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A B S T R A C T

Salient object detection plays an important role in many downstream tasks. However, complex real-world
scenes with varying scales and numbers of salient objects still pose a challenge. In this paper, we directly
address the problem of detecting multiple salient objects across complex scenes. We propose a network
architecture incorporating non-local feature information in both the spatial and channel spaces, capturing the
long-range dependencies between separate objects. Traditional bottom-up and non-local features are combined
with edge features within a feature fusion gate that progressively refines the salient object prediction in the
decoder. We show that our approach accurately locates multiple salient regions even in complex scenarios.
To demonstrate the efficacy of our approach to the multiple salient objects problem, we curate a new dataset
containing only multiple salient objects. Our experiments demonstrate the proposed method presents state-
of-the-art results on five widely used datasets without any pre-processing and post-processing. We obtain a
further performance improvement against competing techniques on our multi-objects dataset. The dataset and
source code are available at: https://github.com/EricDengbowen/DSLRDNet.
. Introduction

Salient object detection (SOD) aims to highlight the most visu-
lly striking or important objects of a scene. SOD plays a significant
ole in computer vision pipelines, and has been widely applied to
any object-level applications in various areas such as object recogni-

ion (Rutishauser et al., 2004), object detection (Ren et al., 2013; Zhang
t al., 2017), image retrieval (He et al., 2012), image captioning (Das
t al., 2017; Fang et al., 2015), weekly supervised semantic segmenta-
ion (Wang et al., 2018c; Wei et al., 2016) and image cropping (Wang
t al., 2018a).

Although remarkable progress has been made, there still remain
any open challenges. Existing SOD datasets contain many images with
single object, often centered in the middle of the image. Human

bservers may be drawn naturally to centered objects, but in complex
cenes they can identify numerous salient objects distributed through-
ut a scene. Many existing techniques in saliency are based upon
raditional U-shape networks, containing only convolutional operations
hat process local neighborhoods. This fails to exploit the long-range
ixel-wise or channel-wise relationships among features in an image,
nd ultimately leaves techniques less able to address the problem of
ultiple salient objects (Fig. 1). Long-range dependencies have been

hown to play an important role in different classification tasks (Wang
t al., 2018b), and this is also true of pixel-level segmentation works
uch as salient object detection. The size of the receptive field is

∗ Corresponding author.
E-mail address: michael.pound@nottingham.ac.uk (M.P. Pound).

Fig. 1. Visual examples of our proposed method. After introducing dual-space long-
range dependencies, our model can handle complicated scenes with multiple salient
objects.

significant in locating and segmenting salient objects across the image.
Large kernels aid segmentation tasks but the experimental receptive
fields are usually smaller than the ones in theory (Liu et al., 2019; Zhao
et al., 2017; Peng et al., 2017). This will likely limit the performance
of SOD networks in which objects are spatially separated.
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Recent state-of-the-art SOD approaches solve the problem of salient
bject detection in the general case, often by combining and refining
ulti-level features into feature representations (Hou et al., 2017;
hang et al., 2018a; Wu et al., 2019a,b; Zhao et al., 2019; Liu et al.,
019), introducing additional losses into frameworks to provide struc-
ural information (Feng et al., 2019; Qin et al., 2019) or applying
ttention mechanisms to filter the redundant information and focus on
he valuable features (Zhang et al., 2018b; Liu et al., 2018; Chen et al.,
018; Feng et al., 2019; Wu et al., 2019a). Only few of the existing SOD
ethods consider long-range dependencies (Liu et al., 2020; Li et al.,
020; Zhou et al., 2020; Sun et al., 2019), and none of these works
pecifically address the problem of multiple salient objects.

