variables in the above

model are mutually independent. The epidemic starts at time t = 0 with mn infective

and n −mn susceptible individuals, and terminates when there is no infective left in

the population. Denote this epidemic model by E(n).
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2.1. Special cases

2.1.1. General stochastic epidemic If all mixing groups have size 2, i.e. P(C(n) =

2) = 1, and πc(0; 1, 1) = πc(1; 1, 1) = 1
2 , the model reduces to the general stochastic

epidemic, with individual-to-individual infection rate β = λ
n−1 and recovery rate γ.

2.1.2. Binomial sampling The models studied in Cortez [8] and Ball and Neal [5] make

the Reed-Frost type assumption that at a mixing event of size c, each infective present

has probability πc of making an infectious contact with any given susceptible present,

with all such contacts being independent. This corresponds to

πc(w; i, j) =

(
i

w

)(
1− (1− πc)j

)w
(1− πc)j(i−w) (w = 0, 1, . . . , i).

3. Approximating branching process and main results

3.1. Approximating branching process

We approximate the process of infectives in the early stages of the epidemic E(n) by

a branching process B, which assumes that every mixing event which includes at least

one infective is comprised of a single infective in an otherwise susceptible group. In the

epidemic E(n), the probability that a given mixing event of size c involves a specified

individual, i∗ say, is c
n , so mixing events that include i∗ occur at rate

λn

n∑
c=2

p
(n)
C (c)

c

n
= λµ

(n)
C , (3.1)

where p
(n)
C (c) = P(C(n) = c) (c = 2, 3, . . . , n) and µ

(n)
C = E[C(n)]. Further, the

probability that a given mixing event is of size c given that it includes i∗ is

p
(n)
C (c) cn∑n

c′=2 p
(n)
C (c′) c

′

n

=
cp

(n)
C (c)

µ
(n)
C

(c = 2, 3, . . . , n).

Suppose that C(n) D−→ C as n→∞, where
D−→ denotes convergence in distribution

and pC(c) = P(C = c) (c = 2, 3, . . . ), and µ
(n)
C → µC =

∑∞
c=2 cpC(c), which we assume

to be finite. Thus in the limit as n → ∞, mixing events involving i∗ occur at rate

λµC and the size of such a mixing event is distributed according to C̃, the size-biased

version of C, having probability mass function

pC̃(c) = P(C̃ = c) =
cpC(c)

µC
(c = 2, 3, . . . ). (3.2)
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We assume that the initial number of infectives mn = m for all sufficiently large n, so

the branching process B has m ancestors.

In B, a typical individual, i∗ say, has lifetime L ∼ Exp(γ), during which they have

birth events at rate λµC . Let Z̃1, Z̃2, . . . denote the number of offspring i∗ has at

successive birth events. A birth event corresponds to a mixing event involving a single

infective in an otherwise susceptible group in the epidemic. Thus, Z̃1, Z̃2, . . . are i.i.d.

copies of a random variable Z̃, with P(Z̃ = w) = ϕw (w = 0, 1, . . . ), where

ϕw =

∞∑
c=w+1

pC̃(c)πc(w; c− 1, 1) =
1

µC

∞∑
c=w+1

cpC(c)πc(w; c− 1, 1), (3.3)

using (3.2). Note that an individual may produce no offspring at a birth event. The

number of birth events a typical individual has during their lifetime, G say, has the

geometric distribution

P(G = k) =
γ

γ + λµC

(
λµC

γ + λµC

)k
(k = 0, 1, . . . ). (3.4)

Let R be the total number of offspring a typical individual has during their lifetime.

Then,

R =

G∑
i=1

Z̃i, (3.5)

where G, Z̃1, Z̃2, . . . are independent and the sum is zero if G = 0.

The basic reproduction number R0 = E[R]. Hence, using (3.5) and (3.4),

R0 = E[G]E[Z̃] =
λµC
γ

∞∑
w=1

w

µC

∞∑
c=w+1

cpC(c)πc(w; c− 1, 1)

=
λ

γ

∞∑
c=2

cpC(c)

c−1∑
w=1

wπc(w; c− 1, 1)

=
λ

γ
E[Cν(C)], (3.6)

where

ν(c) =

c−1∑
w=1

wπc(w; c− 1, 1) (3.7)

is the mean number of new infectives generated in a mixing event of size c with one

infective and c− 1 susceptibles. Again using (3.5) and (3.4), the offspring probability-

generating function for the branching process B is

fR(s) = E[sR] =
γ

γ + λµC (1− fZ̃(s))
,
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where fZ̃(s) =
∑∞
w=0 ϕws

w. By standard branching process theory, the extinction

probability z of B given that initially there is one individual, is given by the smallest

solution in [0, 1] of fR(s) = s. Further, z < 1 if and only if R0 > 1.

Let r denote the Malthusian parameter of B, see Jagers [11], page 10, for details.

The mean rate an individual produces offspring t time units after their birth is P(L >

t)λµCE[Z̃1] = γe−γtR0 (t > 0), so r is the unique solution in (0,∞) of∫ ∞
0

e−rtγe−γtR0 dt = 1,

whence

r = γ(R0 − 1). (3.8)

Note that r depends on the parameters of the epidemic model only through (R0, γ).

Thus, if R0 and γ are held fixed, then the Malthusian parameter is the same for all

corresponding choices of the distribution of C and {πc(w; i, j)}. In particular, under

these conditions, the early exponential growth of an epidemic that takes off is the same

as that of the general stochastic epidemic.

3.2. Strong convergence of epidemic processes

In this section we consider a sequence of epidemics (E(n)), in which mn = m for

all sufficiently large n, and state results concerned with convergence of the process of

infectives in the epidemic process E(n) to the branching process B as n→∞ that are

proved in Section 4. The usual approach to proving such results is based upon that of

Ball [2] and Ball and Donnelly [3], in which the sample paths of the epidemic process for

each n are constructed from those of the limiting branching process, B. As noted in the

introduction, that approach is not easily implemented in the present setting because

the mixing groups induce dependencies between different infectives, so we generalise the

method in Ball and O’Neill [6] and construct sample paths of the epidemic processes and

the limiting branching process, B, from a sequence of i.i.d. random vectors defined on

an underlying probability space (Ω,F ,P). The construction is described in Section 4.

For t ≥ 0, let S(n)(t) and I(n)(t) be the numbers of susceptibles and infectives,

respectively, at time t in E(n). Let T (n) = n−S(n)(∞) be the total size of the epidemic

E(n), i.e. the total number of individuals infected during its course, including the initial

infectives. For t ≥ 0, let I(t) be the number of individuals alive at time t in B and let
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T be the total size of the branching process B, including the m ancestors. Note that

whereas T (n)(ω) <∞ for all ω ∈ Ω, T (ω) =∞ if the branching process B(ω) does not

go extinct.

Throughout the remainder of the paper we assume that mn = m and µ
(n)
C ≤ µC

for all sufficiently large n. The assumption µ
(n)
C ≤ µC simplifies the presentation of

certain results, in particular, Lemma 4.2, and holds in the most common cases; (i) C

has finite support {2, 3, . . . , n0} and for n ≥ n0, C(n) = C, (ii) C(n) = min{C, n} and

(iii) C(n) D= C|C ≤ n. We also assume throughout that C(n) D−→ C and E[(C(n))2]→

E[C2] < ∞ as n → ∞. For Theorem 3.1 (b) and Theorem 3.2, we require additional

conditions on C(n) and C, namely that

lim
n→∞

E[C(n)(C(n) − 1)ν(C(n))] = E[C(C − 1)ν(C)] <∞, (3.9)

and that there exists θ0 > 0 such that

lim
n→∞

nθ0
∞∑
c=2

c
∣∣∣p(n)C (c)− pC(c)

∣∣∣ = 0. (3.10)

Note that E[(C(n))3]→ E[C3] <∞ as n→∞ is a sufficient condition for (3.9) to hold.

Also, in the three common cases for constructing C(n) from C listed above, (3.10) holds

for any 0 < θ0 < α, for which E[C1+α] <∞. (For case (i), this is immediate. For cases

(ii) and (iii), the proof is similar to that of (A1) in the Supplementary Information of

Ball and Neal [5].)

Theorem 3.1. Under the stated conditions on C(n), there exists a probability space

(Ω,F ,P) on which are defined a sequence of epidemic models, E(n) indexed by n and

the approximating branching process, B, with the following properties.

Denote by Aext the set on which the branching process B becomes exinct:

Aext = {ω ∈ Ω : T (ω) <∞} .

(a) Then, as n→∞,

sup
0≤t<∞

|I(n)(t)− I(t)| → 0

for P-almost ω ∈ Aext.
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(b) Suppose that (3.9) holds and (3.10) holds for some θ0 > 0. Then, if there

exists α ≥ 1 such that E[Cα+1] <∞, we have for

0 < ρ <
1

r
min

{
αθ0

2(1 + α)
,

α

2 + 4α

}
(3.11)

as n→∞,

sup
0≤t≤ρ logn

|I(n)(t)− I(t)| → 0 (3.12)

for P-almost ω ∈ Acext.

The proof of Theorem 3.1 is presented in Section 4.

Note that ρ given in (3.11) satisfies ρ < (4r)−1 and thus Theorem 3.1 (b) is weaker

than [3], Theorem 2.1, (2.2), where (3.12) is shown to hold for ρ < (2r)−1 in the

standard pairwise mixing epidemic model. The following corollary of Theorem 3.1

concerns the final size of the epidemic.

Corollary 3.1. For (Ω,F ,P) defined in Theorem 3.1, we have for P-almost all ω ∈ Ω,

lim
n→∞

T (n)(ω) = T (ω).

Corollary 3.1 shows that for large n, the final size of the epidemic E(n) can be

approximated by the total size of B. This leads to a threshold theorem for the epidemic

process E(n) by associating survival (i.e. non-extinction) of the branching process B

with a major outbreak in the epidemic process E(n) (cf. Ball [2], Theorem 6, and Ball

and Donnelly [3], Corollary 3.4). It then follows that a major outbreak occurs with

non-zero probability if and only if R0 > 1, and the probability of a major outbreak

is 1 − zm. However, for practical applications it is useful to have a definition of a

major outbreak that depends on n. We say that a major outbreak occurs if and only

if T (n) ≥ log n.

Theorem 3.2. Suppose that (3.9) holds and (3.10) holds for some θ0 > 0.

(a) Then

P(T (n) ≥ log n)→ 1− zm as n→∞. (3.13)

(b) If also R0 > 1 and there exists α > 1 such that E[C1+α] < ∞, then there exists

δ > 0 such that

P(T (n) ≥ δn|T (n) ≥ log n)→ 1 as n→∞. (3.14)
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The proof of Theorem 3.2 is presented in Section 5.

Theorem 3.2(b) implies that a major outbreak infects at least a fraction δ of the

population with probability tending to one as n → ∞. However, δ depends on the

parameters of the epidemic E(n) and can be arbitrarily close to 0. An immediate

consequence of the proof of Theorem 3.2(b) is Corollary 3.2 that, in the limit as n→∞,

there exists δ′ > 0 such that in the event of a major epidemic outbreak the proportion

of the population infectious at the peak of the epidemic exceeds δ′.

