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A B S T R A C T   

The heating, ventilation and air-conditioning fault impacts vary with different seasonal climatic conditions, but 
the fault data may not be available under some seasons in real buildings due to the frequency and span of fault 
occurrences. This study evaluates the fault detection and diagnosis (FDD) performance differences of the pro
posed convolutional and recurrent neural networks under limited seasonal fault data scenarios and an ideal 
scenario covering climatic conditions from multiple seasons. The fault and normal data were gathered from fault 
simulations using a verified prototype building EnergyPlus model and two real fault datasets. Four different data 
experiments based on the simulated dataset were implemented to assess FDD performance differences, and two 
sets of further experiments based on each real fault dataset were conducted to verify the findings from previous 
experiments. The results show that the FDD architectures, trained on sufficient fault data under a certain season 
(s), indicate poor generalization ability to identify faults under unseen seasons. Moreover, the coverage of fault 
data under different seasons is more crucial in enhancing FDD performances than the amount of fault data under 
each season. These findings will help researchers consider this practical issue when evaluating new or existing 
data-driven FDD methods.   

1. Introduction 

The building sector was responsible for 31% of global final energy 
usage in 2020 [1]. As one of the main components of modern buildings, 
heating, ventilation and air-conditioning (HVAC) systems can account 
for 44% and 51% of building energy consumption in commercial [2] and 
residential buildings [3], respectively, in order to maintain indoor 
thermal comfort and air quality for occupants. However, the occurrence 
of faults, such as sensor faults and actuator faults, in HVAC systems leads 
to not only more than 20% of HVAC system energy demand increase [4], 
but also indoor environmental conditions degradations [5]. Therefore, 
timely and accurate detection, diagnosis and maintenance of faults are 
essential to keep the energy-efficient operation of HVAC systems, and 
comfortable and healthy indoor environments. The implementation of 
fault detection and diagnosis (FDD) methods are estimated to be able to 
save the HVAC energy consumption by 10–40% [6]. 

1.1. Fault detection and diagnosis background 

With the recent advancement in machine learning algorithms and 
computing power, and the increasing data availability through building 
management systems (BMS), data-driven FDD methods for HVAC sys
tems have been widely investigated. Compared with the conventional 
FDD methods [7], i.e., rule-based and model-based methods, 
data-driven methods offer more flexibility and easier implementation in 
practice [8]. Rule-based methods [9] rely on diagnostic rules to indicate 
faulty system operations, and the derivation of the rules requires deep 
expertise in system knowledge. Model-based methods [10] identify the 
faults by the deviations between the actual measurements of system 
conditions and energy consumption, and the predicted results from the 
physical or statistical models of HVAC systems. Hence, the applications 
of these two types of methods are specific to a certain system and 
challenging to implement. In contrast, data-driven methods [11] can 
automatically capture the underlying behaviours of faults through 
relevant features from HVAC system operational data, which addresses 
the limitations of conventional methods. 
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Among the various types of data-driven methods, supervised classi
fication machine learning algorithms [12] are feasible to solve HVAC 
system fault detection and diagnosis problems considering the avail
ability of labelled fault data. A data label is the ground truth of the HVAC 
system operating condition at a certain time step. Depending on the 
number of label classes defined in the dataset, the FDD problem for 
HVAC systems can be regarded as either a binary anomaly detection 
[13] problem or a multi-class classification problem [14]. A variety of 
supervised classification machine learning algorithms have been applied 
to identifying HVAC system faults. Sun et al. [15] integrated a support 
vector machine (SVM) with wavelet de-noising technique, and 
max-relevance and min-redundancy algorithm, in order to identify 
refrigerant charge faults for multi-split variable refrigeration flow (VRF) 
systems. Apart from SVM, Liu et al. [16] applied principal component 
analysis (PCA)-based exponentially-weighted moving average approach 
to diagnose refrigerant charge faults for VRF systems. Bode et al. [17] 
employed a series of machine learning algorithms, including logistic 
regression, k-nearest-neighbor, random forest, SVM, naive Bayes, etc., to 
detect heat pump faults, and test the transferability of FDD models from 
experimental fault data to real fault data. Du, Jin and Yang [18] 
developed an FDD model for variable air volume (VAV) systems using a 
wavelet neural network. Liu et al. [19] proposed a diagnostic Bayesian 
network-based FDD method for a solar aided heat pump system under 
insufficient data and domain knowledge. Allen, Rubaai and Chawla [20] 
developed an operation monitoring system for a VAV terminal based on 
fuzzy logic and artificial neural network. 

1.2. Deep learning fault detection and diagnosis studies 

Recently, deep neural networks, that consist of multiple learning 
layers to capture the deeper-levels of information from the input data 
[21], have gained increasing attention in the area of HVAC FDD. Due to 
the time series nature of HVAC operational data, convolutional neural 
network (CNN) [22] and recurrent neural network (RNN) [23] have 
performed well in supervised fault classification problems for HVAC 
systems. CNN is powerful in extracting meaningful features from time 
series data. Cheng et al. [24] proposed multiscale CNNs to extract 
discriminative features from multiscale raw sensor data of air handling 
units (AHU), and the proposed architecture demonstrated outstanding 
F1 scores [25]. Eom et al. [26] applied CNNs to the refrigerant charge 
amount prediction under both heating and cooling operation modes. Fan 
et al. [27] applied a two-dimensional (2D) CNN transfer learning 
framework in order to address the integration issue of HVAC fault data 
from different systems. Similarly, Li et al. [28] employed deep transfer 
learning strategies based on a benchmark CNN architecture to enhance 
FDD performances for different types and working conditions of chillers. 

RNN is robust in learning temporal patterns in time series data as it 
not only takes into account the information at the current time step, but 

also stores the information from the previous time step. Zhang et al. [29] 
used long short term memory (LSTM), a type of RNN architecture, to 
identify the AHU faults according to the sparse slow features. Taheri 
et al. [30] compared the FDD performances of seven deep RNN archi
tectures and found that the architecture of two LSTM layers with a deep 
transition output performed best among the seven architectures. In 
addition, Shahnazari et al. [31] adopted RNN to identify the faults using 
the FDD estimation filters based on predictive models built on the 
normal operational data for a VAV system. 

Taking advantage of both CNN and RNN, the architectures 
combining CNNs and RNNs have shown encouraging results in super
vised fault classification problems. Wang et al. [32] indicated that the 
combined one-dimensional (1D) CNN and gated recurrent unit (GRU), a 
type of RNN, outperformed other deep neural networks in identifying 
the faults of a chiller system. Qin et al. [33] applied the CNN-RNN 
combination to detect the high-speed train bogie faults, and the frame
work showed the highest f1 score of 0.97 compared with other CNNs or 
RNNs only methods. Canizo et al. [34] established a novel multi-head 
CNN-RNN framework for an elevator system, and the proposed frame
work could keep high detection performances under imbalanced normal 
and fault data distributions. However, there is still a lack of studies 
examining the application of this CNN-RNN combination in the HVAC 
systems FDD field, considering the number of input features from HVAC 
time-series data is significantly higher than those from the 
above-mentioned cases. Hence, this study employed the CNN-RNN 
combination to detect and diagnose the faults in HVAC systems. 

Although the proposed FDD methods based on these deep learning 
algorithms are robust, the performances of these methods are inclined to 
degrade when applied to HVAC FDD problems in real buildings. Two 
main obstacles to maintaining good performances, i.e., the imbalanced 
distributions of normal and fault data, and the insufficient amount of 
available fault data (Fig. 1), have already been mentioned in previous 
literature [35]. On the one hand, the normal operational time of an 
HVAC system is inherently longer than the faulty operational time, 
leading to imbalanced data sample distributions between normal and 
fault conditions. Hence, the bias towards the majority group, i.e., normal 
class, is imposed on FDD models trained on the imbalanced data 
(Fig. 1b). On the other hand, the amount of fault data is limited in most 
buildings and particularly lacking in newly built buildings where the 
fault occurrence rate is relatively low or retrofit buildings that are newly 
equipped with essential sensors and BMS to record the faults (Fig. 1c). 
The lack of operational data may lead to the poor generalization issue 
for data-driven FDD models. 

1.3. Research gap on fault detection and diagnosis practical issues 

Apart from the aforementioned two issues, there is another issue that 
has not yet been realized. According to Zhong et al. [36], HVAC fault 

Fig. 1. An illustration of FDD classification under (a) sufficiently balanced data; (b) imbalanced data; (c) insufficient data (the red line(s) in each case represent the 
possible separation boundaries for different data classes predicted by the FDD model). (For interpretation of the references to colour in this figure legend, the reader 
is referred to the Web version of this article.) 

F. Zhong et al.                                                                                                                                                                                                                                   



Energy 282 (2023) 128180

3

impacts vary with changing climate conditions, as HVAC system oper
ating conditions change with outdoor weather conditions. Lu et al. [37] 
indicated that HVAC fault impact patterns are correlated to system 
seasonal working conditions. However, the acquisition of fault data 
under all the seasons from real buildings is often difficult due to the 
frequency and the span of occurrences for different faults. This issue 
results in several possible data scenarios in reality: (1) the fault data 
under some classes only cover a certain season but is not available under 
other seasons (Fig. 2a); (2) the fault data under some classes covers two 
or more seasons, but is still lacking in remaining seasons (Fig. 2b); (3) 
the fault data under some classes cover all the seasons, and the total 
amount of data seems to be sufficient, but the amount of data under each 
season is limited (Fig. 2c). These possible data scenarios may induce 
potential performance degradations for HVAC FDD applications in real 
buildings, as a sufficient amount of fault data under one or several but 
not all the seasons cannot guarantee that the FDD models can fully learn 
different fault patterns in other season(s). Thus, the potential impact of 
this issue on the HVAC FDD performances was investigated in this study. 