In this paper, we propose a novel architecture for multiple salient
bject detection that considers long-range dependencies in both spatial
pace and channel space. Inspired by Fu et al. (2019) and Wang et al.
2018b), we propose a non-local guidance module (NLGM), comprising
everal dual-space non-local blocks (DSNLBs) to capture pixel-wise and
hannel-wise relationships. Features at each position are aggregated
y a weighted sum of all the features in spatial space, while each
hannel map is updated by a weighted integration of all interdependent
hannel maps. Unlike previous work, we stack several DSNLBs in
rder to capture non-local features in a progressive manner. Bottom-
p convolutional features and these non-local features are combined
n the network decoder through feature fusion gates, that control the
ransmission of information into the next stage of the network. These
nclude salient edge supervision to further enhance the quality of
he saliency maps. We demonstrate the improved performance of our
etwork on numerous datasets, and specifically multiple salient object
etection (MSOD) problems by evaluating on a dataset containing only
omplex multi-saliency images. Our contributions are:

• We propose a novel MSOD framework that models long-range
dependencies in both spatial space and channel space. To the best
of our knowledge, this is the first paper that explicitly models
long-range dependencies in this dual space for standard SOD and
MSOD problems.

• We utilize non-local guidance and edge refinement modules that
work complementarily to enrich feature representations at each
stage of the top-down pathway. Features from all components
are combined within a feature fusion gate, which utilizes edge
features to promote relevant salient and non-local features. The
fusion gate ensures that top-down features are passed discrimina-
tively through the network.

• We curate a new dataset containing only multiple salient objects,
drawn from popular datasets in this field. We compare the pro-
posed approach against 14 state-of-the-art methods on five widely
used SOD benchmarks and the proposed multi-object dataset.
Without any pre-processing and post-processing, our proposed
method exceeds all previous state-of-the-art approaches in three
evaluation metrics and provides a further performance boost
against competing techniques on our proposed dataset.

. Related work

Traditional salient object detection methods mostly rely on low-
evel features (Zhu et al., 2014; Jiang et al., 2013) or heuristic priors
uch as color contrast (Cheng et al., 2014) and background (Wei et al.,
012; Yang et al., 2013). More details are introduced in the survey
y Borji et al. (2019).

Early deep SOD methods utilized multi-scale image patches (Li and
u, 2015; Wang et al., 2015; Zhao et al., 2015), offering impressive per-

ormance, but limited by the lack of spatial information found in small
mage patches. Since the introduction of fully convolutional networks
FCNs) (Long et al., 2015), there have been many effective and efficient
nd-to-end SOD architectures. Among these, U-shape based architec-

ures (Ronneberger et al., 2015) see much use. Hou et al. (2019, 2017)

2

applied short connections from deeper to shallower layers, integrating
high-level and low-level features. Zhang et al. (2018a) used a gated
pathway for bi-directional message passing and multi-level feature
integration. Zhang et al. (2018b) embedded multi-path recurrent con-
nections and spatial attention modules to generate saliency maps. Chen
et al. (2018) designed a reverse attention block to emphasize non-object
areas. Qin et al. (2019) applied another bottom-up/top-down architec-
ture to refine the coarse saliency map generated from the prediction
network. This work generates boundary-aware saliency maps through
a hybrid loss approach. Feng et al. (2019) employed global perceptron
modules and attentive feedback modules to detect global saliency and
build encoder–decoder communication respectively. Zhao et al. (2019)
explicitly modeled edge features to guide the multi-scale features ex-
tracted from a U-shape structure and then fused multiple side-outputs
into a final saliency map. Liu et al. (2019) mainly investigated the role
of pooling layer in U-shape structure. They proposed a global guidance
module for transmitting localization information to top-down pathway
and a feature aggregation module to further refine fused features. Wu
et al. (2019b) introduced a cross refinement unit to exchange mutual
information between edge features and saliency features. Zhao et al.
(2020) designed a gated dual branch network incorporating a Fold-
ASPP to better localize the salient objects of various scales. Pang et al.
(2020) proposed a transformation–interaction–fusion strategy to obtain
efficient multi-scale features and a consistency-enhanced loss to deal
with the imbalance issue between foreground and background.