Corollary 3.2. Under the conditions of Theorem 3.2 (b), there exists δ′ > 0 such that

P

(
sup
t≥0

∣∣∣∣I(n)(t)n

∣∣∣∣ ≥ δ′∣∣∣∣T (n) ≥ log n

)
→ 1 as n→∞. (3.15)

A central limit theorem for the total size T (n) in the event of a major outbreak is

given in Ball and Neal [5], for the special case of binomial sampling (Section 2.1.2), by

using the theory of (asymptotically) density dependent population processes (Ethier

and Kurtz [10], Chapter 11, and Pollett [16]) to obtain a functional central limit

theorem for a random time-scale transformation of {(S(n)(t), I(n)(t)) : t ≥ 0} and

hence a central limit theorem for the number of susceptibles when the number of

infectives reaches zero, via a boundary crossing problem. As noted in the introduction,

Theorem 3.2 (b) is a key step in the proof of the above central limit theorem, though

the result was only stated in [5]. A similar central limit theorem for T (n) is likely to

hold for our more general model, although details will be messy unless πc(w; i, j) takes

a convenient form.

4. Proof of Theorem 3.1

4.1. Overview

We present an overview of the steps to prove Theorem 3.1. We construct on a

common probability space the Markovian branching process B and the sequence of

epidemic processes (E(n)), in which we equate infection and removal events in the

epidemic process, E(n), with birth and death events, respectively, in the branching

process, B. Given that at time t ≥ 0, there are the same number of infectious

individuals in the epidemic process E(n) as the number of individuals alive in the

branching process B, the removal rate in E(n) is equal to the death rate in B. For
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k = 0, 1, . . ., the rate at which an infection event occurs which generates k new

infections in E(n) will depend upon the state of the population (number of susceptibles

and infectives) and during the early stages of the epidemic this rate will be close to,

but typically not equal to, the rate at which a birth event resulting in k new individuals

occurs in B. Therefore, we look to bound the difference between the infection rate in

E(n) and the birth rate in B in order to establish a coupling between the two processes.

A useful observation is that in the epidemic processes E(n) (the branching process

B) the number of infectives and susceptibles (the number of individuals alive) are

piecewise constant between events, where an event is either a mixing event or a recovery.

Therefore, in Section 4.2, we define embedded discrete-time jump processes for E(n)

and B, for the number of infectives (and susceptibles) and the number of individuals

alive after each event. In the case of B the embedded discrete-time jump process is a

random walk. Then, in Section 4.3, we provide a bound on the rate of convergence to 0

of the difference between the infection rate in E(n) and the birth rate in B in Lemma 4.1,

which is applicable during the early stages of the epidemic when only a few individuals

have been infected. Lemma 4.1 enables us to construct the embedded discrete-time

jump processes defined in Section 4.2 on a common probability space (Section 4.4)

and provide an almost sure coupling between the discrete-time processes during the

initial stages of the epidemic (Section 4.5). That is, we couple the outcome of the

kth (k = 1, 2, . . .) events in E(n) and B so that the type of event birth (infection) and

death (removal) match and in the case of birth/infection the same numbers of births

and infections occur. Once we have established an almost sure agreement between

the types of events that have occurred in the epidemic and branching processes, it is

straightforward to provide an almost sure coupling of the timing of the events. The key

couplings are drawn together in Lemma 4.2 from which Theorem 3.1 follows almost

immediately. Finally, we consider the total sizes of the epidemic processes E(n) and

the branching process B and provide a proof of Corollary 3.1.

4.2. Embedded random walk

Let the random walk R be defined as follows. Let Yk denote the position of the

random walk after k steps, with Y0 = m > 0. For k = 1, 2, . . ., let Yk = Yk−1 + Zk,
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where Z1, Z2, . . . are i.i.d. with probability mass function

P (Zk = w) =


βϕw

γ+β w = 0, 1, . . .

γ
γ+β w = −1

0 otherwise,

(4.1)

where β = λµC and ϕw is defined as in (3.3). Thus upward (downward) steps in R

correspond to birth (death) events in B. Note that Zk = 0 is possible corresponding

to a step with no change in the random walk (a birth event with no births in B).

For k = 1, 2, . . ., let ηk denote the time of the kth event in B with η0 = 0, then we

can construct R from B by setting Yk = I(ηk), where I(t) (t ≥ 0) is the size of the

population of B at time t. Note that if I(ηk) = 0, the branching process has gone

extinct and Yk = 0, the random walk has hit 0. We can continue the construction of

the random walk after the branching process has gone extinct using Yk = Yk−1+Zk but

our primary interest is in the case where the two processes are positive. Conversely, we

can construct B from R by, in addition to {Yk} = {Yk : k = 0, 1, . . . }, using a sequence

of i.i.d. random variables V1, V2, . . ., where Vk ∼ Exp(1). (Throughout the paper,

discrete time processes are assumed to have index set Z+ unless indicated otherwise.)

For k = 1, 2, . . .,

ηk = ηk−1 +
Vk

(γ + β)Yk−1
,

and for any ηk ≤ t < ηk+1, set I(t) = Yk. Note that ηk =∞ if Yk−1 = 0, corresponding

to the branching process going extinct with I(t) = 0 for all t ≥ ηk−1. Finally, note

that E[Z1] < 0, = 0 or > 0 if and only if R0 < 1, = 1 or > 1.

We turn to the sequence of epidemic processes, (E(n)), and for each E(n), an asso-

ciated discrete-time epidemic jump process S(n). Let Q
(n)
c (i, j|x, y) denote the prob-

ability that a mixing event of size c in a population of size n with x susceptibles and

y infectives (and hence n − x − y recovered individuals) involves i susceptibles and j

infectives (and hence c− i− j recovered individuals). Note that

Q(n)
c (i, j|x, y) =

(
x
i

)
×
(
y
j

)
×
(
n−x−y
c−i−j

)(
n
c

) . (4.2)
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For w = 0, 1, . . ., let q(n)(x, y, w) be such that

q(n)(x, y, w)y = nλ

n∑
c=w+1

p
(n)
C (c)

c−w∑
j=1

c−w−j∑
l=0

{
Q(n)
c (c− j − l, j|x, y)πc(w; c− j − l, j)

}
,

(4.3)

where the indices j and l refer to the numbers of infectives and recovered individuals

involved in the mixing event, respectively. Thus, for w = 1, 2, . . . , x, q(n)(x, y, w)y

denotes the rate at which mixing events occur that create w new infectives within a

population of size n having x susceptibles and y infectives. Hence, q(n)(x, y, w) can be

viewed as the rate at which an infectious individual in a population of size n containing

x susceptibles and y infectives generates w new infectives. Note that q(n)(x, y, 0)y is

the rate at which mixing events occur, which involve at least one infective and create

no new infectives, in a population with x susceptibles and y > 0 infectives.

Recall that, for t ≥ 0, S(n)(t) and I(n)(t) denote respectively the numbers of

susceptibles and infectives at time t in E(n). Since the population is closed, for all t ≥ 0,

n−S(n)(t)− I(n)(t) denotes the number of recovered individuals, and we can describe

the epidemic E(n) in terms of {(S(n)(t), I(n)(t)) : t ≥ 0}, which is a continuous-time

Markov chain on the state space E(n) = {(x, y) ∈ Z2 : x+y ≤ n, 0 ≤ x ≤ n−mn, y ≥ 0}

with transition probabilities

P
(

(S(n)(t+ ∆t), I(n)(t+ ∆t)) = (x− w, y + w)
∣∣∣ (S(n)(t), I(n)(t)) = (x, y)

)
= q(n)(x, y, w)y∆t+ o(∆t), (w = 0, 1, . . . , x) (4.4)

P
(

(S(n)(t+ ∆t), I(n)(t+ ∆t)) = (x, y − 1)
∣∣∣ (S(n)(t), I(n)(t)) = (x, y)

)
= γy∆t+ o(∆t), (4.5)

and all other transitions having probability o(∆t). The events (4.4) and (4.5) corre-

spond to infection of w individuals and recovery of an individual, respectively. The

function q(n) is real-valued with domain a subset of Z+ × Z+ × N. We note that

the epidemic process is invariant to the choice of q(n)(x, y, 0) ≥ 0, so we can define

q(n)(x, y, 0) to satisfy (4.3) with w = 0. Similarly, the epidemic process is invariant

to the choice of q(n)(x, 0, w) as no infections can occur if y = 0, but for coupling

purposes it is useful to define q(n)(x, y, w) = βϕw for y = 0,−1,−2, . . .. Finally, as

noted in Section 4.1, we observe that the recovery rate (4.5) coincides with the death
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rate of the branching process B, so to couple the number of infectives in the epidemic

process E(n) to the number of individuals in the branching process B, we require that

q(n)(x, y, w) ≈ βϕw and q(n)(x, y) =
∑n−1
w=0 q

(n)(x, y, w) =
∑∞
w=0 q

(n)(x, y, w) ≈ β as n

becomes large. (Note that for w > n − 1, q(n)(x, y, w) = 0.) We proceed by making

this precise after describing first the discrete-time epidemic jump process S(n).

For n = 1, 2, . . . and k = 0, 1, . . ., let (X
(n)
k , Y

(n)
k ) denote the state of the jump

process S(n) after the kth event with (X
(n)
0 , Y

(n)
0 ) = (n −mn,mn). For k = 1, 2, . . .,

(x, y) ∈ E(n) and w = 0, 1, . . . , x, let

P
(

(X
(n)
k+1, Y

(n)
k+1) = (x− w, y + w)

∣∣∣ (X(n)
k , Y

(n)
k ) = (x, y)

)
=

q(n)(x, y, w)

γ + q(n)(x, y)
,

P
(

(X
(n)
k+1, Y

(n)
k+1) = (x, y − 1)

∣∣∣ (X(n)
k , Y

(n)
k ) = (x, y)

)
=

γ

γ + q(n)(x, y)
,

with all other transitions having probability 0 of occurring. Letting η
(n)
k denote the

time of the kth event in E(n), with η
(n)
0 = 0, we can construct S(n) from E(n) by setting

(X
(n)
k , Y

(n)
k ) = (S(n)(η

(n)
k ), I(n)(η

(n)
k )). As with the construction of R, we can continue

the construction of S(n) after the kth event with Y
(n)
k = 0, using q(n)(x, y, w) = βϕw

for y = 0,−1,−2, . . .. Conversely, we can construct E(n) from S(n) by in addition

using the sequence of i.i.d. random variables V
(n)
1 , V

(n)
2 , . . ., where V

(n)
i ∼ Exp(1). For

k = 1, 2, . . ., set

η
(n)
k = η

(n)
k−1 +

V
(n)
k[

γ + q(n)(X
(n)
k−1, Y

(n)
k−1)

]
Y

(n)
k−1

, (4.6)

then for any η
(n)
k ≤ t < η

(n)
k+1, set (S(n)(t), I(n)(t)) = (X

(n)
k , Y

(n)
k ). Note that if Y nk−1 =

0, η
(n)
k = ∞ and for all t ≥ η

(n)
k−1, the epidemic has died out with (S(n)(t), I(n)(t)) =

(X
(n)
k−1, 0).