1.4. Aim and objectives 

This study aims to evaluate the performance differences of a data- 
driven FDD method, namely, the combined CNN-RNN framework, 
under the limited seasonal fault data scenarios and the ideal fault data 
scenario covering climatic conditions from four seasons. The fault and 
normal data were collected from three sources: (1) fault simulations 
using a widely-used building performance simulation (BPS) program, 
EnergyPlus [38] based on a verified prototype medium office building 
model [39]; (2) experimental fault implementations from ASHRAE 
research project 1312 (ASHRAE RP1312) [40]; (3) experimental fault 
implementations using a flexible research platform (FRP) [41]. Based on 
the simulated fault dataset, three data scenarios representing different 
extents of the season coverage of fault data, i.e., one-season training 
scenario, dual-seasons training scenario and full-season quarter-size 
training scenario, and an ideal full-seasons full-size training scenario, 
were established for FDD evaluation experiments. According to the 
evaluation results, the performance differences among different data 

scenarios were compared, and the FDD performance degradation caused 
by fault data seasonal imbalance was identified. Moreover, two sets of 
further experiments based on the real fault datasets, including similar 
data scenarios to those from the experiments using the simulated data
set, were performed to verify the practical issue. As for the practical 
applications, the proposed architecture provides a general FDD method 
and can be extended to different case studies by modifying the number 
of CNN and RNN layer blocks or adding extra layer types to the baseline 
structure. The evaluation experiments for the seasonal data practical 
issue proposed in this study can be replicated following the architecture 
structure and hyperparameter configurations, and extended to more 
sophisticated quantitative experiments with specific seasonal data 
imbalance ratios. It should be noted that the values of FDD performance 
metrics may vary when reproducing experimental results due to 
randomness in data sampling and shuffling and differences in FDD 
training environment settings, but similar general trends should be 
observed. 

2. Method 

The workflow for evaluating the potential practical issue of limited 
fault data under one or multiple seasons is illustrated in Fig. 3. Firstly, 
the HVAC fault data was obtained from EnergyPlus fault simulations 
using a verified prototype building model and two real fault datasets. 
The descriptions for the simulated and real datasets are provided in 
sections 2.1 and 2.2, respectively. The collected data from each source 
was divided into four subsets according to the four seasons of a year, and 
the proportion of samples for each class in each subset was preserved as 
that in the original dataset. In the second stage, the 1D time-series data 
was then normalized and transformed into 2D data through a sliding 
window, as described in section 2.3. To ensure the detection and diag
nosis ability of the proposed data-driven method is not the bottleneck 
when evaluating FDD performances under different data scenarios, an 
advanced deep learning architecture, i.e., combined CNN-RNN archi
tecture, was employed in the third stage and explained in detail in 
section 2.4. Two types of cutting-edge RNNs, LSTM and GRU, that solve 
the vanishing and exploding gradient issues [42] for simple RNNs, were 

Fig. 2. Potential examples of FDD classification for real data scenarios and the ideal data scenario (the red dash line in each case represents the possible separation 
boundary predicted by the FDD model to differentiate the normal data from the fault A data). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.) 
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respectively combined with CNNs to detect and identify HVAC faults. 
Based on the simulated dataset, the proposed architectures were 
assessed under three data scenarios based on the potential practical issue 
of limited seasonal fault data, and an ideal data scenario covering the 
climatic conditions of four seasons. After the initial evaluation, the ar
chitectures were assessed using similar data scenarios established based 
on the other two real fault datasets to verify the practical issue. The FDD 
evaluated performance metrics are described in section 2.5, and the 
details for the evaluation experiments are provided in section 2.6. 

2.1. Description of simulated fault dataset 

The prototype medium office building model from the department of 
energy (DOE) [39] was adopted to generate HVAC normal and fault data 
in this study. The prototype commercial building models were widely 
used for modeling the building energy consumption [43], assessing the 
HVAC fault impacts [44] and predicting the power usage [45] of com
mercial buildings under various climatic conditions. The medium office 
building is a three-level building (Fig. 4a) with a core and four perimeter 
zones on each level (Fig. 4b). The building is equipped with a VAV 
system coupled with three packaged air conditioners. Each air 

Fig. 3. Research workflow for evaluating the impact of different fault data scenarios on FDD performances.  
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conditioner has a direct expansion (DX) cooling coil and a gas-fueled 
heating coil and serves each floor of the building. Regarding the air 
distribution, each zone is equipped with a VAV terminal unit which has 

an electric reheat coil and an outdoor air (OA) damper to adjust the OA 
fraction for the supply air (SA) (Fig. 4c). The simulated fault dataset was 
generated using fault simulations on EnergyPlus under the marine 
climate of London. The faults were modeled using Python programming 
language [46] according to fault modeling methods provided in Refs. 
[47,48] and introduced into the verified prototype medium office 
building model. 14 faults, including control, sensor, packaged air 
conditioner and VAV terminal faults, were simulated at a 5-min interval 
for 48 h under each season and the normal operating conditions of the 
VAV system were simulated at the same interval for adjacent 272 h in 
total before and after fault occurrences. Thus, each fault case accom
panied by the adjacent normal system operation produced 3840 data 
samples in total for 320 h per season, and each one-season dataset has 
53,760 samples for 4480 h. Overall, the ratio of the total amount of fault 
data to normal data is 0.18. The fault intensities, class labels and sample 
sizes for fault and normal classes are provided in Table 1. The more 
in-depth explanations for each fault can be found in Ref. [36]. 

2.2. Description of real fault datasets 

The two real fault datasets were gathered from ASHRAE RP1312 
[40] and National Renewable Energy Laboratory (NREL)’s fault tests 
[41], and are used to verify the practical issue identified from the fault 
data experiments based on the simulated dataset. The ASHRAE RP1312 
carried out experimental measurements for an AHU in the Iowa Energy 
Resource Station under both fault and normal operating conditions. The 
Energy Resource Station is comprised of AHU–1, responsible for the 
common areas of the test facility; AHU–A and AHU–B, which are iden
tical and each serves four mirror zones, as shown in Fig. 5a. Thus, a set of 
comparison experiments were carried out in these two AHUs. The fault 
tests were implemented using the AHU-A, and the comparative normal 
operating conditions were monitored using the AHU–B. The measure
ments for 6 faults, implemented under multiple seasons, i.e., spring, 
summer and winter, were extracted from the original raw dataset. The 

Fig. 4. (A) DOE prototype medium office building model; (b) The medium office building floor plan; (c) The layout of a typical VAV system with reheat coils and OA 
economizer [49]. 

Table 1 
Simulated HVAC fault and normal data descriptions.  

Class 
label 

Fault type Fault intensity Sample size 

0 Normal  45,696 per 
season 

1 No overnight setback Setpoint setback is 
off 

576 per 
season 

2 Cooling coil SA temperature 
sensor positive bias 

+2 ◦C 576 per 
season 

3 Cooling coil SA temperature 
sensor negative bias 

− 2 ◦C 576 per 
season 

4 Heating coil SA temperature 
positive sensor bias 

+2 ◦C 576 per 
season 

5 Heating coil SA temperature 
negative sensor bias 

− 2 ◦C 576 per 
season 

6 OA temperature sensor positive 
bias 

+2 ◦C 576 per 
season 

7 OA temperature sensor negative 
bias 

− 2 ◦C 576 per 
season 

8 Thermostat positive offset +2 ◦C 576 per 
season 

9 Thermostat negative offset − 2 ◦C 576 per 
season 

10 Supply fan motor efficiency 
degradation 

15% 576 per 
season 

11 Supply fan stuck Stuck at the 50% 
speed 

576 per 
season 

12 OA damper stuck Stuck at the 25% 
position 

576 per 
season 

13 OA damper leakage Leaking 
percentage 40% 

576 per 
season 

14 VAV damper leakage Leaking 
percentage 40% 

576 per 
season  
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faults are indicated to record at a 1-min interval from 6:00 to 18:00 for 
both AHUs. The fault types and their intensities, and sample sizes for 
fault and normal classes are presented in Table 2. The total amounts of 
data samples under spring, summer and winter are 17,280, 17,280 and 
11,520, respectively. Besides, the ratio of the total amount of fault data 
to normal data is 0.41. 

Regarding the NREL’s fault dataset, the fault tests were performed in 
an FRP (Fig. 5b). The FRP is equipped with a DX rooftop unit (RTU) and 
a reheat VAV system. 32 fault tests were conducted in the FRP, and five 
of them, including HVAC setpoint setback faults and thermostat biases 
were taken into account in the verification. The reason for selecting 
these five faults is that only these faults were tested under multiple 

seasons, i.e., summer and winter. The fault data was recorded at a 15- 
min interval, and each fault test lasted for 24 h. The fault intensities 
and sample sizes for fault and normal classes are also shown in Table 2. 
Due to the limited amount of samples under each fault class, the fault 
amount under each season was extracted equally from the original raw 
dataset, in order to avoid the original large imbalance ratio between 
fault data under different seasons. The total amount of data samples is 
1056 for each season, and the ratio of the total amount of fault data to 
normal data is 0.17. 