Existing SOD methods seldom consider long-range dependencies:
the sharing of information across spatially distant pixels, or between
feature maps in channel space. Of those that do, Li et al. (2020) and
Sun et al. (2019) applied self-attention mechanisms to capture spatial
long-range context. Zhou et al. (2020) introduced a multi-type self-
attention to capture pixel-level relationships for saliency detection in
degraded images. Liu et al. (2020) designed a self-mutual attention
to capture long-range contextual dependencies, this time in RGB-D.
Of these works, none have made use of channel-wise dependencies as
we do here and there is no ideal solution for multiple salient object
detection. This has previously been hard to examine; existing public
datasets contain some multi-object instances, but the frequency of
these varies substantially. Here we curate a dataset specifically for this
purpose, allowing us to focus on this problem.

3. Proposed method

The architecture of our proposed method is shown in Fig. 2. Our
model is based on a U-shape FCN combining a bottom-up pathway
(backbone) and a top-down pathway. Similar to most deep SOD models,
we use VGG network to illustrate our proposed structure. Following
EGNet (Zhao et al., 2019) and DSS (Hou et al., 2017, 2019), the last
three fully connected layers are truncated and an additional side path
is connected to the last pooling layer of VGG. This provides 6 outputs
from bottom-up pathway representing the multi-level features captured
from Conv1-2 to Conv6-3, which can be defined as a feature set 𝑆 =
{

𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑆5, 𝑆6}.
Multi-scale saliency features are processed through the top-down

pathway with a series of convolutional blocks, each containing 3 convo-
lutional layers and ReLU activations. We refer to this saliency feature
set as 𝐹 =

{

𝐹 1, 𝐹 2, 𝐹 3, 𝐹 4, 𝐹 5, 𝐹 6}, where 𝐹 6 is the saliency feature
produced by the sixth convolutional block (rightmost Conv in Fig. 2)
and so on.

We leverage intermediate supervision (Lee et al., 2015) at each
convolutional block to improve training performance. For each saliency
feature 𝐹 𝑖, a convolutional layer 𝐷𝑖

𝐹 is applied to produce a single-

channel prediction. We use a cross-entropy loss, with the supervision
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Fig. 2. The overall pipeline of our proposed approach, here shown using a VGG backbone. The red, orange and green boxes capture saliency features, non-local features and edge
eatures respectively. Element-wise multiplication operates between each pair of ERB-DSNLB (edge and non-local features) and ERB-Conv (edge and saliency features). Our final
rediction map is generated based on the fusion of 6 multi-scale saliency features in top-down pathway. (For interpretation of the references to color in this figure legend, the
eader is referred to the web version of this article.)
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Fig. 3. The architecture of a dual-space non-local block (DSNLB). 𝐶, 𝐻 and 𝑊
emonstrate the channel number, height and width of given feature map respectively
nd 𝐾 = 𝐻 ×𝑊 .

ere defined as:
𝑖
𝐹
(

𝐹 𝑖,𝑊 𝑖
𝐷𝐹

)

= −
∑

𝑗∈𝑌 +
log𝑃𝑟𝑒𝑑

(

𝑦𝑗 = 1|𝐹 𝑖;𝑊 𝑖
𝐷𝐹

)

−
∑

𝑗∈𝑌 −
log𝑃𝑟𝑒𝑑

(

𝑦𝑗 = 0|𝐹 𝑖;𝑊 𝑖
𝐷𝐹

)

, 𝑖 ∈ [1, 6] , (1)

here 𝑌 + and 𝑌 − denote the pixels in salient region and non-salient
egion respectively. 𝑊 𝑖

𝐷𝐹 denotes the parameters of convolutional layer
𝑖
𝐹 . 𝑃𝑟𝑒𝑑

(

𝑦𝑗 = 1|𝐹 𝑖;𝑊 𝑖
𝐷𝐹

)

denotes the salient prediction map.