We briefly discuss the choice for V
(n)
k . A simple coupling with the branching process

B would be to set V
(n)
k = Vk, which results in η

(n)
k ≈ ηk if η

(n)
k−1 ≈ ηk−1 and Y

(n)
k−1[γ +

q(n)(X
(n)
k−1, Y

(n)
k−1)] ≈ Yk−1[γ+β]. This is the approach taken in [6] and leads to a slight

mismatch between the event times in E(n) and B, with the mismatch converging to 0 as

n → ∞. Therefore we take an alternative approach which results in there being high

probability of η
(n)
k = ηk, if η

(n)
k−1 = ηk−1 and Y

(n)
k−1 = Yk−1, with the details provided in

Section 4.4.
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4.3. Matching infection rate to birth rate

In this section, we provide bounds on the differences between the rate, q(n)(x(n), y(n), w),

at which events creating w (w = 0, 1, . . .) new infectives occur in E(n) with x(n)

susceptibles and y(n) infectives present in the population, and the rate, βϕw, at which

birth events creating w new individuals occur in B. The bounds on the difference in

rates are appropriate during the early stages of the epidemic process where n − rn ≤

x ≤ n−mn (i.e. whilst fewer than rn individuals have ever been in the infectious state),

for a sequence (rn) satisfying rn →∞ and rn/
√
n→ 0 as n→∞.

In the early stages of the epidemic, when x ≥ n − rn, it is unlikely that a mixing

event will involve more than one non-susceptible individual. Thus we split the double

sum over j and l in (4.3) into the case j = 1 and l = 0, a single infective in an

otherwise susceptible group of size c, and the case j + l ≥ 2, where there is more than

one non-susceptible individual in a mixing event. This gives, for y > 0,

q(n)(x, y, w) =
nλ

y

n∑
c=w+1

p
(n)
C (c)Q(n)

c (c− 1, 1|x, y)πc(w; c− 1, 1)

+
nλ

y

n∑
c=w+1

p
(n)
C (c)

∑
j+l≥2

{
Q(n)
c (c− j − l, j|x, y)πc(w; c− j − l, j)

}
= q

(n)
1 (x, y, w) + q

(n)
2 (x, y, w), say. (4.7)

We consider the two terms on the right-hand side of (4.7). Note that for y ≤ 0, we

set q
(n)
1 (x, y, w) = βϕw and q

(n)
2 (x, y, w) = 0 which is consistent with q(n)(x, y, w) =

βϕw (y = 0,−1, . . .). Also, for w = n, n + 1, . . ., q(n)(x, y, w) = 0, which implies

q
(n)
h (x, y, w) = 0 (h = 1, 2). For h = 1, 2, let q

(n)
h (x, y) =

∑n−1
w=0 q

(n)
h (x, y, w) =∑∞

w=0 q
(n)
h (x, y, w), the sums over w of the two components of q(n)(x, y, w) in (4.7).

Hence, q(n)(x, y) = q
(n)
1 (x, y) + q

(n)
2 (x, y).

Lemma 4.1 provides bounds on the rate of convergence to 0, as n → ∞, of the

difference between the infection rate in the epidemic process and the birth rate in the

branching process, in terms of the number of non-susceptibles in the population (rn)

and the rate of convergence of C(n) to C. Remember that throughout we assume that

C(n) D−→ C and E[(C(n))2] → E[C2] as n → ∞, with E[C2] < ∞; see the conditions

stated before Theorem 3.1 in Section 3.2.

Lemma 4.1. Let (rn) be a sequence of positive real numbers such that rn → ∞ and
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rn/
√
n→ 0 as n→∞.

Let (sn) be a sequence of positive real numbers such that snr
2
n/n→ 0 and

sn

n∑
c=2

c
∣∣∣p(n)C (c)− pC(c)

∣∣∣→ 0 as n→∞. (4.8)

Suppose that (x(n)) and (y(n)) are two sequences such that n− rn ≤ x(n) ≤ n−mn

and 0 < y(n) ≤ rn for all sufficiently large n. Then

sn

∞∑
w=0

∣∣∣q(n)1 (x(n), y(n), w)− βϕw
∣∣∣→ 0 as n→∞ (4.9)

and

∞∑
w=0

sn

∣∣∣q(n)2 (x(n), y(n), w)
∣∣∣ = sn

n−1∑
w=0

∣∣∣q(n)2 (x(n), y(n), w)
∣∣∣→ 0 as n→∞. (4.10)

Consequently, if snr
2
n/n→ 0 as n→∞, then

sn

∣∣∣q(n)(x(n), y(n))− β∣∣∣ = sn

∣∣∣∣∣
∞∑
w=0

{
q(n)(x(n), y(n), w)− βϕw

}∣∣∣∣∣ → 0 as n→∞.

(4.11)

Proof. First, note that, for Q
(n)
c (c − 1, 1|x(n), y(n)) defined in (4.2) and any c =

2, 3, . . .,

Q(n)
c (c− 1, 1|x(n), y(n)) = c

y(n)

n

c−2∏
j=0

x(n) − j
n− 1− j

= c
y(n)

n
+ y(n)ε(n)c (x(n)), (4.12)

where

ε(n)c (x(n)) =
c

n


c−2∏
j=0

x(n) − j
n− 1− j

− 1

 .

For x(n) ≥ n− rn and c ≤ n/2, we have that

1 ≥
c−2∏
j=0

x(n) − j
n− 1− j

=

c−2∏
j=0

(
1− n− 1− x(n)

n− 1− j

)

≥ 1− [n− 1− x(n)]
{

1

n− 1
+

1

n− 2
+ . . .+

1

n− c+ 1

}
≥ 1− [rn − 1]

{
1

n− 1
+

1

n− 2
+ . . .+

1

n− c+ 1

}
≥ 1− [rn − 1]

c− 1

n− c+ 1
≥ 1− 2rn(c− 1)

n
.
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Therefore, for x(n) ≥ n− rn and c ≤ n/2,

− c
n
× 2rn(c− 1)

n
≤ ε(n)c (x(n)) ≤ 0. (4.13)

Note that p
(n)
C (c) = 0 for c > n. Also, using (3.3) and recalling that β = λµC , we

have

λ

∞∑
c=w+1

cpC(c)πc(w; c− 1, 1) = λµCϕw = βϕw (w = 0, 1, . . .).

Hence, for w = 0, 1, . . .,

q
(n)
1 (x(n), y(n), w) =

nλ

y(n)

n∑
c=w+1

p
(n)
C (c)Q(n)

c (c− 1, 1|x(n), y(n))πc(w; c− 1, 1)

=
nλ

y(n)

n∑
c=w+1

p
(n)
C (c)

{
cy(n)

n
+ y(n)ε(n)c (x(n))

}
πc(w; c− 1, 1)

= λ

n∑
c=w+1

cp
(n)
C (c)πc(w; c− 1, 1)

+λ

n∑
c=w+1

p
(n)
C (c)nε(n)c (x(n))πc(w; c− 1, 1)

= λ

∞∑
c=w+1

cpC(c)πc(w; c− 1, 1)

+λ

∞∑
c=w+1

c[p
(n)
C (c)− pC(c)]πc(w; c− 1, 1)

+λ

n∑
c=w+1

p
(n)
C (c)nε(n)c (x(n))πc(w; c− 1, 1)

= βϕw + λ

∞∑
c=w+1

c[p
(n)
C (c)− pC(c)]πc(w; c− 1, 1)

+λ

n∑
c=w+1

p
(n)
C (c)nε(n)c (x(n))πc(w; c− 1, 1).
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It follows that

∞∑
w=0

sn

∣∣∣q(n)1 (x(n), y(n), w)− βϕw
∣∣∣

≤ sn
∞∑
w=0

∣∣∣∣∣λ
∞∑

c=w+1

c[p
(n)
C (c)− pC(c)]πc(w; c− 1, 1)

∣∣∣∣∣
+sn

∞∑
w=0

∣∣∣∣∣λ
n∑

c=w+1

p
(n)
C (c)nε(n)c (x(n))πc(w; c− 1, 1)

∣∣∣∣∣
≤ λsn

∞∑
w=0

∞∑
c=w+1

c|p(n)C (c)− pC(c)|πc(w; c− 1, 1)

+λsn

∞∑
w=0

n∑
c=w+1

p
(n)
C (c)

∣∣∣nε(n)c (x(n))
∣∣∣πc(w; c− 1, 1)

= λsn

∞∑
c=2

c|p(n)C (c)− pC(c)|
c−1∑
w=0

πc(w; c− 1, 1)

+λsn

n∑
c=2

p
(n)
C (c)

∣∣∣nε(n)c (x(n))
∣∣∣ c−1∑
w=0

πc(w; c− 1, 1)

= λsn

∞∑
c=2

c|p(n)C (c)− pC(c)|+ λsn

n∑
c=2

p
(n)
C (c)

∣∣∣nε(n)c (x(n))
∣∣∣ . (4.14)

The first term on the right-hand side of (4.14) converges to 0 by (4.8). Using (4.13)

and Markov’s inequality, the second term on the right-hand side of (4.14), satisfies

λsn

n∑
c=2

p
(n)
C (c)

∣∣∣nε(n)c (x(n))
∣∣∣

≤ λ


bn/2c∑
c=2

snp
(n)
C (c)

(
2c(c− 1)rn

n

)
+

n∑
c=bn/2c+1

snp
(n)
C (c)c


≤ λ

{
2
snrn
n

E
[
C(n)(C(n) − 1)

]
+ snnP

(
C(n) > bn/2c+ 1

)}
≤ λ

{
2
snrn
n

E
[
C(n)(C(n) − 1)

]
+ snn×

4

n2
E
[
(C(n))2

]}
→ 0 as n→∞.

Hence, (4.9) is proved.

The probability that a pair of individuals, chosen uniformly at random, are both

non-susceptible is (n− x(n))(n− x(n)− 1)/[n(n− 1)]. In a group of c individuals there
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are c(c− 1)/2 pairs, so

∑
j+l≥2

Q(n)
c (c− j − l, j|x(n), y(n)) ≤ c(c− 1)

2
× (n− x(n))(n− x(n) − 1)

n(n− 1)
. (4.15)

For x(n) ≥ n−rn, the right-hand side of (4.15) is bounded above by [c(c−1)/2]×[rn/n]2.

Therefore, since q
(n)
2 (x(n), y(n), w) = 0 for w = n, n+ 1, . . ., we have that

∞∑
w=0

sn

∣∣∣q(n)2 (x(n), y(n), w)
∣∣∣ =

n−1∑
w=0

sn

∣∣∣q(n)2 (x(n), y(n), w)
∣∣∣

=
snn

y(n)
λ

n−1∑
w=0

n∑
c=w+1

p
(n)
C (c)

∑
j+l≥2

{
Q(n)
c (c− j − l, j|x(n), y(n))πc(w; c− j − l, j)

}

=
snn

y(n)
λ

n∑
c=2

p
(n)
C (c)

∑
j+l≥2

{
Q(n)
c (c− j − l, j|x(n), y(n))

c−j−l∑
w=0

πc(w; c− j − l, l, j)

}

≤ λsnr
2
n

n

n∑
c=2

p
(n)
C (c)

c(c− 1)

2

= λ
snr

2
n

2n
E
[
C(n)(C(n) − 1)

]
→ 0 as n→∞,

and (4.10) is proved.