2.3. Data preprocessing techniques 

The outliers in the raw data were removed, and the data for each 
feature was normalized using the maximum and minimum values of 
each feature to convert the data into the range between zero and one: 

X’
i =

Xi − min(Xi)

max(Xi) − min(Xi)
(1)  

where Xi is the original data sequence of each feature, X′
i is the 

normalized data sequence of each feature, max(Xi) and min(Xi) are the 
maximum and minimum values of the data sequence of each feature. 

After the data normalization, the 1D time series data was trans
formed into 2D data using a sliding window since a single data sample 
was not informative enough to indicate a fault occurrence due to the 
dynamic operation of HVAC systems. The number of windows Wn was 
calculated using the following equation (2): 

Wn =
Sn − Wl

Ws
+ 1 (2)  

Where Sn is the number of data samples within the data sequence, Wl is 

Fig. 5. (A) The layout of Iowa Energy Resource Station; (b) a 3D model of the FRP [50].  

Table 2 
Real HVAC fault and normal data descriptions.  

ASHRAE RP1312 Dataset 

Class 
label 

Fault type Fault intensity Sample size (spring/ 
summer/winter) 

0 Normal  11,883/12,664/8076 
1 OA damper stuck fully 

closed 
Stuck at the 0% 
position 

722/722/722 

2 EA damper stuck fully 
open 

Stuck at the 100% 
position 

1440/1126/1319 

3 EA damper stuck fully 
closed 

Stuck at the 0% 
position 

722/721/721 

4 Cooling coil valve stuck 
fully closed 

Stuck at the 0% 
position 

715/714/N/A 

5 Cooling coil valve stuck 
fully open 

Stuck at the 100% 
position 

1077/612/682 

6 Return fan complete 
failure 

Off 721/721/N/A 

FRP Dataset 
Class 

label 
Fault type Fault intensity Sample size (summer/ 

winter) 
0 Normal  576/576 
1 HVAC setback delayed 

onset 
3 h 96/96 

2 HVAC setback early 
termination 

3 h 96/96 

3 HVAC no setpoint 
setback 

Off 96/96 

4 Thermostat positive 
bias 

2.2 ◦C 96/96 

5 Thermostat negative 
bias 

2.2 ◦C 96/96  

Table 3 
Sliding window specifications for the simulated dataset.  

Window Length Window stride Number of windows in each one-season dataset 

6 6 8960 
12 12 4480 
24 24 2240  

Fig. 6. The proposed combined CNN-RNN architectures, one using LSTMs as 
recurrent layers and another using GRUs as recurrent layers. 
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the window length, Ws is the window sliding stride. The candidates of 
the window length considered in a parametric study were 6, 12 and 24 
and also used for the window stride correspondingly, which means that 
there is no overlapping between adjacent windows. The resulting 
dataset sizes under each season for the simulated dataset are presented 
in Table 3. 

2.4. Proposed fault detection and diagnosis architecture 

The proposed architecture combines the convolutional and recurrent 
layers, as illustrated in Fig. 6. 

Compared with the traditional shallow machine learning algorithms, 
such as SVM and fully-connected neural networks, the combined CNN- 
RNN architecture has the following advantages: (1) the convolutional 
part of the architecture can extract discriminative features from HVAC 

time series data, which contains a large number of sensor signal se
quences and complex dynamic fault patterns [24], particularly in the 
present study; (2) the recurrent part can learn the temporal patterns in 
HVAC operational datasets that are usually high-dimensional [30]; (3) 
the CNN-RNN architecture results in an end-to-end learning, which 
mitigates the potential performance degradation due to the separation of 
feature extraction and classification [34]. The preliminary explanations 
for CNN and RNNs are provided in section 2.4.1. The structure of the 
proposed architecture and the used hyperparameters are presented in 
section 2.4.2. 

2.4.1. Preliminary theory for the architecture 

2.4.1.1. Convolutional neural network. Convolution layers are able to 
capture insightful features from input data through the convolutional 

Fig. 7. An example of 1D convolution operation.  

Fig. 8. (A) A typical recurrent layer; (b) The basic structures for vanilla RNN, GRU and LSTM.  
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kernel. As a result, the output feature map is generated by sliding the 
kernel over the input data or the feature map generated by the preceding 
convolution layer, as illustrated in Fig. 7. The output of a 1D convolution 
can be usually denoted as [24]: 

(I ∗ K)i =
∑N− 1

j=0
IjKi− j (3)  

where I represents the input time series sequence of length N and K is the 
convolutional kernel. 

There are several key hyperparameters regarding the convolutional 
layer. The number of kernels represents the number of output feature 
maps from the current convolutional layer. The kernel size defines the 
scale of the convolution operation, i.e., the length of the 1D convolu
tional window in this case (green windows in Fig. 7). The stride is the 
step that the kernel slides over the input feature map. The padding 
parameter can be either ‘valid’ or ‘same’. ‘Valid’ means that no padding 
is applied to input feature map(s). ‘Same’ leads to adding zeros around 
the edges of each input feature map so that the dimensionality of each 
output feature map can be kept the same as that of the corresponding 
input feature map. Apart from these, the activation function, which is 
used to transform the weighted sum of the input into the output of each 
node from each layer, for the convolutional layer is usually rectified 
linear activation function (ReLU), as expressed in Eqn. (4). 

f (x) = max (0, x) (4)  

2.4.1.2. Recurrent neural network. Recurrent layers are capable of 
storing useful information from previous time steps and employing them 
for future classifications and predictions. As presented in Fig. 8a, a 
recurrent layer consists of a single memory cell that repeatedly com
putes the output Yt for each time step. At each time step, the memory cell 
takes the input time series (starting from X0 to Xt) at that time step and 
generates an output (starting from Y0 to Yt) for that time step. Besides, a 
hidden state vector (starting from H0 to Ht) is generated at each time 
step and fed as an extra input to the memory cell at the next time step. 
However, vanilla RNNs usually suffer from vanishing gradient issue, and 
therefore two variants of the vanilla RNN, GRU and LSTM, have been 
adopted as solutions to this issue (Fig. 8b). 

The LSTM was proposed by Hochreiter and Schmidhuber [51] in 
1997 to resolve the vanishing gradient issue. Instead of using an acti
vation function of the hidden state in the memory cells, three gates were 

employed in the memory cells: the input, forget and output gates. Each 
gate uses a sigmoid activation function to control the values passing 
through the gate. The forget gate ft determines the degree of the infor
mation from the previous state to be forgotten. The output gate ot 
controls which part of the cell is output to the hidden state ht. The 
mathematical operations for the input it , forget ft and output gates ot, the 
candidate cell c̃t, the updated cell state ct and the output of the current 
hidden unit ht are expressed as follows: 

it = σ(Wi[xt + ht− 1] + bi ) (5)  

ft = σ
(
Wf [xt + ht− 1] + bf

)
(6)  

ot = σ(Wo[xt + ht− 1] + bo ) (7)  

ct
∼ = tanh(Wc[xt + ht− 1] + bc ) (8)  

ct = ct− 1 × ft + ct
∼ × it (9)  

ht = ot × tanh(ct) (10)  

where Wi, Wf , Wo and Wc are the weighting vectors, bi, bf , bo, bc are the 
bias vectors, the subscripts i, f, o and c denote the input gate, forget gate, 
output gate and the memory cell, respectively. σ denotes the sigmoid 
function and tanh is the hyperbolic tangent function. 

GRU was proposed by Cho, van Merriënboer and Bahdanau [52] in 
2014. Compared with LSTM, the GRU has only two gates and less pa
rameters, and thus the training of GRU is more efficient and requires less 
computational power. The GRU consists of two gates, i.e., the update 
gate and the reset gate. Similar to the gates used in LSTM, the sigmoid 
activation function is used for each gate. The update gate determines the 
degree of the cell state to be updated with the candidate state. The reset 
gate determines whether the previous hidden state should be kept or not. 
The mathematical operations for the update gate, reset gate, the 
candidate cell and the output of the current hidden unit are represented 
as follows: 

zt = σ(Wz[xt + ht− 1] + bz ) (11)  

rt = σ(Wr[xt + ht− 1] + br ) (12)  

ht
∼ = tanh(Wh[xt + rt × ht− 1] + bh

)
(13)  

ht = (1 − zt) × ht− 1 + zt × ht
∼ (14)  

where Wz, Wr and Wh are the weighting vectors, bz, br and bh are the bias 
vectors, the subscripts z, r, and h denote the update gate, the reset gate 
and the hidden unit, respectively. 

2.4.2. Structure of the proposed architecture 
The proposed architecture consists of four stacked 1D convolutional 

layers and two stacked recurrent layers. Each convolutional layer is 
followed by a batch normalization (BN) layer [53] to accelerate the 
architecture training. In addition, the only dropout layer [54] is added 
after all convolutional layers and BN layers to avoid the overfitting issue 
and the disharmony between the dropout and BN techniques [55]. The 
dropout rates of 0.15, 0.2 and 0.25 were attempted in this study. Be
sides, ReLu [56] is applied to each convolutional layer as the activation 
function, and the ‘same’ padding [56] is employed for the convolutions. 
The candidates for the number of convolutional kernels in each layer 
and the kernel size for the experiments using the simulated dataset are 
shown in Table 4. As for the recurrent layers, two types of cutting edge 
RNNs are employed in this part of the architecture, namely, LSTMs and 
GRUs. Both types of recurrent layers are able to learn long-term tem
poral correlations. ‘Tanh’ activation function [54] is adopted for the 
recurrent layers. The regularization of the recurrent layers is imple
mented by applying ‘recurrent dropout’ to the second recurrent layer, 

Table 4 
Architecture hyperparameters for the experiments using the simulated dataset.  