.1. Non-local guidance module

In this module we model long-range dependencies in both spatial
nd channel space. Inspired by Fu et al. (2019), we make use of dual-

pace non-local information within two parallel pathways that capture

3

ixel-wise contextual information and channel-wise relationships. Un-
ike (Fu et al., 2019), which directly append a single attention module
n top of FCN for scene segmentation, our NLGM is composed of 5
tacked dual-space non-local blocks (DSNLBs), one at each stage of
he top-down pathway. We choose the feature map 𝑆5 extracted from

Conv5-3 as the input of the NLGM as it contains high-level semantic
information, and yet contains more spatial information than 𝑆6. Fig. 3
illustrates the detailed structure of the first DSNLB.

3.1.1. Spatial-space non-local block
For a given feature map 𝐀 ∈ R𝐶×𝐻×𝑊 , 3 convolutional layers

are used to generate 3 distinct feature maps {𝐁,𝐂,𝐃} ∈ R𝐶×𝐻×𝑊 ,
representing query, key and value respectively. 𝐁,𝐂 and 𝐃 are reshaped
to R𝐶×𝐾 , where 𝐾 = 𝐻 ×𝑊 . A unified similarity matrix 𝐒 ∈ R𝐾×𝐾 is
calculated as:

𝐒 = 𝑓 (𝐁T × 𝐂). (2)

We apply a 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 normalization function for 𝑓 here. The weight ma-
trix 𝐒 models the affinity of features between any two spatial positions.
The final weighted feature map 𝑆𝑁 in spatial space can be defined as:

𝑆𝑁 = (𝐒T × 𝐃)T + 𝐀, (3)

where 𝑆𝑁 ∈ R𝐶×𝐻×𝑊 after reshaping. Informally, 𝑆𝑁 may be thought
of as an enriched feature representation with global spatial perception,
as each value of 𝑆𝑁 is a selective weighted sum of all positions across
the whole feature map.

3.1.2. Channel-space non-local block
Given same feature map 𝐀 ∈ R𝐶×𝐻×𝑊 , reshaped to R𝐶×𝐾 , the

unified similarity matrix 𝐗 ∈ R𝐶×𝐶 in channel space is calculated as:

𝐗 = 𝑓 (𝐀 × 𝐀T), (4)

where 𝑓 indicates 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 function and 𝐗 measures the correlation
between any two channels. The weighted feature map 𝐶𝑁 in channel
space can be defined as:

𝐶𝑁 = (𝐗T × 𝐀) + 𝐀, (5)
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Fig. 4. The structure of a feature fusion gate. 𝑁 , 𝐸, 𝐹 and 𝑆 demonstrate non-local
eature, edge feature, saliency feature and the corresponding side output of bottom-up
athway respectively.

here 𝐶𝑁 ∈ R𝐶×𝐻×𝑊 is a feature representation containing long-
ange dependencies within channel space. We do not make use of
onvolutional filters at the beginning of the channel-space non-local
lock. We hope to preserve the information in each channel without
urther filtering in order to directly calculate their relationships, similar
o Fu et al. (2019).

.1.3. Non-local feature aggregation
We combine the above features 𝑆𝑁 and 𝐶𝑁 to generate our non-

ocal feature representations 𝑁 , exploiting long-range contextual infor-
ation in both spatial and channel space. 𝑁 is given as:

= 𝐷𝑁 (𝑆𝑁 + 𝐶𝑁), (6)

here 𝐷𝑁 is a 1 × 1 convolutional layer.

.1.4. Multi-hop communications
Our NLGM is composed of 5 DSNLBs, each generating non-local

eatures 𝑁 𝑖 at each stage of top-down pathway. By stacking several
SNLBs, non-local features are progressively refined through multi-hop
ommunication between features that share affinity both channel-wise
nd spatially. Relevant saliency-specific semantic information is shared
cross the image space and feature space. Since non-local features have
global view, the challenge of complex scenes and multiple salient

bjects are better addressed through this improved receptive field.