Finally, (4.11) follows from (4.9) and (4.10) by the triangle inequality. �

Note that if C has finite support {2, 3, . . . , n0}, then for all n ≥ n0, C(n) ≡ C and

(4.8) holds for any sequence {sn}.

4.4. Construction of the event processes

Lemma 4.1 implies that the difference between the transition probabilities of R

and S(n) tend to 0 as n → ∞, provided the number of non-susceptible individuals

remains sufficiently small. We proceed by constructing R and S(n) on a common

probability space (Ω,F ,P), with Y0 = m and for all sufficiently large n, (X
(n)
0 , Y

(n)
0 ) =

(n−mn,mn) = (n−m,m). For k = 1, 2, . . ., let Uk = (Uk,1, Uk,2, Uk,3) be i.i.d. random

vectors defined on (Ω,F ,P) , with Uk,i ∼ U(0, 1) (i = 1, 2, 3) being independent, where

U(0, 1) denotes a random variable that is uniformly distributed on [0, 1].

We construct R as follows. Suppose that for some k = 1, 2, . . ., Yk−1 = y. The kth

step in R is a downward step (of size 1) with Yk = y−1 if Uk,1 ≤ γ/(γ+β). Otherwise
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the random walk has an “upward” step of size ak with Yk = y + ak, where ak satisfies

ak−1∑
l=0

ϕl < Uk,2 ≤
ak∑
l=0

ϕl.

Note that all sums are equal to 0, if vacuous, ak = 0 is possible and the probability

that ak = i is ϕi.

Similarly we construct S(n) as follows. Suppose that for some k = 1, 2, . . ., (X
(n)
k−1, Y

(n)
k−1) =

(x
(n)
k , y

(n)
k ). The kth event in S(n) is a recovery with (X

(n)
k , Y

(n)
k ) = (x

(n)
k , y

(n)
k − 1) if

Uk,1 ≤ γ/[γ + q(n)(x
(n)
k , y

(n)
k )]. Otherwise the kth event in S(n) is an infection event of

size a
(n)
k with (X

(n)
k , Y

(n)
k ) = (x

(n)
k − a(n)k , y

(n)
k + a

(n)
k ), where a

(n)
k satisfies

P(a
(n)
k = i) =

q(n)(x
(n)
k , y

(n)
k , i)

q(n)(x
(n)
k , y

(n)
k )

= ϕ
(n)
i (x

(n)
k , y

(n)
k ), say.

To enable an effective coupling between R and S(n), we obtain a
(n)
k as follows. For

i = 0, 1, . . ., let $
(n)
i (x

(n)
k , y

(n)
k ) = min

{
ϕi, ϕ

(n)
i (x

(n)
k , y

(n)
k )

}
and let

D
(n)
2 (x

(n)
k , y

(n)
k ) =

∞⋃
w=0

(
w−1∑
l=0

ϕl +$(n)
w (x

(n)
k , y

(n)
k ),

w∑
l=0

ϕl

]
, (4.16)

where (a, b] is the empty set if a = b. If Uk,2 6∈ D(n)
2 (x

(n)
k , y

(n)
k ), then there exists i ∈ Z+

such that

i−1∑
l=0

ϕl < Uk,2 ≤
i−1∑
l=0

ϕl +$
(n)
i (x

(n)
k , y

(n)
k ), (4.17)

and we set a
(n)
k = i. Therefore if Uk,2 6∈ D(n)

2 (x
(n)
k , y

(n)
k ), we have that a

(n)
k = ak. Let

d
(n)
k (x

(n)
k , y

(n)
k ) = P

(
Uk,2 ∈ D(n)

2 (x
(n)
k , y

(n)
k )

)
= 1−

∞∑
v=0

$(n)
v (x

(n)
k , y

(n)
k ),

the total variation distance between (ϕ0, ϕ1, . . .) and (ϕ
(n)
0 (x

(n)
k , y

(n)
k ), ϕ

(n)
1 (x

(n)
k , y

(n)
k ), . . .).

If Uk,2 ∈ D(n)
2 (x

(n)
k , y

(n)
k ), we set a

(n)
k = i with probability

ϕ
(n)
i (x

(n)
k , y

(n)
k )−$(n)

i (x
(n)
k , y

(n)
k )

d
(n)
k (x

(n)
k , y

(n)
k )

,

which ensures that overall the probability a
(n)
k = i is ϕ

(n)
i (x

(n)
k , y

(n)
k ). We do not need

to be more explicit about the choice a
(n)
k when a

(n)
k 6= ak.
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Given V1, V2, . . ., i.i.d. according to Exp(1), we can construct B from R as outlined

in Section 4.2. We conclude this section with a description of constructing E(n) from

S(n), in order to couple the time of events in E(n) to the event times in B. Given that

there are y(n) infectives in the population, the probability that an individual chosen

uniformly at random is infectious is y(n)/n, so the probability that a mixing event of

size c involves at least one infective is bounded above by cy(n)/n. Therefore

q(n)(x(n), y(n)) =

n−1∑
w=0

q(n)(x(n), y(n), w) ≤ 1

y(n)
nλ

n∑
c=2

cy(n)

n
× p(n)C (c)

= λµ
(n)
C . (4.18)

Hence, under the assumption, µ
(n)
C ≤ µC , we have that q(n)(x(n), y(n)) ≤ β(= λµC).

Therefore, letting

d̃(n)(x(n), y(n)) =
β − q(n)(x(n), y(n))

γ + β
≥ 0, (4.19)

we have, if (X
(n)
k−1, Y

(n)
k−1) = (x(n), y(n)), that

γ + β

γ + q(n)(X
(n)
k−1, Y

(n)
k−1)

Vk ∼ Exp
(

1− d̃(n)(x(n), y(n))
)

= Ṽ
(n)
k (x(n), y(n)), say.

For z ≥ 0, let

f̃V (z;x(n), y(n)) = {1− d̃(n)(x(n), y(n))} exp
(
−z{1− d̃(n)(x(n), y(n))}

)
(4.20)

denote the probability density function of Ṽ
(n)
k (x(n), y(n)). Similarly, let fV (z) =

exp(−z) (z ≥ 0) denote the probability density function of V1. It follows from (4.20),

for all z ≥ 0, that

f̃V (z;x(n), y(n)) ≥ {1− d̃(n)(x(n), y(n))} exp (−z)

= {1− d̃(n)(x(n), y(n))}fV (z).

Therefore, we can construct a realisation of Ṽ
(n)
k (x(n), y(n)) by setting Ṽ

(n)
k (x(n), y(n)) =

Vk if Uk,3 ≤ 1−d̃(n)(x(n), y(n)), and if Uk,3 > 1−d̃(n)(x(n), y(n)), we draw Ṽ
(n)
k (x(n), y(n))

from a random variable with, for z ≥ 0, probability density function

f∗(z;x(n), y(n)) =
1− d̃(n)(x(n), y(n))
d̃(n)(x(n), y(n))

[
exp

(
−z{1− d̃(n)(x(n), y(n))}

)
− exp(−z)

]
.

(4.21)
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Finally, we set

V
(n)
k = Ṽ

(n)
k (x(n), y(n))

γ + q(n)(x(n), y(n))

γ + β
, (4.22)

which ensures that V
(n)
k ∼ Exp(1). Also, if η

(n)
k−1 = ηk−1, Y

(n)
k−1 = Yk−1 and Uk,3 ≤

1− d̃(n)(X(n)
k−1, Y

(n)
k−1), then Ṽ

(n)
k (X

(n)
k−1, Y

(n)
k−1) = Vk and substituting V

(n)
k into (4.6) and

using (4.22) gives

η
(n)
k = η

(n)
k−1 +

V
(n)
k

Y
(n)
k−1

[
γ + q(n)(X

(n)
k−1, Y

(n)
k−1)

]
= ηk−1 +

1

Yk−1

[
γ + q(n)(X

(n)
k−1, Y

(n)
k−1)

] × γ + q(n)(X
(n)
k−1, Y

(n)
k−1)

γ + β
Ṽ

(n)
k (X

(n)
k−1, Y

(n)
k−1)

= ηk−1 +
Vk

Yk−1(γ + β)
= ηk. (4.23)

4.5. Coupling of the epidemic and branching processes

A mismatch occurs at event k whenever the kth events in the epidemic process,

E(n) (discrete jump epidemic process S(n)) and branching process, B (random walk R)

are: a removal (E(n)) and a birth (B) or an infection (E(n)) and a birth (B) where the

number of new infections (E(n)) and the number of births (B) differ. The first type of

mismatch occurs in Ball and O’Neill [6], where also mismatches of the type an infection

in (E(n)) and a death (B) are permissible. Owing to (4.18) and the assumption that

µ
(n)
C ≤ µC for all sufficiently large n, an infection in (E(n)) and a death (B) is not

possible for such n in the current setup but the arguments can be easily modified to

allow for this situation. The second type of mismatch comes from allowing multiple

infections/births.

Since q(n)(x(n), y(n)) ≤ β, a type-1 mismatch occurs at event k, where after event

k − 1 there are x(n) susceptibles and y(n) infectives, if and only if

Uk,1 ∈ D(n)
1 (x(n), y(n)) ≡

(
γ

β + γ
,

γ

q(n)(x(n), y(n)) + γ

]
, (4.24)

with

P
(
Uk,1 ∈ D(n)

1 (x(n), y(n))
)

=
γ[β − q(n)(x(n), y(n))]

[γ + q(n)(x(n), y(n))][γ + β]
. (4.25)

Let Z̃1, Z̃2, . . . be i.i.d. according to Z̃ with probability mass function P(Z̃ = i) = ϕi
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(i = 0, 1, . . .). We construct Z̃1, Z̃2, . . . from U1,2, U2,2, . . . by setting Z̃k to satisfy

Z̃k−1∑
i=0

ϕi < Uk,2 ≤
Z̃k∑
i=0

ϕi. (4.26)

Thus Z̃k is the number of births (size of the “upward step”) that occur in B (R) if the

kth event is a birth event.

A third type of mismatch occurs when coupling the event times in E(n) and B.

Conditional upon no mismatches of the first two types in the first k events and η
(n)
k−1 =

ηk−1, we have by (4.23), that a mismatch occurs and η
(n)
k 6= ηk only if Uk,3 > 1 −

d̃(n)(X
(n)
k−1, Y

(n)
k−1).

The following lemma gives conditions under which the processes B (R) and E(n)

(S(n)) can be constructed on a common probability space (Ω,F ,P), so that for P-

almost all ω ∈ Ω they coincide over the first un events for all sufficiently large n, where

un →∞ as n→∞.

Lemma 4.2. Suppose that (3.9) holds and (3.10) holds for some θ0 > 0. Suppose that

there exists α ≥ 1 such that E[Cα+1] <∞, which in turn implies that E[Z̃α] <∞.

Let (un) be any non-decreasing sequence of integers such that there exists

0 < ζ < min

{
αθ0

2(1 + α)
,

α

2 + 4α

}
, (4.27)

so that for all sufficiently large n, un ≤ bKnζc for some K ∈ R+.