Hyperparameters Values 

Number of kernels in the input 
convolutional layer Kn,1 

150, 200, 250 and 300 

Number of kernels in the second 
convolutional layer Kn,2 

300, 350, 400, 450, 500, 550 and 600 

Number of kernels in the third 
convolutional layer Kn,3 

2 Kn,2 

Number of kernels in the third 
convolutional layer Kn,4 

2 Kn,3 

Kernel size 3, 5, 7 and 9 
Stride 1 
Padding ‘same’ 
Convolutional dropout rate 0.15, 0.2 and 0.25 
Number of units in recurrent layers 64, 128, 256 and 512 
Recurrent dropout rate 0.1 
Window length 6, 12 and 24 
Batch sizes 32, 56, 64, 112 and 128 
Training data size ratio 80%, 70% and 60% 
Cross validation strategy and number of 

resplitting iterations 
Stratified shuffle split for 10 times 

Optimizer SGD 
Epochs 500 (with early stopping) 
Learning rate 0.0001–0.002 (exact value depending 

on experiments)  
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which drops the connections between the recurrent units [57], and the 
dropout rate is set to 0.1. Apart from this, the candidates for the number 
of recurrent units in each layer are 64, 128, 256 and 512. At last, a dense 
layer with the activation function of ‘softmax’ [56] is used after the 
recurrent layers to produce the probability for each class. 

The architecture was trained using back-propagation [58] to update 
the weights and biases of the neurons. The back-propagation method 
propagates backward the loss between the predicted output and the 
actual output from the output layer to the input layer. The gradient of 
the loss is then calculated with respect to the weight and bias of each 
neuron, as follows: 

∂L

∂W [l] =
∂L

∂z[l]
⋅
[
a[l− 1] ]T (15)  

∂L

∂b[l] =
∂L

∂z[l]
(16)  

z[l] = W [l]⋅a[l− 1] + b[l] (17)  

where L is the loss function, W[l] is the weight vector of the l th layer, b[l]

is the bias vector of the l th layer, z[l] is the weighted sum of the acti
vations from the previous layer with a bias, a[l− 1] is the activations from 
the previous layer. The gradient descent algorithm updates the weights 
and biases of each neuron in order to miminize the loss. In this study, the 
stochastic gradient descent (SGD) algorithm [59] was used as the opti
mizer since it performs a parameter update for each training sample and 
can reach fast convergence. 

θ = θ − η⋅∇θJ
(
θ; x(i); y(i)

)
(18)  

where θ is the model parameters, η is the learning rate, J(θ; x(i); y(i)) is 
the cost function for each training sample x(i) and its corresponding label 
y(i). 

Due to the multi-class classification nature of the FDD problem, 
categorical cross entropy was used as the loss function. Besides, the 
maximum number of epochs was set to 500 and the early stopping 

Fig. 9. The proposed data experiments under the 
simulated fault dataset: (a) Training data: a one- 
season dataset; testing data: each season’s dataset 
(spring as an example here). (b) Training data: a 
mixed dataset of two seasons of half size; testing data: 
each season’s dataset (a mixed dataset of spring and 
summer as an example here). (c) Training data: a 
mixed dataset of four seasons of quarter size; testing 
data: each season’s dataset. (d) Training data: a 
mixed dataset of four seasons of full size; testing data: 
each season’s dataset.   

Fig. 10. The proposed data experiments under the 
ASHRAE RP1312 fault dataset: (a) Training data: a 
one-season dataset; testing data: each season’s data
set (spring as an example here). (b) Training data: a 
mixed dataset of two seasons of half size; testing data: 
each season’s dataset (a mixed dataset of spring and 
summer as an example here). (c) Training data: a 
mixed dataset of three seasons of quarter size; testing 
data: each season’s dataset. (d) Training data: a 
mixed dataset of three seasons of full size; testing 
data: each season’s dataset.   

Fig. 11. The proposed data experiments under the NREL’s fault dataset: (a) Training data: the summer dataset; testing data: each season’s dataset. (b) Training data: 
the winter dataset; testing data: each season’s dataset. (c) Training data: a mixed dataset of summer and winter of half size from each; testing data: each sea
son’s dataset. 

Table 5 
Baseline configurations for the two architectures used in the general hyper
parameter analysis.  

Architecture Combined CNN-LSTM Combined CNN-GRU 

Number of kernels for Conv 1 150 200 
Number of kernels for Conv 2 500 450 
Number of kernels for Conv 3 1000 900 
Number of kernels for Conv 4 2000 1800 
Kernel size 3 3 
Convolutional dropout rate 0.15 0.2 
Number units for Recurrent 1 512 512 
Number units for Recurrent 2 256 256 
Recurrent dropout rate 0.1 0.1  
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technique was employed to stop the training if the model performances 
converged before the defined maximum number of epochs. The best 
learning rate for each experiment was found by setting a learning rate 
scheduler that gradually grows from 0.00001 to 0.1 during a training 
practice. The candidates for batch sizes and training data size ratios are 
presented in Table 4. The validation and testing data size was defined as 
50% of the remaining dataset, respectively. In addition, the stratified 
shuffle split method [60] was used as the cross validation strategy, 
which splits the dataset by preserving the original proportion of data 
samples from each class in the split sets. The split was repeated ten 
times, and thus the architecture was trained, validated and tested on ten 
different data distributions. All the experiments were conducted using a 
workstation with an AMD Ryzen 9 3900X 12-core processor, an Nvidia 

RTX 3080 graphic card and 32 GB RAM. 

2.5. Fault detection and diagnosis evaluation metrics 

Due to the imbalanced multi-class classification nature of the FDD 
problem, some machine learning evaluation metrics, such as accuracy, 
may produce misleading high scores that incorrectly reflect good model 
performances, as data-driven FDD models have a strong capability of 
identifying the majority class, i.e., the HVAC normal conditions. 
Therefore, F1 score [25] and Cohen’s Kappa (CK) score [61] were used 
to evaluate the general classification capability of the proposed FDD 
architectures. The average metric scores of the ten-times resplitting it
erations were used to evaluate the architectures’ performances in 

Fig. 12. FDD performance comparisons among different (a) window lengths; (b) training data size ratios; (c) batch sizes.  

Table 6 
FDD highest test metrics scores under each season for the architectures trained on one-season, dual-seasons and full-seasons datasets. (The values in italics are the 
larger scores between the two architectures under the same test season and training scenario, and the values in bold are the highest scores under this test season for one- 
season, dual-seasons and full-seasons scenarios, respectively).  

Training data Architecture Spring Summer Autumn Winter 

F1 CK F1 CK F1 CK F1 CK 

Spring CNN-LSTM 0.975 0.971 0.081 0.020 0.074 0.037 0.072 0.027 
CNN-GRU 0.975 0.970 0.079 0.009 0.072 0.041 0.078 0.048 

Summer CNN-LSTM 0.068 0.010 0.972 0.966 0.082 0.014 0.067 − 0.007 
CNN-GRU 0.075 0.027 0.968 0.961 0.089 0.049 0.079 0.028 

Autumn CNN-LSTM 0.080 0.018 0.059 0.015 0.983 0.980 0.064 0.007 
CNN-GRU 0.087 0.030 0.057 0.006 0.984 0.982 0.070 0.011 

Winter CNN-LSTM 0.078 0.023 0.054 0.016 0.079 0.023 0.979 0.975 
CNN-GRU 0.082 0.026 0.055 0.016 0.084 0.033 0.982 0.979 

Spring&Summer CNN-LSTM 0.937 0.925 0.895 0.873 0.099 0.055 0.081 0.037 
CNN-GRU 0.942 0.933 0.901 0.880 0.109 0.067 0.087 0.046 

Summer&Winter CNN-LSTM 0.122 0.104 0.908 0.890 0.115 0.092 0.948 0.940 
CNN-GRU 0.118 0.104 0.902 0.884 0.123 0.101 0.949 0.941 

Quarter size CNN-LSTM 0.862 0.841 0.790 0.759 0.862 0.842 0.858 0.836 
CNN-GRU 0.850 0.827 0.771 0.737 0.846 0.823 0.845 0.821 

Full size CNN-LSTM 0.977 0.973 0.951 0.940 0.972 0.968 0.973 0.969 
CNN-GRU 0.978 0.974 0.958 0.948 0.977 0.973 0.978 0.974  
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different data experiments. The F1 score for each class is calculated 
using the precision and recall scores for each class as follows: 

F1 = 2⋅
Precision⋅Recall

Precision + Recall
(19)  

where precision and recall are calculated using the following equations: 

Precision =
TP

TP + FP
(20)  

Recall =
TP

TP + FN
(21)  

Where TP represents the number of true positive predictions, FP repre
sents the number of false positive predictions, FN represents the number 
of false negative predictions [62]. 

The Cohen’s Kappa score k is calculated by the following equation: 

k =
po − pe

1 − pe
(22)  

Where po represents the observed proportional agreement of the true 
and predicted labels, pe represents the probability of random agreement 
of both true and predicted labels. 

In addition, the fault detection rate, fault diagnosis rate, false posi
tive rate and false negative rate were calculated based on the confusion 
matrices. The fault detection rate is defined as the ratio of the amount of 
detected faults to the total amount of faults. The fault diagnosis rate 
represents the ratio of the amount of correctly diagnosed faults (the fault 
type is correctly predicted) to the total amount of detected faults. The 
false positive rate is the ratio of the amount of the actually negative 
(normal conditions) samples that are predicted as positive samples 
(faults) to the total amount of negative samples. The false negative rate 
is the ratio of the amount of the actually positive (faulty conditions) 
samples that are predicted as negative samples (normal conditions) to 
the total amount of positive samples. 

2.6. Fault detection and diagnosis evaluation experiments setup 

The experiments for assessing the hypothetical fault detection and 
diagnosis practical issue consist of three parts: (1) some pre-experiments 

Fig. 13. Highest F1 scores among architectures trained on (a) one-season datasets, (b) dual-seasons datasets and full-seasons datasets; highest CK scores among 
architectures trained on (c) one-season datasets, (d) dual-seasons datasets and full-seasons datasets (‘All 1/4 size’ represents the full-season quarter size scenario; ‘All 
full size’ represents the full-season full size scenario). 

Table 7 
Average fault detection rate, fault diagnosis rate, false positive rate and false 
negative rate among 10 cross-validation times for the best architecture in ex
periments 1–4 under the simulated dataset.  

Test 
dataset 

Fault detection 
rate 

Fault diagnosis 
rate 

False positive 
rate 

False negative 
rate 

Exp 1: CNN-LSTM trained on the spring dataset 
Spring 0.999 1.000 0.009 0.001 
Summer 0.208 0.144 0.178 0.792 
Autumn 0.176 0.128 0.117 0.824 
Winter 0.091 0.111 0.058 0.909 
Exp 2: CNN-GRU trained on the mixed spring-summer dataset 
Spring 0.970 0.999 0.019 0.030 
Summer 0.947 1.000 0.033 0.053 
Autumn 0.122 0.411 0.066 0.878 
Winter 0.071 0.254 0.029 0.929 
Exp 3: CNN-LSTM trained on the full-seasons quarter-size mixed dataset 
Spring 0.902 0.998 0.034 0.098 
Summer 0.829 1.000 0.046 0.164 
Autumn 0.909 0.993 0.029 0.091 
Winter 0.900 0.996 0.037 0.100 
Exp 4: CNN-GRU trained on the full-seasons full-size mixed dataset 
Spring 0.999 1.000 0.008 0.001 
Summer 0.996 1.000 0.017 0.004 
Autumn 0.998 1.000 0.009 0.002 
Winter 0.994 1.000 0.007 0.006  
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were conducted to find the optimal values for window length, training 
data size ratio and batch size; (2) four data experiments, considering the 
potential practical issue of limited seasonal fault data and an ideal data 
scenario, were implemented using the simulated fault dataset; (3) 
similar experiments to those based on the simulate dataset were carried 
out using the real fault datasets, in order to verify the findings obtained 
from experiments in part 2. 

2.6.1. Hyperparameter tuning analysis 
A hyperparameter analysis was first conducted to determine the 

values of some general parameters, including window length, training 
data size and batch size. The candidates for these hyperparameters, as 
listed in Table 4, were selected for evaluating the resultant FDD per
formances. The general hyperparameter tuning was performed on a 
dataset of a certain season. The objective of this analysis was to first fix 
these general hyperparameters to the optimal values, in order to save the 
computational resource for searching the remaining deep neural 
network hyperparameters in the data experiments. 

2.6.2. Fault detection and diagnosis evaluation data scenarios 
The simulated dataset includes four equal-sized subsets for four 

seasons, respectively. The sample amount of each fault class is the same 
in each subset. Based on the simulated dataset, four data experiments 
were proposed to assess the influence of the practical issue of limited 
fault data under one or multiple seasons on the proposed FDD archi
tectures’ performances:  

(1) The architectures were trained on a certain season’s training set 
and tested on each season’s full-size dataset, as illustrated in 
Fig. 9a. 

(2) The architectures were trained on a mixed training set that con
tains half data from each of two different seasons and is of the 
same total size as the one-season training set in experiment 1, and 
tested on each season’s full-size dataset, as illustrated in Fig. 9b. 

(3) The architectures were trained on a mixed training set that in
cludes a quarter of data from each season and is also of the same 
size as the one-season training set in experiment 1, and tested on 
each season’s full-size dataset, as illustrated in Fig. 9c. 

(4) The architectures were trained on a mixed training set that con
tains full-size data from each season and is four times the size of 
the one-season training set in experiment 1, and tested on each 
season’s full-size dataset, as illustrated in Fig. 9d. 

It should be noted that the amount of normal and fault data in each 
scenario is stratified, which means that the imbalanced ratio of each 
fault class to the normal class is maintained, and the proportion of each 
fault class in each mixed dataset remains the same as 0.02 as that in each 
one-season’s dataset. It should also be noted that the effect of imbal
anced ratios on the FDD performances is not evaluated in this study since 
this has already been studied in Ref. [35]. 

2.6.3. Fault detection and diagnosis practical issue verification 
To verify the findings from the previous experiments detailed in 

section 2.6.2, similar data scenarios were proposed according to the 

Fig. 14. Fault detection rate, fault diagnosis rate, false negative rate and false positive rate tested under each season for experiments 1–4 using the simulated dataset 
(‘All 1/4’ represents the full-season quarter size scenario; ‘All full’ represents the full-season full size scenario). 
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ASHRAE RP1312 dataset. The only difference between this set of ex
periments and the previous set of experiments in section 2.6.2 lies in the 
coverage of seasons. The seasons considered in this set of experiments 
are only spring, summer and winter due to the data availability in this 
dataset, as illustrated in Fig. 10. In addition, the NREL’s dataset is fully 
used to produce three data scenarios, including two one-season training 
scenarios using the summer and winter datasets, respectively, and a 
mixed dual-seasons scenario of summer and winter, as presented in 
Fig. 11. 

3. Results and discussions 

The hyperparameter analysis for the window length, training data 
size ratio and batch size is presented in section 3.1. The results for four 
experiments, considering the potential practical issue and an ideal data 
scenario, based on the simulated fault dataset are discussed in section 
3.2. The verification results, based on the real fault datasets, for findings 
from the simulated data experiments are explained in section 3.3. 

3.1. General hyperparameter analysis results 

This analysis was implemented using the combined CNN-LSTM and 
the combined CNN-GRU, respectively. The baseline configurations for 
these two architectures are presented in Table 5. The FDD performances, 
in terms of F1 and CK scores, for window lengths, training data size 
ratios, and batch sizes, are illustrated in Fig. 12. The window length of 6 

contributed to the highest scores, while the window lengths of 12 and 24 
led to lower and significantly lower scores. This indicates that the 
smaller window length is more robust in capturing the fault patterns, as 
the smaller window length leads to a larger number of windows fed into 
the FDD model training when there is a limited amount of fault data 
available for training. As for the training data size ratio, the performance 
scores reduced with the decrease in the ratio. Besides, an adequate 
amount of data needs to be left for validating and testing the model, and 
thus the training data size ratio is set to 0.8 without considering higher 
ratios. Regarding the batch size, the peak of the performance scores can 
be observed at the batch size of 112. On one hand, the batch size of 128 
included a higher variability in feature patterns and a higher number of 
windows for each class, but failed to outperform the batch size of 112, 
which may be due to the less times of model weights adjustments per 
epoch when the batch size of 128 is used. On the other hand, the smaller 
batches than 112 indeed increased the times for updating the model 
weights per epoch, however, they were likely to contain lower vari
ability in feature patterns and some of them might not be able to take 
into account sufficient amount of data windows for each class. To 
conclude, the window length of 6, the training data size ratio of 0.8 and 
the batch size of 112 are used for further experiments. 

3.2. Fault detection and diagnosis evaluation experiments using simulated 
fault dataset 

The results obtained from the four data experiments are discussed in 

Fig. 15. Scatterplots for the hidden features extracted by the best architecture CNN-LSTM tested under (a) spring; (b) summer; (c) autumn; (d) winter; in experiment 
1 using the t-SNE method. 

F. Zhong et al.                                                                                                                                                                                                                                   



Energy 282 (2023) 128180

14

subsections 3.2.1-3.2.4. The highest F1 and CK scores tested under each 
season for both architectures, CNN-LSTM and CNN-GRU, under each 
experiment are displayed in Table 6. Based on Table 6, the higher F1 and 
CK scores between the two architectures are shown in Fig. 13. In addi
tion, the average fault detection, fault diagnosis, false positive and false 
negative rates among 10 cross-validation iterations for the best archi
tecture, trained on the spring only, mixed spring and summer, full- 
seasons quarter-size and full-seasons full-size datasets, are shown in 
Table 7 and illustrated in Fig. 14. 

3.2.1. Experiment 1 results: one-season dataset evaluation 
Experiment 1 was conducted based on each one-season dataset. 

Comparing the test performances of the two architectures under the 
season same as the training data’s in Table 6, the CNN-GRU architecture 
outperformed another architecture CNN-LSTM under autumn and 
winter, but indicated slightly poorer scores under spring and summer. In 
general, the FDD architectures only indicated good test metrics under 
the seen season from the training, but showed significantly poor scores 
under every unseen season (Fig. 13a and c). 