Then, there exists a probability space (Ω,F ,P), on which are defined the branching

process, B, the random walk, R, and the sequence of epidemic processes and discrete

epidemic processes, (En,Sn), such that for P-almost all ω ∈ Ω,

(Y
(n)
1 (ω), Y

(n)
2 (ω), . . . , Y (n)

un
(ω)) = (Y1(ω), Y2(ω), . . . , Yun

(ω)) (4.28)

and

(η
(n)
1 (ω), η

(n)
2 (ω), . . . , η(n)un

(ω)) = (η1(ω), η2(ω), . . . , ηun
(ω)) (4.29)

for all sufficiently large n.

Proof. Without loss of generality, we prove the lemma by taking un = bKnζc for

some K ∈ (0,∞) and ζ satisfying (4.27). It follows from (4.27) that θ and δ can be
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chosen such that θ, δ > 0, 2(1+α)
α ζ < θ ≤ θ0 and θ + 2ζ + 2δ < 1. (Note that (4.27)

implies 2ζ(1 + α)/α < θ0. Furthermore,

inf
θ>2(1+α)ζ/α

{θ + 2ζ} =
2 + 4α

α
ζ < 1,

by (4.27).) Set sn = nθ, rn = Knζ+δ, an = bnθ/(α+1)c and, for convenience, εn = 1/sn.

Note that snr
2
n/n→ 0 as n→∞, satisfying the conditions of Lemma 4.1.

For h, n = 1, 2, . . ., let x
(n)
h = (x

(n)
0 , x

(n)
1 , . . . , x

(n)
h ) and define y

(n)
h similarly. Let

Ãn,0 =

{
(x(n)
un
,y(n)
un

) : min
{1≤h≤un}

x
(n)
h = x(n)un

≥ n− rn, max
{1≤h≤un}

y
(n)
h ≤ rn

}

and An,0 = {ω ∈ Ω : (X
(n)
un (ω),Y

(n)
un (ω)) ∈ Ãn,0}. Note that if ω ∈ An,0 for all

sufficiently large n, then {(X(n)
k (ω), Y

(n)
k (ω))} satisfies the conditions of Lemma 4.1.

Let Hn denote the event at which the first mismatch occurs between Sn and R.

Then, for ω ∈ Ω, (4.28) holds if and only if Hn(ω) > un. Note that the first mismatch

occurs at event k with (X
(n)
k−1, Y

(n)
k−1) = (x

(n)
k−1, y

(n)
k−1), if

Uh,1 ∈ D(n)
1 (x

(n)
k−1, y

(n)
k−1) or Uh,2 ∈ D(n)

2 (x
(n)
k−1, y

(n)
k−1),

where D
(n)
1 (x(n), y(n)) and D

(n)
2 (x(n), y(n)) are defined in (4.24) and (4.16), respectively.

Similarly, let H̃n denote the event at which the first mismatch occurs between the

times of corresponding events in En and B. Then (4.29) holds if and only if H̃n(ω) > un.

Note that if Hn(ω) > un then the first mismatch in the time of events occurs at event

k with (X
(n)
k−1, Y

(n)
k−1) = (x

(n)
k−1, y

(n)
k−1), if

Uh,3 ∈ D(n)
3 (x

(n)
k−1, y

(n)
k−1) ≡

(
1− d̃(n)(x(n), y(n)), 1

]
,

where d̃(n)(x(n), y(n)) is defined in (4.19).

By Lemma 4.1, we have for any ` > 0, for all sufficiently large n and (x
(n)
un ,y

(n)
un ) ∈

Ãn,0, that
∑∞
w=0 |q(n)(x(n), y(n), w)− βϕw| < `εn and |q(n)(x(n), y(n))− β| < `εn. The

first inequality implies that for all w ∈ Z+,

|q(n)(x(n), y(n), w)− βϕw| < `εn.

Therefore, since q(n)(x(n), y(n)) > β/2 for all sufficiently large n, we have by the triangle
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inequality that∣∣∣$(n)
w (x(n), y(n))− ϕw

∣∣∣ =

∣∣∣∣q(n)(x(n), y(n), w)

q(n)(x(n), y(n))
− βϕw

β

∣∣∣∣
≤ 1

q(n)(x(n), y(n))

∣∣∣q(n)(x(n), y(n), w)− βϕw
∣∣∣+ βϕw

∣∣∣∣ 1

q(n)(x(n), y(n))
− 1

β

∣∣∣∣
≤ 2

β

∣∣∣q(n)(x(n), y(n), w)− βϕw
∣∣∣+

2ϕw
β

∣∣∣q(n)(x(n), y(n))− β∣∣∣
≤ 4

β
`εn.

Setting ` = β
5 , we have that for all sufficiently large n,

∣∣∣$(n)
w (x(n), y(n))− ϕw

∣∣∣ ≤ εn

(w = 0, 1, . . .).

Thus we can define sets D̃
(n)
i (i = 1, 2, 3) such that for all sufficiently large n, if

(x(n), y(n)) ∈ Ãn, then D
(n)
i (x(n), y(n)) ⊆ D̃(n)

i (i = 1, 2, 3), where

D̃
(n)
1 =

(
γ

β + γ
,

γ

β − εn + γ

]
D̃

(n)
2 =

an⋃
w=0

(
w∑
l=0

ϕl −min{ϕw, εn},
w∑
l=0

ϕl

]
∪

(
an∑
l=0

ϕl, 1

]
and

D̃
(n)
3 = (1− εn, 1] .

Since εn is decreasing in n, we have that for all n, D̃
(n+1)
i ⊆ D̃(n)

i (i = 1, 2, 3).

For i = 1, 2, 3, let

An,i =

un⋂
h=1

{
Uh,i 6∈ D̃(n)

i

}
.

We observe that if un+1 = un, then An,i ⊆ An+1,i (i = 0, 1, 2, 3). Therefore, following

Ball and O’Neill [6], Lemma 2.11, we define Q = {n ∈ N : bKnζc 6= bK(n− 1)ζc}, and

note that, for i = 0, 1, 2, 3, to show that

P(Acn,i occurs for infinitely many n) = 0,

it is sufficient to show that

P(Acn,i occurs for infinitely many n ∈ Q) = 0. (4.30)

Given that (4.30) holds for i = 0, 1, 2, 3, we have that there exists Ω̃ ⊆ Ω such that

P(Ω̃) = 1 and for all ω ∈ Ω̃, there exists n(ω) ∈ N such that for all n ≥ n(ω),

Hn(ω) > un and H̃n(ω) > un. Thus (4.28) and (4.29) hold, and the lemma follows.
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We complete the proof of the lemma by proving (4.30) for i = 0, 1, 2, 3. Suppose

that, for i = 0, 1, 2, 3, there exists Li < ∞ and χi > 1 such that, for all sufficiently

large n,

P(Acn,i) ≤ Lin−ζχi . (4.31)

Following the proof of Ball and O’Neill [6], Lemma 2.10, we have that

∑
n∈Q

P(Acn,i) ≤
∑
n∈Q

Lin
−ζχi <∞,

so by the first Borel-Cantelli Lemma, (4.30) holds.

Let us prove (4.31). Recall that µC = E[C], E[Z̃] = E[Cν(C)]/µC and E[C(C −

1)ν(C)] <∞, where ν(c), defined at (3.7), is the mean number of new infectives created

in a mixing event of size c with 1 infective and c − 1 susceptibles. Since un ≤ bKnζc

and rn = Knζ+δ, by Chebychev’s inequality, we have that, for all sufficiently large n,

P(Acn,0) = P

 un∑
j=1

Z̃j > rn −m


≤ P

∣∣∣∣∣∣
un∑
j=1

Z̃j − unE[Z̃]

∣∣∣∣∣∣ > rn
2


≤ 4

r2n
Var

 un∑
j=1

Z̃j

 ≤ 4un
r2n

E[Z̃2
1 ]

=
4un
r2n

∞∑
w=0

w2 1

µC

∞∑
c=w+1

cpC(c)πc(w; c− 1, 1)

=
4un
r2n
× 1

µC

∞∑
c=2

cpC(c)

c−1∑
w=0

w2πc(w; c− 1, 1)

≤ 4un
r2n
× 1

µC

∞∑
c=2

c(c− 1)pC(c)

c−1∑
w=0

wπc(w; c− 1, 1)

≤ 4un
r2n
× E[C(C − 1)ν(C)]

µC
≤ 4E[C(C − 1)ν(C)]

KµC
n−ζ(1+2δ/ζ). (4.32)

Hence, (4.31) holds for i = 0.
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Since θ − 2(1 + α)ζ/α > 0, we have that for all sufficiently large n,

P(Acn,1) = P

(
un⋃
h=1

{
Uh,1 ∈ D̃(n)

1

})

≤
(

2γ

(β + γ)2

)
unεn

≤
(

2γ

(β + γ)2

)
Knζn−θ

≤
(

2γ

(β + γ)2

)
Kn−ζ(1+2/α). (4.33)

Hence, (4.31) holds for i = 1.

Similarly, since P(Acn,3) ≤ unεn, we have that (4.31) holds for i = 3.

Finally, let δ1 = α
ζ(1+α)θ−2 > 0. For all sufficiently large n, we have that aαn, sn/an ≥

1
2n

θα/(1+α). Thus, recalling that εn = 1/sn, we have that for all sufficiently large n,

P(Acn,2) = P

(
un⋃
h=1

{
Uh,2 ∈ D̃(n)

2

})
≤ un

{
anεn + P(Z̃ > an)

}
≤ un

{
an
sn

+
E[Z̃α]

aαn

}
≤ 2(1 + E[Z̃α])Knζn−θα/(1+α)

= 2(1 + E[Z̃α])n−ζ(1+δ1). (4.34)

Hence, (4.31) holds for i = 2. Thus (4.30) holds for i = 0, 1, 2, 3 and the lemma is

proved. �

Lemma 4.2 ensures that the the processes E(n) (S(n)) and B (R) coincide for an

increasing number of events as n increases. For Theorem 3.1 (a) we do not require as

strong a result as Lemma 4.2, and the following corollary which can be proved in a

similar fashion to Lemma 4.2 suffices.

Corollary 4.1. For any K ∈ N, we have, for (Ω,F ,P) defined in Lemma 4.2, that

for P-almost all ω ∈ Ω,

(Y
(n)
1 (ω), Y

(n)
2 (ω), . . . , Y

(n)
K (ω)) = (Y1(ω), Y2(ω), . . . , YK(ω))

and

(η
(n)
1 (ω), η

(n)
2 (ω), . . . , η

(n)
K (ω)) = (η1(ω), η2(ω), . . . , ηK(ω)),
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for all sufficiently large n.

The coupling in Lemma 4.2 includes birth events where no births occur, that is,

Z1 = 0. Given that λ <∞ (β = λµC <∞) and γ > 0, it follows that P(Z1 6= 0) > 0.

Since Z1, Z2, . . . are i.i.d., the strong law of large numbers yields

1

p

p∑
i=1

1{Zi 6=0}
a.s.−→ P(Z1 6= 0) as p→∞, (4.35)

where
a.s.−→ denotes convergence almost surely. For k = 1, 2, . . ., let

Mk = min{p :

p∑
i=1

1{Zi 6=0} = k}. (4.36)

Thus Mk is the kth event in B for which Zi 6= 0. (If B goes extinct then Mk has this

interpretation for only finitely many k.) Theorem 3.1 now follows straightforwardly

from Lemma 4.2.

Proof of Theorem 3.1. (a) Recall that T is the total size of the branching process B

and Aext = {ω ∈ Ω : T (ω) <∞}.