The best architecture CNN-LSTM indicated significantly high fault 
detection and diagnosis rates (Fig. 14a and b), and low false positive and 
negative rates when evaluated under the spring full-size dataset 
(Fig. 14c and d), from which the training data was extracted. However, 
the fault detection and diagnosis rates tested on the datasets of other 
three seasons are considerably lower than those tested on the spring 
dataset (Fig. 14a and b). The t-stochastic neighbor embedding (t-SNE) 

dimensionality reduction method was used to visualize the 2D distri
bution of hidden features extracted by this architecture. The good sep
aration of features from different classes indicates the robust FDD ability 
of the architecture. As shown in Fig. 15a, the fault classes, labelled as 1 
to 14 (see Table 1), are separated into clusters with obvious boundaries 
among them when tested under the spring full-size dataset, and only a 
small amount of features from fault classes overlapped with those from 
the normal class, labelled as 0. As for the hidden features from the test 
datasets of the other three seasons (Fig. 15b–d), there are no obvious 
boundaries among different classes. These findings confirm the poor 
generalization ability of the FDD architecture trained on sufficient fault 
data from a certain season in identifying the faults under the unseen 
seasons, which agrees with the finding from previous fault impact 
analysis studies [36,37] that HVAC fault impacts vary with different 
climatic conditions. In addition, the fault detection and diagnosis rates 
decreased along with the season transitions from summer, to autumn, 
and to winter (Fig. 14a and b). Meanwhile, the false positive rate 
decreased (Fig. 14d) and the false negative rate increased with the 
season transitions (Fig. 14c). This phenomenon indicates that the model 
is becoming more biased towards the majority class, i.e., the normal 
class, from summer to winter. 

3.2.2. Experiment 2 results: dual-seasons dataset evaluation 
Experiment 2 was carried out on two mixed datasets of dual seasons, 

i.e., spring and summer, and summer and winter. Comparing the per
formances of the two architectures in Table 6, the CNN-GRU 

Fig. 16. Scatterplots for the hidden features extracted by the best architecture CNN-GRU tested under (a) spring; (b) summer; (c) autumn; (d) winter; in experiment 2 
using the t-SNE method. 

F. Zhong et al.                                                                                                                                                                                                                                   



Energy 282 (2023) 128180

15

architecture trained on the mixed dataset of spring and summer out
performed the corresponding CNN-LSTM architecture when tested 
under each season. Besides, the CNN-GRU architecture trained on the 
mixed dataset of summer and winter also indicated higher performance 
scores when tested under autumn and winter, but showed slightly 
poorer scores than the CNN-LSTM architecture when tested under 
summer. The highest performance scores, tested under the seen seasons 
from training, decreased slightly in experiment 2 (Fig. 13b and d), 
compared with those from experiment 1 (Fig. 13a and c). This can be 
attributed to the less amount of fault data under each season contained 
in each dual-seasons’ dataset from experiment 2 than that included in 
each one-season’s dataset from experiment 1. 

As shown in Table 7, the fault detection and diagnosis rates are 
higher than 0.94 and around 1, respectively, when tested under seen 
seasons, i.e., spring and summer, but are lower than 0.12 and 0.41, 
respectively, when tested under unseen seasons, i.e., autumn and winter. 
The considerable performance differences between seen and unseen 
seasons can also be observed in Fig. 16. The feature clusters for most 
fault classes tested under seen seasons are separated from each other and 
from the normal class (Fig. 16a and b), and those for the classes tested 
under unseen seasons are mixed up (Fig. 16c and d). This conforms with 
the finding from experiment 1 that the FDD architectures have limited 
ability to detect and diagnose the faults from the unseen seasons. 
Compared with the performance indicators for the CNN-LSTM archi
tecture trained on the spring only dataset in experiment 1, both fault 
detection and diagnosis rates tested on the summer full-size dataset 

increased substantially for this CNN-GRU architecture trained on the 
mixed spring and summer dataset (Fig. 14a and b) while the false 
negative rate tested on the same season’s dataset decreased considerably 
(Fig. 14c). 

3.2.3. Experiment 3 results: full-season quarter-size dataset evaluation 
Experiment 3 was implemented on a mixed dataset that contains a 

quarter of each season’s dataset. Comparing the performances of two 
architectures in Table 6, the CNN-LSTM architecture outperformed the 
CNN-GRU architecture when tested under each season. Compared with 
the highest performance scores from the previous two experiments, the 
scores for the unseen seasons from the previous two experiments 
increased substantially in experiment 3, while the scores for the seen 
seasons from the previous experiments decreased slightly in experiment 
3 due to the gradual decrease in the data amount of each seen season, i.e. 
full-size to half-size, and to quarter size across experiments 1–3. For 
example, the highest F1 score tested under spring decreased from 0.975 
(Fig. 13a) to 0.942 (Fig. 13b), and further to 0.862 (Fig. 13b) for each 
best architecture trained on the spring, mixed spring and summer, and 
full-seasons quarter-size datasets, respectively. 

By including the fault data under unseen seasons from experiments 1 
and 2 into the training set of experiment 3, the architecture CNN-LSTM 
showed significant improvements in increasing fault detection and 
diagnosis rates (Fig. 14a and b), and mitigating false negative rate 
(Fig. 14c), when tested under the autumn and winter full-size datasets. 
In addition, the reduction of data amount for the seen seasons from the 

Fig. 17. Scatterplots for the hidden features extracted by the best architecture CNN-LSTM tested under (a) spring; (b) summer; (c) autumn; (d) winter; in experiment 
3 using the t-SNE method. 
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previous experiments slightly degraded fault detection rates (Fig. 14a), 
but had no prominent impact on fault diagnosis rates (Fig. 14b). Ac
cording to the t-SNE visualization results, the boundaries among fault 
classes tested under autumn and winter (Fig. 17c and d) became 

apparent in comparison with those tested under the same seasons in 
experiment 2 (Fig. 16c and d). In addition, some fault clusters over
lapped with the normal cluster tested under spring and summer, but 
most fault clusters are still separated from each other (Fig. 17a and b). As 
a result, this implies that the coverage of fault data under different 
seasons is more crucial in enhancing the FDD performances than the 
amount of fault data used for training under each single season. 

3.2.4. Experiment 4 results: full-season full-size dataset evaluation 
Experiment 4 was performed on a mixed dataset that contains full- 

Fig. 18. Scatterplots for the hidden features extracted by the best architecture CNN-GRU tested under (a) spring; (b) summer; (c) autumn; (d) winter; in experiment 4 
using the t-SNE method. 

Table 8 
Average fault detection rate, fault diagnosis rate, false positive rate and false 
negative rate among 10 cross-validation times for the best architecture in ex
periments 5–8 under the ASHRAE RP1312 dataset.  

Test 
dataset 

Fault detection 
rate 

Fault diagnosis 
rate 

False positive 
rate 

False negative 
rate 

Exp 5: CNN-LSTM trained on the spring datasetowhead 
Spring 0.9975 0.9994 0.0003 0.0025 
Summer 0.6388 0.6297 0.0868 0.3612 
Winter 0.8152 0.7877 0.2154 0.1848 
Exp 6: CNN-GRU trained on the mixed spring-summer datasetowhead 
Spring 0.9910 0.9980 0.0039 0.0090 
Summer 0.9978 0.9980 0.0015 0.0022 
Winter 0.9520 0.7659 0.3073 0.0480 
Exp 7: CNN-LSTM trained on the full-seasons quarter-size mixed datasetowhead 
Spring 0.9909 0.9978 0.0035 0.0091 
Summer 0.9955 0.9974 0.0018 0.0045 
Winter 0.9977 0.9992 0.0007 0.0023 
Exp 8: CNN-LSTM trained on the full-seasons full-size mixed datasetowhead 
Spring 0.9953 0.9991 0.0013 0.0047 
Summer 0.9998 0.9998 0.0009 0.0002 
Winter 0.9999 1.0000 0.0005 0.0001  

Table 9 
Average fault detection rate, fault diagnosis rate, false positive rate and false 
negative rate among 10 cross-validation times for the best architecture in ex
periments 9–11 under the NREL’s dataset.  

Test 
dataset 

Fault detection 
rate 

Fault diagnosis 
rate 

False positive 
rate 

False negative 
rate 

Exp 9: CNN-LSTM trained on the summer dataset 
Summer 0.9979 0.9925 0.0240 0.0021 
Winter 0.8208 0.2158 0.4958 0.0021 
Exp 10: CNN-LSTM trained on the winter dataset 
Summer 0.8317 0.2267 0.7892 0.1683 
Winter 0.9983 0.9996 0.0153 0.0017 
Exp 11: CNN-GRU trained on the mixed summer and winter dataset 
Summer 0.9554 0.9206 0.0608 0.0446 
Winter 0.9933 0.9664 0.0250 0.0067  
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size datasets of each season. As presented in Table 6, the CNN-GRU ar
chitecture slightly outperformed the CNN-LSTM architecture when 
tested under each season. The highest F1 scores tested under each season 
are within the range of 0.96–0.98 (Fig. 13b), which demonstrates 
excellent FDD performances under all the seasons. Compared with the 
highest F1 scores from experiment 3, the F1 scores under this experi
ment increased by around 0.12 to 0.17 (Fig. 13b). With the increased 
amount of fault data under each season compared with experiment 3, 
the best architecture CNN-GRU in this experiment is capable of 
capturing the fault patterns under all the seasons. As shown in Table 7, 
the architecture indicated robust performances when tested under all 
the seasons, as the fault detection and diagnosis rates under each season 
are both around 1. Besides, both false negative and positive rates are less 
than 0.02 under all seasons. The t-SNE visualization results (Fig. 18) also 
demonstrate that the boundaries among fault classes are considerably 
apparent and all the fault classes’ clusters are separated from the normal 
class cluster. 

3.3. Identified practical issue verification using real fault datasets 

To verify the findings obtained from the data experiments using the 
simulated fault dataset, data experiments 5–8 based on the ASHRAE 
RP1312 dataset and data experiments 9–11 based on the NREL’s dataset 
were evaluated by the CNN-LSTM and CNN-GRU architectures. The 
same performance indicators as those used in experiments 1–4 are 
presented in Tables 8 and 9, respectively. Comparing the fault detection 
and fault diagnosis rates tested on each season’s full-size dataset in 

experiment 5, the best architecture CNN-LSTM trained on the spring 
dataset performs well on the spring full-size dataset with both indicators 
of around 1, but shows lower values of both indicators tested under 
summer and winter (Fig. 19a and b). Similarly, in experiments 9 and 10, 
the fault detection and fault diagnosis rates tested under the unseen 
season are averagely 0.17 and 0.77 lower than those tested under the 
seen season. Apart from this, experiment 6 demonstrates that the fault 
detection rate tested under the unseen season, i.e., winter, is averagely 
0.04 lower than that tested under the seen seasons, i.e., spring and 
summer, and the fault diagnosis rate under the unseen season is aver
agely 0.23 lower than that tested under the seen seasons. Therefore, the 
limited FDD ability for the faults from the unseen seasons is also 
observed in real fault data experiments. 

However, a different observation in experiments 5–8 from experi
ments 1–4 is the variations in each performance indicator with the 
changes of fault data amount under spring are slight, as shown from the 
green bars in Fig. 19a–d. Besides, the decrease of fault data amount in 
the training set from full-size (exp. 9 and 10) to half-size (exp. 11) led to 
fault detection rate reductions of 0.04 and 0.01 and fault diagnosis rate 
reductions of 0.07 and 0.03 under summer and winter, respectively. 
Therefore, the FDD performances can be improved by increasing the 
amount of fault data under a season, but the improvements are also 
limited by other factors, such as the number of faults and the ratio of 
fault to normal data included in the training set. If the number of faults 
considered for the FDD task is low or the ratio of fault to normal data is 
high, the increase in the amount of fault data under a season may have a 
limited effect on the FDD performance enhancement. 

Fig. 19. Fault detection rate, fault diagnosis rate, false negative rate and false positive rate tested under each season for experiments 1–4 using the ASHRAE RP1312 
dataset (‘All 1/4’ represents the full-season quarter size scenario; ‘All full’ represents the full-season full size scenario). 
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Moreover, the FDD performance enhancement led by expanding the 
seasonal coverage of fault data is also prominent in real fault data ex
periments. As presented in Fig. 19a and b, the fault detection and fault 
diagnosis rates tested under the unseen seasons, i.e., summer and winter, 
for the best architecture trained on the spring only dataset (exp. 5) are 
lower than those tested under the same seasons for the best architecture 
trained on the full-seasons quarter dataset (exp. 7). Similarly, the best 
architecture trained on the mixed summer and winter dataset (exp. 11) 
indicated higher fault detection and diagnosis rates (Fig. 20a and b) and 
lower false negative and positive rates (Fig. 20c and d) than those tested 
under the unseen season, i.e., winter in experiment 9 and summer in 
experiment 10, for the best architecture trained on the summer only, and 
winter only dataset, respectively. 

To summarize, as demonstrated by the simulated and real fault data 
experiments, the FDD architectures have limited generalization ability 
to detect and identify the faults from unseen seasons, and including fault 
data from a wider coverage of seasons into the training set has a sig
nificant impact on improving the FDD performances. In addition, the 
FDD performances can be improved by increasing the fault data amount 
under a season, but the improvements are affected by the number of 
faults and the ratio of fault to normal data included in the training set. 

4. Conclusion and future works 

This study evaluated the FDD performance differences of the com
bined CNN-RNN framework under the limited seasonal fault data sce
narios and an ideal fault data scenario covering climatic conditions from 
four seasons. The fault and normal data were gathered from fault 

simulations using a verified prototype building EnergyPlus model and 
two fault datasets from real buildings. Four data experiments using the 
simulated fault dataset were proposed based on the practical issue 
related to the fault data season coverage and the amount of fault data 
within each season, in order to assess the FDD performances under 
different data scenarios. Moreover, two sets of further experiments 
based on each of the real fault datasets were implemented to verify the 
practical issue. The main findings of this study are as follows:  

(1) The smaller window length is more robust in capturing the fault 
patterns, as the smaller window length leads to a larger number of 
windows fed into the FDD model training when there is a limited 
amount of fault data available for training.  

(2) The FDD architectures trained on sufficient fault data under a 
certain season(s) show poor generalization ability to detect and 
identify the faults under the other unseen seasons.  

(3) The FDD performance under a season can be enhanced by 
increasing the amount of fault data under this season, but the 
enhancement is limited by other factors, such as the number of 
faults and the imbalance ratio of fault to normal data included in 
the training set.  

(4) The coverage of fault data under different seasons is more crucial 
in enhancing the FDD performances than the amount of fault data 
under a certain season(s). 

Based on the findings of this study, the importance of fault data 
covered under different seasonal climatic conditions is highlighted. The 
results of this study will help guide FDD researchers to develop new 

Fig. 20. Fault detection rate, fault diagnosis rate, false negative rate and false positive rate tested under each season for experiments 1–4 using the NREL’s dataset.  
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data-driven FDD methods or revise existing methods considering this 
practical issue, which is highly intended to lead to FDD performance 
gaps between development tests and applications in real buildings. 
Future work can explore FDD performance differences tested on fault 
data under climatic conditions of the contemporary climate period and 
future climate periods. In addition, data-driven generative techniques 
can be employed to produce fault data under the seasons when the fault 
data is unavailable. 

Credit author statement 

Fangliang Zhong: Conceptualization, Data curation, Formal anal
ysis, Investigation, Methodology, Software, Validation, Visualization, 
Writing - original draft, Writing - review & editing, John Kaiser Cal
autit: Conceptualization, Methodology, Project administration, Re
sources, Supervision, Writing - review & editing, Yupeng Wu: 
Supervision, Project administration, Writing - review & editing. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

The authors do not have permission to share data. 

References 

[1] International Energy Agency (IEA). World energy outlook 2020. Paris, France: IEA; 
2020. 

[2] United States Energy Information Administration (EIA). Commercial building 
energy consumption survey (CBECS) 2012. Washington, D.C., U. S.: EIA; 2016. 

[3] United States Energy Information Administration (EIA). Residential energy 
consumption survey (RECS) 2015. Washington, D.C., U. S.: EIA; 2018. 

[4] Wu S, Sun J. Cross-level fault detection and diagnosis of building HVAC systems. 
Build Environ 2011;46(8):1558–66. 

[5] Lu X, Fu Y, O’Neill Z, Wen J. A holistic fault impact analysis of the high- 
performance sequences of operation for HVAC systems: modelica-based case study 
in a medium-office building. Energy Build 2021;252. 111448. 

[6] Schein J, Bushby ST, Castro NS, House JM. A rule-based fault detection method for 
air handling units. Energy Build 2006;38(12):1485–92. 

[7] Zhao Y, Li T, Zhang X, Zhang C. Artificial intelligence-based fault detection and 
diagnosis methods for building energy systems: advantages, challenges and the 
future, vol. 109. Renewable Sustainable Energy Rev.; 2019. p. 85–101. 

[8] Mirnaghi MS, Haghighat F. Fault detection and diagnosis of large-scale HVAC 
systems in buildings using data-driven methods: a comprehensive review. Energy 
Build 2020;229:110492. 

[9] Zhao Y, Li T, Fan C, Lu J, Zhang X, Zhang C, Chen S. A proactive fault detection and 
diagnosis method for variable-air-volume terminals in building air conditioning 
systems. Energy Build 2019;183:527–37. 

[10] Manservigi L, Bahlawan H, Losi E, Morini M, Spina PR, Venturini M. A diagnostic 
approach for fault detection and identification in district heating networks. Energy 
2022;251:123988. 

[11] Liu J, Li G, Liu B, Li K, Chen H. Knowledge discovery of data-driven-based fault 
diagnostics for building energy systems: a case study of the building variable 
refrigerant flow system. Energy 2019;174:873–85. 

[12] Liu B. Supervised learning. In: Web data mining. New York: Springer Publishing; 
2011. p. 63–132. 

[13] Hu Y, Chen H, Xie J, Yang X, Zhou C. Chiller sensor fault detection using a self- 
adaptive principal component analysis method. Energy Build 2012;54:252–8. 

[14] Wu B, Cai W, Cheng F, Chen H. Simultaneous-fault diagnosis considering time 
series with a deep learning transformer architecture for air handling units. Energy 
Build 2022;257:111608. 