Fix ω ∈ Aext and suppose that T (ω) = k <∞. Then there exists h = h(ω) ≤ 2k−m

such that YMh
(ω) = 0. That is, there are at most k −m birth events (with a strictly

positive number of births) and k death events in the branching process. By Corollary

4.1 there exists n2(ω) ∈ N such that for all n ≥ n2(ω) and l = 1, 2, . . . ,Mh(ω),

Y
(n)
l (ω) = Yl(ω) and η

(n)
l (ω) = ηl(ω), and hence, for all t ≥ 0, In(t, ω) = I(t, ω).

(b) Let ρ satisfy (3.11) and tn = ρ log n. Remembering from (3.8) that r = γ(R0−1)

is the Malthusian parameter (growth rate) of the branching process, we take ζ such

that

ρr < ζ < min

{
αθ0

2(1 + α)
,

α

2 + 4α

}
,

so that ζ satisfies (4.27) in the statement of Lemma 4.2.

For t ≥ 0, let N(t) denote the total number of (birth and death) events in the

branching process B up to and including time t. Then, if N(tn, ω) ≤ un = bnζc and

(Y
(n)
h (ω), η

(n)
h (ω)) = (Yh(ω), ηh(ω)) (h = 1, 2, . . . , un), we have from Lemma 4.2 that

sup
0≤t≤tn

|I(n)(t)− I(t)| = 0.

Give the initial ancestors the labels −(m − 1),−(m − 2), . . . , 0 and label the in-

dividuals born in the branching process sequentially 1, 2, . . .. For i = 1, 2, . . ., let τi
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denote the time of the birth of the ith individual with the conventions that τi = ∞

if fewer than i births occur, and τi = 0 for i = −(m − 1),−(m − 2), . . . , 0. For

i = −(m − 1),−(m − 2), . . ., let G̃i(s) denote the number of birth and death events

involving individual i in the first s time units after their birth, if s ≥ 0, and let

G̃i(s) = 0 if s < 0. Note that G̃i(s) is non-decreasing in s and G̃i(∞)
D
= G+ 1, where

G is the number of birth events involving an individual and is a geometric random

variable given by (3.4). Therefore for all t ≥ 0,

N(t) =

∞∑
i=−(m−1)

G̃i(t− τi). (4.37)

Note that N(t) satisfies the form of Nerman [14], (1.11). It is straightforward to show

that the conditions of Theorem 5.4 in Nerman [14] hold, since E[G̃(∞)] = (γ+λµC)/γ.

Therefore, by that theorem, there exists a positive, almost surely finite random variable

W such that

lim
t→∞

exp(−rt)N(t, ω) = W (ω) > 0

for P-almost all ω ∈ Acext. It is then straightforward to show, following the proof of

Ball and O’Neill [6], Lemma 2.9, that there exists some P-measurable set B1 ⊆ Acext,

such that P(B1) = P(Acext) and for all ω ∈ B1,

lim
t→∞

n−crN(tn, ω) = W (ω).

Hence, for all sufficiently large n, N(tn, ω) ≤ 2W (ω)nρr ≤ un. Finally by Lemma 4.2,

for P-almost all ω ∈ B1, (4.28) and (4.29) hold, so (3.12) follows. �

Finally, we consider the total size of the epidemic processes and branching processes

with Corollary 3.1 following straightforwardly from Corollary 4.1.

Proof of Corollary 3.1. Let Ω̂ ⊆ Ω be the set on which the convergence underly-

ing (4.35) holds, so P(Ω̂) = 1, and fix ω ∈ Ω̃ ∩ Ω̂. Suppose that T (ω) = k <∞. Then

there exists h = h(ω) ≤ 2k −m such that YMh
(ω) = 0. By Corollary 4.1, there exists

ñ(ω) ∈ N such that for all n ≥ ñ(ω), Y
(n)
i (ω) = Yi(ω) (i = 1, 2, . . . ,Mh(ω)). Thus,

T (n)(ω) = T (ω) for all n ≥ ñ(ω).

Suppose instead that T (ω) = ∞. Choose any k1 ∈ N and let nE(k1, ω) be the

number of events in B when the total size of B first reaches at least k1. Then arguing
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as above, with k replaced by k1 and h replaced by nE(k1, ω), shows that T (n)(ω) ≥ k1
for all sufficiently large n. This holds for all k1 ∈ N, so T (n)(ω)→∞ as n→∞. �

5. Proof of Theorem 3.2

5.1. Overview

We present an overview of the steps to prove Theorem 3.2. In Section 5.2, we prove

Theorem 3.2 (a), which states that as n → ∞, the probability of a major epidemic

outbreak in E(n) (the epidemic infects at least log n individuals) tends to the probability

the branching process, B does not go extinct. In Section 5.3, we introduce a sequence

of lower bound random walks, (L(n)), which is a key component in showing that a

major epidemic in the discrete epidemic jump process, S(n), and hence in the epidemic

process E(n) infects at least δ∗n individuals with probability tending to 1 as n → ∞.

We provide an outline of the coupling of S(n) and L(n), via an intermediary process

G(n), and in (5.5) identify the relationship between the three processes with L(n) as a

lower bound in terms of the number of infectives in the epidemic to establish Theorem

3.2 (b). The details of L(n) are provided in Section 5.4, along with Lemmas 5.1 and

5.2 which provide the main steps in establishing (5.5). Finally, Section 5.4 concludes

with the proof of Theorem 3.2 (b) from which Corollary 3.2 follows immediately.

5.2. Probability of a major epidemic

Under the conditions of Theorem 3.2, the conditions of Lemma 4.2 are satisfied

with α = 1 since E[C2] < ∞. The proof of Theorem 3.2 (a), then follows almost

immediately from the proof of Theorem 3.1 by considering the embedded random walk

and discrete time epidemic jump process. From Lemma 4.2, (4.28), we have that that

Yun = (Y1, Y2, . . . , Yun) and Y
(n)
un = (Y

(n)
1 , Y

(n)
2 , . . . , Y

(n)
un ) can be constructed such

that

P(Y(n)
un

= Yun)→ 1 as n→∞. (5.1)

for un = bnζc and ζ > 0 satsifying (4.27) with α = 1. Hence, we can couple the process

S(n) to R over the first un steps and Theorem 3.2 (a) follows, as we now show.

Proof of Theorem 3.2 (a). Since T is the total size of a branching process with m
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initial ancestors, it follows that

P(T ≥ log n)→ 1− zm as n→∞. (5.2)

Following the proof of Corollary 3.1, T < log n if there exists hn ≤ 2 log n −m such

that YMhn
= 0. Let Ω̃ and Ω̂ be as in the proofs of Lemma 4.2 and Corollary 3.1,

respectively, and note that P(Ω̃ ∩ Ω̂) = 1. Fix ω ∈ Ω̃ ∩ Ω̂. Then

Mb2 lognc(ω) ≤ 3

P(Z1 6= 0)
log n ≤ un

for all sufficiently large n, where Mk is given in (4.36) and Ω̃ and Ω̂ are defined in

Lemma 4.2 and Corollary 3.1, respectively, with P(Ω̃ ∩ Ω̂) = 1. It follows using

Lemma 4.2 that 1{T (ω)<logn} = 1{T (n)(ω)<logn} for all sufficiently large n. Thus,

1{T<logn} − 1{T (n)<logn} converges almost surely (and hence in probability) to 0 as

n→∞. Therefore,

|P(T (n) ≥ log n)− P(T ≥ log n)| = |P(T (n) < log n)− P(T < log n)| → 0 as n→∞,

and (3.13) follows immediately using (5.2). �

5.3. Coupling of lower bound random walk to the epidemic

We turn to the proof of Theorem 3.2 (b) and note that we now need to consider

the epidemic process and any approximation over bδ1nc events for some δ1 > 0. The

couplings utilised thus far do not extend to bδ1nc events in the limit as n → ∞.

However, we can still utilise the couplings over the first un = bnζc events. Hence,

given that the embedded discrete epidemic jump process S(n) reaches un events without

hitting 0 (the epidemic process E(n) does not go extinct), we can show, following the

proof of Theorem 3.2(a), that, with probability tending to 1 as n → ∞, T (n) ≥ vn,

where vn = P(Z1 6= 0)un/3. It immediately follows using the coupling in Lemma 4.2

(see (5.1)) that P(T ≥ vn|T (n) ≥ vn) → 1 as n → ∞. We have that if T ≥ vn, then

mink≤vn{Yk} > 0 and by the weak law of large numbers∣∣∣∣∣ 1

vn

vn∑
k=1

Zk − E[Z]

∣∣∣∣∣ p−→ 0 as n→∞.

Hence, under the assumption R0 > 1, which is required for Theorem 3.2(b), we have

that E[Z] > 0 and since Yvn = m+
∑vn
k=1 Zk that

P

(
Yvn >

vnE[Z]

2
, min
k≤vn
{Yk} > 0

∣∣∣∣T ≥ vn)→ 1 as n→∞. (5.3)
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Now (5.3) states that if the branching process B has at least vn individuals ever alive

then with probability tending to 1 the number of individuals alive in B (the position

of the random walk R) after vn events exceeds vnE[Z]/2 with probability tending to 1

as n→∞. Combined with (5.1) the same holds true for Y
(n)
vn in E(n) and S(n).

The next step is to show that given the epidemic E(n) (S(n)) has not gone extinct in

vn events then there exists δ∗ > 0 such that, with probability tending to 1 as n→∞,

at least bδ∗nc events occur in S(n). In order to do this we introduce a lower bound

random walk L(n) indexed by the population size n. Lower bound branching processes

(random walks) for epidemic processes go back to [17] and the main idea is along

similar lines to [17], in that we set up the lower bound random walk such that the

number of infectives in the discrete epidemic jump process S(n) is at least the number

of individuals alive in the branching process with embedded random walk L(n) for the

initial stages of the epidemic process.

The key features in setting up L(n) are as follows. Let L
(n)
k denote the position of the

random walk L(n) after k steps. The random walk L(n) is set identical to the random

walk R for the first vn steps, that is, the distribution of steps are according to Z given

in (4.1). Hence, L
(n)
0 = m and for k = 1, 2, . . . , vn, L

(n)
k = Yk. For k = vn+1, vn+2, . . .,

the steps in L(n) are i.i.d. according to Ẑ(n) defined below in (5.9), with E[Ẑ(n)] > 0

so that the lower bound random walk has positive drift. Therefore we can show as

n → ∞, that if L(n) has not hit 0 in the first vn steps when it is coupled to R, and

hence, reached L
(n)
vn = Yvn ≥ vnE[Z]/2, c.f. (5.3), it will with probability tending to 1

not hit 0 in the first bδ1nc steps for δ1 > 0.