[15] Sun K, Li G, Chen H, Liu J, Li J, Hu W. A novel efficient SVM-based fault diagnosis 
method for multi-split air conditioning system’s refrigerant charge fault amount. 
Appl Therm Eng 2016;108:989–98. 

[16] Liu J, Li G, Chen H, Wang J, Guo Y, Li J. A robust online refrigerant charge fault 
diagnosis strategy for VRF systems based on virtual sensor technique and PCA- 
EWMA method. Appl Therm Eng 2017;119:233–43. 

[17] Bode G, Thul S, Baranski M, Muller D. Real-world application of machine-learning- 
based fault detection trained with experimental data. Energy 2020;198:117323. 

[18] Du Z, Jin X, Yang Y. Fault diagnosis for temperature, flow rate and pressure sensors 
in VAV systems using wavelet neural network. Appl Energy 2009;86:1624–31. 

[19] Liu Z, Liu Y, Zhang D, Cai B, Zheng C. Fault diagnosis for a solar assisted heat pump 
system under incomplete data and expert knowledge. Energy 2015;87:41–8. 

[20] Allen WH, Rubaai A, Chawla R. Fuzzy neural network-based health monitoring for 
HVAC system variable-air-volume unit. IEEE Trans Ind Appl 2016;52(No. 3). 

[21] LeCun Y, Bengio Y, Hinton G. Deep learning, Nature 2015;521:436–44. 
[22] Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, 

Rabinovich A. Going deeper with convolutions, proceedings of 2015 IEEE 
conference on computer vision and pattern recognition (CVPR). Boston, MA: 
United States; June , 15523970. 

[23] Schuster M, Paliwal KK. Bidirectional recurrent neural networks. IEEE Trans Signal 
Process 1997;45(No. 11). 

[24] Cheng F, Cai W, Zhang X, Liao H, Cui C. Fault detection and diagnosis for Air 
Handling Unit based on multiscale convolutional neural networks. Energy Build 
2021;236(No):110795. 

[25] Sasaki Y. The truth of the F-measure. 2007. https://www.cs.odu.edu/~mukka/cs 
795sum09dm/Lecturenotes/Day3/F-measure-YS-26Oct07.pdf. 

[26] Eom YH, Yoo JW, Hong SB, Kim MS. Refrigerant charge fault detection method of 
air source heat pump system using convolutional neural network for energy saving. 
Energy 2019;187(No):115877. 

[27] Fan, C., He, W., Liu, Y., Xue, P. and Zhao, Y., A novel image-based transfer learning 
framework for cross-domain HVAC fault diagnosis: from multi-source data 
integration to knowledge sharing strategies, Energy Build., Vol. 262, No. 111995, 
2022. 

[28] Li G, Chen L, Liu J, Fang X. Comparative study on deep transfer learning strategies 
for cross-system and cross-operation-condition building energy systems fault 
diagnosis. Energy 2023;263:125943. 

[29] Zhang H, Li C, Wei Q, Zhang Y. Fault detection and diagnosis of the air handling 
unit via combining the feature sparse representation based dynamic SFA and the 
LSTM network. Energy Build 2022;269:112241. 

[30] Taheri S, Ahmadi A, Mohammadi-Ivatloo B, Asadi S. Fault detection diagnostic for 
HVAC systems via deep learning algorithms. Energy Build 2021;250:111275. 

[31] Shahnazari H, Mhaskar P, House JM, Salsbury TI. Modeling and fault diagnosis 
design for HVAC systems using recurrent neural networks. Comput Chem Eng 
2019;126:189–203. 

[32] Wang Z, Dong Y, Liu W, Ma Z. A novel fault diagnosis approach for chillers based 
on 1-D convolutional neural network and gated recurrent unit. Sensors 2020;20 
(No. 2458). 

[33] Qin N, Liang K, Huang D, Ma L, Kemp AH. Multiple convolutional recurrent neural 
networks for fault identification and performance degradation evaluation of high- 
speed train bogie. IEEE Transact Neural Networks Learn Syst 2020;31(No. 12). 

[34] Canizo M, Triguero I, Conde A, Onieva E. Multi-head CNN–RNN for multi-time 
series anomaly detection: an industrial case study. Neurocomputing 2019;363: 
246–60. 

[35] Fan C, Li X, Zhao Y, Wang J. Quantitative assessments on advanced data synthesis 
strategies for enhancing imbalanced AHU fault diagnosis performance. Energy 
Build 2021;252:111423. 

[36] Zhong F, Calautit JK, Wu Y. Assessment of HVAC system operational fault impacts 
and multiple faults interactions under climate change. Energy 2022;258:124762. 

[37] Lu X, Fu Y, O’Neill Z, Wen J. A holistic fault impact analysis of the high- 
performance sequences of operation for HVAC systems: modelica-based case study 
in a medium-office building. Energy Build 2021;252:111448. 

[38] U.S. Department of Energy (DOE). EnergyPlus version 9.3 engineering reference. 
Washington, D.C., United States: DOE; 2020. 

[39] Deru M, Field K, Studer D, Benne K, Griffith B, Torcellini P, Liu B, Halverson M, 
Winiarski D, Rosenberg M, Yazdanian M, Huang J, Crawley D, U.S.. Department of 
Energy commercial reference building models of the national building stock. 
Golden, United States: National Renewable Energy Laboratory; 2011. 

[40] Wen J, Li S. Tools for evaluating fault detection and diagnostic methods for air- 
handling units, American society of heating, refrigeration and air-conditioning 
engineers. Atlanta, United States: ASHRAE); 2011. 

[41] Kim J, Leach M. Curated modeled fault data set. Golden, United States: National 
Renewable Energy Laboratory; 2019. https://doi.org/10.25984/1862681. 

[42] Skansi S. Introduction to deep learning. Cham, Switzerland: Springer; 2018. 
[43] Zhang, Y., Tennakoon, T., Chan, Y. H., Chan, K. C., Fu, S. C., Tso, C. Y., Yu, K. M., 

Huang, B. L., Yao, S. H., Qiu, H. H., Chao, C. Y. H., Energy consumption modelling 
of a passive hybrid system for office buildings in different climates, Energy, Vol. 
239, No. 121914, 2022. 

[44] Li Y, O’Neill Z. An innovative fault impact analysis framework for enhancing 
building operations. Energy Build 2019;199:311–31. 

[45] Huang, S., Ye, Y., Wu, D. and Zuo, W. An assessment of power flexibility from 
commercial building cooling systems in the United States, Energy, Vol. 221, No. 
119571, 2021. 

[46] van Rossum G, Drake FL. Python 3.6.9 reference manual, CreateSpace, scotts valley. 
2019. 

[47] Cheung H, Braun JE. Development of fault models for hybrid fault detection and 
diagnostics algorithm. Golden, United States: National Renewable Energy 
Laboratory; 2015. 

[48] Kim J, Frank S, Braun JE, Goldwasser D. Representing small commercial building 
faults in EnergyPlus, Part I: model development. Buildings 2019;9(No. 233). 

[49] Integrated environmental solutions (IES), ApacheHVAC user guide. Glasgow, 
United Kingdom: IES; 2016. 

[50] Buckberry HL, Bhandari M. ORNL MAXLAB flexible research platforms, 
proceedings of 2012 ACEEE summer study on energy efficiency in buildings. 
Pacific Grove, United States; August . 

[51] Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput 1997;9: 
1735–80. 

F. Zhong et al.                                                                                                                                                                                                                                   

http://refhub.elsevier.com/S0360-5442(23)01574-8/sref1
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref1
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref2
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref2
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref3
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref3
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref4
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref4
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref5
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref5
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref5
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref6
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref6
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref7
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref7
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref7
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref8
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref8
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref8
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref9
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref9
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref9
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref10
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref10
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref10
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref11
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref11
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref11
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref12
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref12
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref13
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref13
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref14
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref14
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref14
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref15
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref15
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref15
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref16
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref16
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref16
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref17
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref17
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref18
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref18
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref19
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref19
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref20
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref20
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref21
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref22
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref22
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref22
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref22
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref23
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref23
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref24
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref24
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref24
https://www.cs.odu.edu/%7Emukka/cs795sum09dm/Lecturenotes/Day3/F-measure-YS-26Oct07.pdf
https://www.cs.odu.edu/%7Emukka/cs795sum09dm/Lecturenotes/Day3/F-measure-YS-26Oct07.pdf
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref26
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref26
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref26
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref28
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref28
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref28
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref29
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref29
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref29
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref30
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref30
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref31
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref31
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref31
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref32
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref32
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref32
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref33
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref33
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref33
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref34
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref34
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref34
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref35
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref35
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref35
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref36
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref36
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref37
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref37
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref37
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref38
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref38
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref39
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref39
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref39
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref39
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref40
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref40
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref40
https://doi.org/10.25984/1862681
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref42
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref44
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref44
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref46
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref46
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref47
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref47
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref47
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref48
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref48
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref49
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref49
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref50
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref50
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref50
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref51
http://refhub.elsevier.com/S0360-5442(23)01574-8/sref51


Energy 282 (2023) 128180

20
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