It is difficult to directly couple S(n) and L(n) owing to differences in the distribution

of steps caused by the changing rate of events in E(n), and hence, the probability of

events occurring in S(n). Therefore, we introduce an intermediary process G(n). The

intermediary process G(n) is a bivariate (epidemic) process, indexed by the population

size n, whose steps are state dependent, with the dependence corresponding to the num-

ber of susceptibles and infectives in the population. For k = 1, 2, . . ., let (A
(n)
k , G

(n)
k )

denote the state of G(n) after k steps (events) with A
(n)
k and G

(n)
k denoting the numbers

of susceptibles and infectives, respectively. For the first vn steps, G(n) is set identical

to S(n) so that for k = 1, 2, . . . , vn, (A
(n)
k , G

(n)
k ) = (X

(n)
k , Y

(n)
k ). After vn steps have

occured in both G(n) and S(n) we allow the two processes to differ as follows. The
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process G(n) is associated with an epidemic-type process, E(n)G , which has a higher rate

of events than the epidemic process E(n) but in such a way that the additional events in

E(n)G , which do not occur in E(n), are infection events where no infections occur. In this

way we can construct E(n)G from E(n) so that all events in E(n) occur in E(n)G but that

there are additional ghost events which occur in E(n)G where there is no change in state

(no infection or removal occurs) and the only change is to increment the counter of the

number of events. Similarly, we can reverse this process and generate E(n) from E(n)G

by eliminating, with an appropriate probability, some of the events where no change

in state occur. Therefore, for k = 1, 2, . . ., there exists κn(k) ≤ k such that

(X
(n)
κn(k)

, Y
(n)
κn(k)

) = (A
(n)
k , G

(n)
k ). (5.4)

Note that for k = 1, 2, . . . , vn, κn(k) = k.

We couple G(n) and L(n) such that, with probability tending to 1 as n→∞, we have

that G
(n)
k ≥ L(n)

k for k = 1, 2, . . . , bδ1nc, where δ1 > 0 is given in (5.7). That is, for the

first bδ1nc events, the number of infectives in the process G(n) is at least the number of

individuals alive in the random walk L(n). It then follows that, for k = 1, 2, . . . , bδ1nc,

we have

Y
(n)
κn(k)

= Gnk ≥ L
(n)
k (5.5)

with probability tending to 1 as n→∞. The proof of Theorem 3.2 (b) follows almost

immediately after we have established (5.5).

5.4. Lower bound for the size of a major epidemic outbreak

In this section we formally define the lower bound random walk L(n). Then, in

Lemma 5.1, we show that L(n) has positive drift so that after bδ1nc steps, we have,

for some δ > 0 (defined in (5.10)), that L
(n)
bδ1nc ≥ δn with probability tending to 1 as

n→∞. This is followed by the construction of G(n). We show that whilst fewer than

bδ1nc events have occurred the number of susceptibles (with high probability) remains

above (1− ε1)n, where ε1 > 0 is given in (5.7), which enables us in Lemma 5.2 to show

that the inequality in (5.5) holds with probability tending to 1 as n → ∞. We then

establish the equality in (5.5) through the coupling of S(n) and G(n), with the proof of

Theorem 3.2 (b) following.



Strong convergence of an epidemic model with mixing groups 35

By (4.18), we have, for all (x(n), y(n)), that q(n)(x(n), y(n)) ≤ λµ
(n)
C = β(n), say.

Since R0 > 1, and by (3.9), E[C(C − 1)ν(C)] <∞, we can define

ε =
(R0 − 1)γ

2λE[C(C − 1)ν(C)]
> 0. (5.6)

We can then fix δ1 and ε1 < ε such that

0 < δ1 < ε1
µC

E[C2]
. (5.7)

Throughout the remainder of the section we assume that δ1 and ε1 satisfy (5.7). For

n = 1, 2, . . . and w = 1, 2, . . . , n− 1, let

ψ(n)
w = max

{
λ

β(n)

n∑
c=w+1

cp
(n)
C (c)πc(w; c− 1, 1)[1− 2ε1(c− 1)], 0

}
(5.8)

and ψ
(n)
0 = 1 −

∑n−1
v=1 ψ

(n)
v . Note that there exists n0 ∈ N, such that for all n ≥ n0,

2ε1bn/2c > 1, and hence, ψ
(n)
w = 0 for all w > bn/2c. We define

P(Ẑ(n) = w) =



β(n)ψ(n)
w

γ+β(n) w = 1, 2, . . . , n− 1,

β(n)

γ+β(n)

(
1−

∑n−1
i=1 ψ

(n)
i

)
w = 0,

γ
γ+β(n) w = −1,

0 otherwise.

(5.9)

Let Ẑ
(n)
vn+1, Ẑ

(n)
vn+2, . . ., be i.i.d. according to Ẑ(n) given in (5.9). Then given L

(n)
vn = Yvn ,

for vn + 1 ≤ k ≤ bδ1nc, we set

L
(n)
k = L

(n)
k−1 + Ẑ

(n)
k .

Lemma 5.1. Let bn be any sequence of positive integers such that bn →∞ as n→∞.

Let δ1 satisfy (5.7), and δ satisfy

0 < δ < δ1
(R0 − 1)γ − 2ε1λE[C(C − 1)ν(C)]

γ + λµC
, (5.10)

where ε1 < ε ensures that the right-hand side of (5.10) is positive. Then

P

(
L
(n)
bδ1nc ≥ bδnc, min

k>vn

{
L
(n)
k > 0

} ∣∣∣L(n)
vn ≥ bn

)
→ 1 as n→∞, (5.11)

where vn = P(Z1 6= 0)un/3.
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Proof. Using (5.9) and (5.8),

E[Ẑ(n)] = − γ

γ + β(n)
+

n−1∑
w=1

w
β(n)ψnw
γ + β(n)

≥ 1

γ + β(n)

{
−γ +

n−1∑
w=1

w

[
λ

n∑
c=w+1

cp
(n)
C (c)πc(w; c− 1, 1) [1− 2ε1(c− 1)]

]}

=
1

γ + β(n)

{
−γ + λ

n∑
c=2

cp
(n)
C (c)

c−1∑
w=1

wπc(w; c− 1, 1)

−2ε1λ

n∑
c=2

c(c− 1)p
(n)
C

c−1∑
w=1

wπc(w; c− 1, 1)

}

=
1

γ + β(n)

{
−γ + λE[C(n)ν(C(n))]− 2ε1λE[C(n)(C(n) − 1)ν(C(n))]

}
.

Recall the expression (3.6) for R0 and that by (3.9), E[C(C − 1)ν(C)] < ∞. Since

λE[C(n)ν(C(n))]→ R0γ and β(n) → β = λµC as n→∞, we have that

lim inf
n→∞

E[Ẑ(n)] ≥ (R0 − 1)γ − 2ε1λE[C(C − 1)ν(C)]

γ + λµC
> 0,

where the final inequality follows from (5.10). It also follows from (5.8) that β(n)ψ
(n)
w ≤

λ
∑n
c=w+1 cp

(n)
C (c)πc(w; c− 1, 1), for all w = 1, 2, . . . , n− 1, so

E[(Ẑ(n))2] ≤ γ

γ + β(n)
+

1

γ + β(n)

n−1∑
w=1

w2λ

n∑
c=w+1

cp
(n)
C (c)πc(w; c− 1, 1)

=
1

γ + λE[C(n)]

{
γ + λ

n∑
c=2

cp
(n)
C (c)

c−1∑
w=1

w2πc(w; c− 1, 1)

}

≤ 1

γ + λE[C(n)]

{
γ + λ

n∑
c=2

c(c− 1)p
(n)
C (c)

c−1∑
w=1

wπc(w; c− 1, 1)

}

=
1

γ + λE[C(n)]

{
γ + λE[C(n)(C(n) − 1)ν(C(n))]

}
→ γ + λE[C(C − 1)ν(C)]

γ + λµC
as n→∞, (5.12)

where E[C(C − 1)ν(C)] <∞ ensures that the right-hand side of (5.12) is finite.

Let zn be the probability that the random walk L(n) ever hits 0 given L
(n)
vn = 1. Since

lim infn→∞ E[Ẑ(n)] > 0 and supn E[(Ẑ(n))2] < ∞, it follows from Ball and Neal [4],

Lemma A.3, that lim supn→∞ zn < 1. Therefore, for any bn →∞ as n→∞, we have

that zbnn → 0 as n → ∞. Moreover, for supn E[(Ẑ(n))2] < ∞, it follows by the weak
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law of large numbers for triangular arrays (e.g. Durrett [9], Theorem 2.2.4) that∣∣∣∣∣∣ 1

bδ1nc − vn

bδ1nc∑
l=vn+1

Ẑnl − E[Ẑn]

∣∣∣∣∣∣ p−→ 0 as n→∞.

Hence, for any bn →∞ and δ satisfying (5.10), we have that (5.11) holds. �

Turning to the intermediary (ghost) process G(n), we define independent random

variables W
(n)
k (x(n), y(n)) (k = vn + 1, vn + 2, . . .) to define the transitions given the

current state (A(n), G(n)) = (x(n), y(n)) after event vn. For k = vn + 1, vn + 2, . . ., let

W
(n)
k (x(n), y(n)) satisfy

P(W
(n)
k (x(n), y(n)) = w) =



q(n)(x(n),y(n),w)
γ+β(n) w = 1, 2, . . . , n− 1,

β(n)−
∑n−1

v=1 q
(n)(x(n),y(n),v)

γ+β(n) w = 0,

γ
γ+β(n) w = −1,

0 otherwise.

(5.13)

Then for (A
(n)
k−1, G

(n)
k−1) = (x(n), y(n)), we set

((A
(n)
k , G

(n)
k ) = (x(n) −W (n)

k (x(n), y(n))1{W (n)
k (x(n),y(n))≥0}, y

(n) +W
(n)
k (x(n), y(n))).

The continuous time epidemic-type process E(n)G is constructed from G(n) as follows.

If G
(n)
k = y(n), then the time from the kth to (k + 1)st event is drawn from Exp((γ +

β(n))y(n)), regardless of A(n), the number of susceptibles. Therefore, if there are y(n)

infectives in the population, mixing events occur at rate β(n)y(n) with the number of

individuals infected in such a mixing event depending on the number of susceptibles,

A(n).

We consider the coupling of G(n) and L(n) in Lemma 5.2 before finalising the coupling

between G(n) and S(n).

Lemma 5.2. There exists a coupling of G(n) and L(n) such that, for any δ1 satisfying

(5.7),

P

bδ1nc⋂
k=1

{
G

(n)
k ≥ L(n)

k

}→ 1 as n→∞. (5.14)

Proof. By construction of G(n) and L(n) and Lemma 4.2, (4.28), we have that with

probability tending to 1, G
(n)
k = Yk = L

(n)
k (k = 1, 2, . . . , vn).



38 FRANK BALL AND PETER NEAL

The first step is to show that P(A
(n)
bδ1nc ≥ (1 − ε1)n) → 1 as n → ∞, which since

A
(n)
k is non-increasing in k, implies that, for all k = 1, 2, . . . , bδ1nc, A(n)

k ≥ (1 − ε1)n,

with probability tending to 1, as n→∞.

It is straightforward to show, for all (x(n), y(n)), that W (n)(x(n), y(n)) is stochasti-

cally smaller than (
st
≤) a random variable W̃ (n), where P(W̃ (n) = −1) = γ/(γ + β(n))

and for k = 1, 2, . . ., P(W̃ (n) = k) = β(n)P(C̃(n) = k + 1)/(γ + β(n)), with

P(C̃(n) = c) =


cp

(n)
C (c)

µ
(n)
C

c = 2, 3, . . .

0 otherwise.

Note that C̃(n) is the size biased distribution of mixing group sizes and for c ≥ 2,

P(W̃ (n) = c − 1) is the probability an event is a mixing event multiplied by the

probability a mixing event involving a given infective is of size c. It is then assumed a

mixing group of size c involving an infective produces c−1 new infections, the maximum

number of new infections that can be produced from a mixing group of size c.

The proof thatW (n)(x(n), y(n))
st
≤ W̃ (n) is as follows. Remember thatQ

(n)
c (l, i|x(n), y(n)),

defined in (4.2), is the probability that a mixing group of size c in a population of size

n containing x(n) susceptibles and y(n) infective contains l susceptibles and i infectives.

Note that for v > 0, the probability that such a mixing group results in v new infectives,

πc(v; l, i) is not equal to 0 only if i > 0 and v ≤ l. Given that if there are y(n) infectives

in the population, the probability that a mixing group of size c includes at least one
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infective is at most cy(n)/n, and therefore for w = 0, 1, . . .,

P
(
W (n)(x(n), y(n)) ≥ w

)
=

1

γ + β(n)

n−1∑
v=w

q(n)(x(n), y(n), v)

=
1

γ + β(n)

n−1∑
v=w

nλ

y(n)

n∑
c=v+1

p
(n)
C (c)

∑
i,j

Q(n)
c (c− i− j, i|x(n), y(n))πc(v; c− i− j, i)

=
1

γ + β(n)

n∑
c=w+1

p
(n)
C (c)

nλ

y(n)

∑
i,j

Q(n)
c (c− i− j, i|x(n), y(n))

{
c−1∑
v=w

πc(v; c− i− j, i)

}

≤ 1

γ + β(n)

n∑
c=w+1

p
(n)
C (c)

nλ

y(n)
× cy(n)

n

=
λ

γ + β(n)

n∑
c=w+1

cp
(n)
C (c)

=
λµ

(n)
C

γ + β(n)

n∑
c=w+1

P(C̃(n) = c) = P
(
W̃ (n) ≥ w

)
,

as required.

Hence, we can couple {W (n)
k (A

(n)
k−1, G

(n)
k−1)} and {W̃ (n)

k } such that for all k = vn +

1, vn + 2, . . .,

W
(n)
k (A

(n)
k−1, G

(n)
k−1) ≤ W̃ (n)

k .

Recall that E[(C(n))2]→ E[C2] as n→∞ where E[C2] <∞. By the weak law of large

numbers for triangular arrays, we have that

1

bδ1nc − vn

bδ1nc∑
k=vn+1

|W̃ (n)
k |

p−→ γ

γ + β
+

β

γ + β

E[C2]

µC
as n→∞, (5.15)

where the right-hand side of (5.15) is less than E[C2]/µC . As noted at the start of the

proof, G
(n)
k = Yk = L

(n)
k (k = 1, 2, . . . , vn) with probability tending to 1 as n → ∞,

where Yk = m +
∑k
j=1 Z̃j . Therefore, for any ε2 satisfying δ1E[C2]/µC < ε2 < ε1, we

have that

P
(
A

(n)
bδ1nc > (1− ε1)n

)
≥ P

m+

vn∑
j=1

|Z̃j | ≤ (ε1 − ε2)n

 ∩
vn⋂
k=1

{
G

(n)
k = Yk = L

(n)
k

}
×P

 bδ1nc∑
k=vn+1

|W̃ (n)
k | ≤ ε2n

→ 1 as n→∞.



40 FRANK BALL AND PETER NEAL

In Section 4.3, we showed that, during the early stages of the epidemic, the con-

tribution to the spread of the disease from mixing events containing more than one

non-susceptible individual is negligible, and whilst the number of susceptibles remains

above (1 − ε1)n we can similarly bound the contribution from mixing events with

multiple non-susceptible individuals. Following the proof of Lemma 4.1, we have for

w = 1, 2, . . . , [n/2] that q(n)(x(n), y(n), w) ≥ q
(n)
1 (x(n), y(n), w), and using (4.12) and

(4.13), for x(n) ≥ (1− ε1)n, that

q
(n)
1 (x(n), y(n), w) ≥ nλ

y(n)

bn/2c∑
c=w+1

p
(n)
C (c)

cy(n)

n

[
1− 2(c− 1)ε1n

n

]
πc(w; c− 1, 1)

= λ

bn/2c∑
c=w+1

cp
(n)
C (c) [1− 2(c− 1)ε1]πc(w; c− 1, 1)

≥ β(n)ψ(n)
w ,

for all sufficiently large n, as for such n, ψ
(n)
w = 0 for all w > bn/2c. Hence, for k =

vn + 1, vn + 2, . . . , bδ1nc, provided A
(n)
k−1 ≥ (1− ε1)n, we can couple W

(n)
k (A

(n)
k−1, G

(n)
k−1)

and Ẑ
(n)
k , defined in (5.13) and (5.9), respectively, such that

Ẑ
(n)
k ≤W (n)

k (A
(n)
k−1, G

(n)
k−1),

for all sufficiently large n. Specifically, we couple deaths (downward steps) in L(n) with

removals in G(n), so W
(n)
k (A

(n)
k−1, G

(n)
k−1) = −1 if and only if Ẑ

(n)
k = −1. For w = 1, 2, . . .,

if W
(n)
k (A

(n)
k−1, G

(n)
k−1) = w then we set Ẑ

(n)
k = w with probability ψ

(n)
w /q(n)(x(n), y(n), w)

and set Ẑ
(n)
k = 0 otherwise. It then immediately follows, provided A

(n)
bδ1nc ≥ (1− ε1)n,

for k = vn + 1, vn + 2, . . . , bδ1nc, by induction that

G
(n)
k = G

(n)
k−1 +W

(n)
k (A

(n)
k−1, G

(n)
k−1) ≥ L(n)

k−1 + Ẑ
(n)
k = L

(n)
k ,

and (5.14) holds. �

The final step is to couple S(n) to G(n). By definition, the processes S(n) and

G(n) coincide for the first vn events, so (X
(n)
vn , Y

(n)
vn ) = (A

(n)
vn , G

(n)
vn ). Remember for

k = vn + 1, vn + 2, . . . , bδ1nc, that κn(k), defined in (5.4), denotes the number of

events that have occured in S(n) up to and including the kth event in G(n) with

by definition κn(vn) = vn. It is helpful to consider the epidemic processes E(n)

(S(n)) and E(n)G (G(n)) and to note that the rate at which events occur are {γ +
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∑n−1
v=0 q

(n)(x(n), y(n), v)}y(n) and {γ + β(n)}y(n), respectively. Therefore, the rate at

which an event which results in w = 1, 2, . . . , n−1 infections occurs when the population

is in state (x(n), y(n)) is q(n)(x(n), y(n), w)y(n) in both E(n) and E(n)G . Similarly, the rate

at which a removal occurs in state (x(n), y(n)) is γy(n). Thus the only difference in

event rates is for infection events which produce no infections where the rates are

q(n)(x(n), y(n), 0) and β(n) −
∑n−1
v=1 q

(n)(x(n), y(n), v) in E(n) and E(n)G , respectively.

Hence, if W
(n)
k (A

(n)
k−1, G

(n)
k−1) 6= 0, we set κn(k) = κn(k − 1) + 1, and

X
(n)
κn(k)

= X
(n)
κn(k−1) −W

(n)
k (A

(n)
k−1, G

(n)
k−1)1{W (n)

k (A
(n)
k−1,G

(n)
k−1)}

Y
(n)
κn(k)

= Y
(n)
κn(k−1) +W

(n)
k (A

(n)
k−1, G

(n)
k−1).

(5.16)

That is, each event which leads to a change in the state of the population in E(n)G (G(n))

has a corresponding event in E(n) (S(n)). Similarly, if W
(n)
k (A

(n)
k−1, G

(n)
k−1) = 0, we set

κn(k) = κn(k−1)+1 with probability q(n)(x(n), y(n), 0)/{β(n)−
∑n−1
v=1 q

(n)(x(n), y(n), v)}

and (5.16) holds with (X
(n)
κn(k)

, Yκn(k)) = (X
(n)
κn(k−1), Y

(n)
κn(k−1)), and with probability

κn(k) = κn(k − 1) corresponding to no event in E(n) (S(n)) and a ghost event in E(n)G

(G(n)). Thus there exists κn(bδ1nc) ≤ bδ1nc such that

Y
(n)
κn(bδ1nc) = G

(n)
bδ1nc. (5.17)

Proof of Theorem 3.2 b). Let vn = blog nc and un = b3vn/P(Z1 6= 0)c, so (un)

satisfies the conditions stated in Lemma 4.2. Let ε satisfy (5.6), and fix δ1 and ε1 < ε

such that 0 < δ1 < ε1µC/E[C2] (satisfy (5.7)). It follows from (5.3) that, for R0 > 1,

E[Z] > 0 and for T (n) ≥ vn with probability tending to 1 as n→∞, Yvn > vnE[Z]/2.

Given δ > 0 satisfying (5.10), it follows from (5.17) and Lemma 5.2 that with

probability tending to 1 as n→∞; for all k = vn + 1, vn + 2, . . . , bδ1nc,

Y
(n)
κn(k)

= G
(n)
k ≥ L(n)

k .

By setting bn = vnE[Z]/2 in Lemma 5.1, it follows that, as n→∞,

P

(
Y

(n)
κn(bδ1nc) ≥ bδnc, min

vn≤k<κn(bδ1nc)

{
Y

(n)
k

}
> 0

∣∣∣∣T (n) ≥ vn
)
→ 1. (5.18)

Given that T (n) ≥ Yκn(bδ1nc), (3.14) follows immediately. �

Finally, note that Corollary 3.2 follows immediately from (5.18) as supt≥0 I
(n)(t) ≥

Yκn(bδ1nc).
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6. Concluding comments

As noted in the introduction, the aims of the paper are to provide a rigorous

justification for the approximating branching process introduced in Ball and Neal [5]

and a proof of a key result (Theorem 3.2 of this paper) required for a central limit

theorem in [5] for the size of a major outbreak for epidemics with few initial infectives.

The latter clearly requires a limit theorem. A common approach to justifying rigorously

a branching process approximation is also via a limit theorem but for practical purposes

it is often useful to have information concerning the accuracy of the approximation for

finite population size n, as given for example by a bound on the total variation distance

between the epidemic E(n) in a population of size n and the limiting branching process

B. A detailed analysis of such accuracy of approximation is beyond the scope of the

paper, so here we make a few very brief comments.

Recall from Section 4.5 that Hn denotes the first event at which a mismatch occurs

between the embedded discrete jump processes of E(n) and B. It follows immediately

from results in the proof of Lemma 4.2, using notation in that lemma and its proof,

that

P(Hn ≤ un) ≤ P(Acn,0) + P(Acn,1) + P(Acn,2), (6.1)

thus yielding a bound on the total variation distance between E(n) and B over the first

un events for quantities that do not depend on the times of those events. The latter

can be included by adding P(Acn,3) to the right-hand side of (6.1). Bounds for P(Acn,i)

(i = 0, 1, 2, 3) can be obtained using results given in the proof of Lemma 4.2. For

approximation purposes a source of inaccuracy can be removed by using a branching

process defined analogously to B but with C replaced by C(n).
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