.2. Feature fusion

The majority of the existing SOD models fuse different features with-
ut distinction. Redundant and mutually incompatible features from
ifferent objectives may harm overall performance once combined. As
resented in Fig. 4, we leverage channel-wise attention to selectively
ggregate different features at each stage of top-down pathway.

.2.1. Edge refinement module
Motivated by the commonly used boundary detection in SOD mod-

ls (Qin et al., 2019; Zhao et al., 2019), salient edge features are
odeled, as part of the feature fusion gate, to support the training of
on-local and salient features. Edge features are generated from low-
evel features 𝑆2 and high-level features 𝑆5 through bottom-up process,
hich are progressively refined within an Edge Refinement Module

ERM). We found that 𝑆2 and 𝑆5 outperformed 𝑆1 and 𝑆6 in this role.
1 is lower level with a reduced receptive field size, while 𝑆6 is high
evel, but has limited resolution. f

4

The Edge Refinement Module (ERM) consists of 5 edge refinement
locks (ERBs) aligned with the respective blocks in the NLGM. Each
RB contains a convolutional layer followed by a ReLU function to
enerate salient edge features 𝐸𝑖 at each stage. As with the salient
eatures, we apply intermediate supervision in the ERM via a cross-
ntropy loss. A convolutional layer 𝐷𝑖

𝐸 is used to convert the edge
eature to single-channel prediction map. The supervision here can be
efined as:

𝑖
𝐸
(

𝐸𝑖,𝑊 𝑖
𝐷𝐸

)

= −
∑

𝑗∈𝑉 +
log𝑃𝑟𝑒𝑑

(

𝑦𝑗 = 1|𝐸𝑖;𝑊 𝑖
𝐷𝐸

)

−
∑

𝑗∈𝑉 −
log𝑃𝑟𝑒𝑑

(

𝑦𝑗 = 0|𝐸𝑖;𝑊 𝑖
𝐷𝐸

)

, 𝑖 ∈ [1, 5] , (7)

where 𝑉 + and 𝑉 − denote the set of salient edge pixels and other pixels
respectively. 𝑊𝐷𝐸 indicates the parameters of 𝐷𝑖

𝐸 . We weight the two
omponents of the above loss by the number of pixels in each class.

.2.2. Feature fusion gate
Salient edge features are combined with salient and non-local fea-

ures separately through element-wise multiplication. This operation
erves to emphasize activations that are shared between feature maps,
romoting complimentarity between the non-local, saliency and edge
eatures. Features that are aligned between modules will train more
uickly, with activations of those that are less relevant to other blocks
educed. The resulting salient and non-local features are then combined
sing channel-wise attention. Firstly, we unify the spatial size and
hannel count:

̂ 𝑖 = 𝑈𝑝(𝛿(𝑂(𝑁 𝑖; 𝜃));𝑆𝑖), 𝑖 ∈ [1, 5], (8)

𝐹 𝑖 = 𝑈𝑝(𝛿(𝑂(𝐹 𝑖; 𝜃));𝑆 𝑖+1), 𝑖 ∈ [2, 6], (9)

𝐸̂𝑖 = 𝑈𝑝(𝛿(𝑂(𝐸𝑖; 𝜃));𝑆 𝑖), 𝑖 ∈ [1, 5], (10)

where 𝑈𝑝(∗;𝑆 𝑖) upsamples ∗ to be the same size as 𝑆 𝑖. 𝑂(∗; 𝜃) denotes
a convolutional layer with parameter 𝜃 and 𝛿 is a ReLU activation
function, which converts the channel number of ∗ to the channel
number of 𝑆 𝑖. The fused features 𝐹 𝑖

𝑓𝑢𝑠𝑖𝑜𝑛, including the incorporation
of salient edge features, are calculated as:

𝐹 𝑖
𝑓𝑢𝑠𝑖𝑜𝑛 = 𝐶𝐴(𝐶𝑎𝑡(𝑆 𝑖, 𝑁̂ 𝑖 ⊗ 𝐸̂𝑖, 𝐹 𝑖+1 ⊗ 𝐸̂𝑖)), (11)

where ⊗ denotes the element-wise multiplication. 𝐶𝑎𝑡 is the concate-
nation operation. 𝐶𝐴 indicates the channel-wise attention, which can
be defined as:

𝐶𝐴(∗, 𝜃𝑐𝑎) =∗ ⋅(𝜎(𝑓𝑐2(𝛿(𝑓𝑐1(𝑎𝑝(∗, 𝜃1))), 𝜃2))), (12)

here 𝜃𝑐𝑎 denotes the parameters in channel-wise attention, 𝑎𝑝 is a
lobal average pooling layer and 𝑓𝑐 is a fully-connected layer. 𝜎 and
refer to the sigmoid function and ReLU functions respectively. The

eature fusion gate here provides a mechanism to select the most useful
hannels for saliency from each module, fusing features with distinction
see Fig. 5).

.3. Saliency inference

To make full use of the multi-scale saliency features, we hierar-
hically generate the final prediction map based on the fusion of six
aliency features 𝐹 𝑖 from coarse-to-fine manner. This multi-scale fusion
trategy also serves to reduce the risk of missing salient objects across
ulti-saliency visual scenes. Complementary features 𝐹 2, 𝐹 3, 𝐹 4, 𝐹 5, 𝐹 6

re upsampled and convolved to have equal spatial and feature size to
1, they are then combined using element-wise addition to produce
final feature 𝐹𝑓𝑖𝑛. A convolutional layer 𝐷𝑃 is used to convert the
eature map 𝐹𝑓𝑖𝑛 to a single-channel prediction map, trained using cross
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Fig. 5. Feature visualization of non-local features, edge features and the refined
features after feature fusion. As can be seen, our non-local features highlight objects
across the scene. After the feature fusion, multiple salient objects are clearly defined.

entropy:

𝑓𝑖𝑛
(

𝐹𝑓𝑖𝑛,𝑊𝑃
)

= −
∑

𝑗∈𝑌 +
log𝑃𝑟𝑒𝑑

(

𝑦𝑗 = 1|𝐹𝑓𝑖𝑛;𝑊𝑃
)

−
∑

𝑗∈𝑌 −
log𝑃𝑟𝑒𝑑

(

𝑦𝑗 = 0|𝐹𝑓𝑖𝑛;𝑊𝑃
)

, (13)

where 𝑌 + and 𝑌 − denote the set of salient pixels and non-salient pixels
respectively. 𝑊𝑃 refers to the parameters of convolutional layer 𝐷𝑃 .
Therefore the total loss L in our proposed method can be denoted as:

L =
6
∑

𝑖=1
𝑖
𝐹 (𝐹

𝑖;𝑊 𝑖
𝐷𝐹 ) +

5
∑

𝑖=1
𝑖
𝐸 (𝐸

𝑖;𝑊 𝑖
𝐷𝐸 ) + 𝑓𝑖𝑛

(

𝐹𝑓𝑖𝑛,𝑊𝑃
)

(14)

4. Experiments

4.1. Datasets

To demonstrate the performance of our proposed method, we eval-
uate our model on five widely used benchmark datasets: DUT-OMRON
(Yang et al., 2013), HKU-IS (Li and Yu, 2015), DUTS (Wang et al.,
2017), ECSSD (Yan et al., 2013) and SOD (Movahedi and Elder, 2010).

The majority of images across these datasets only contain one single
salient object. Scenes including multiple salient objects do exist in each
dataset, but the frequency varies from a minimum of 9.8% for ECSSD
to 50.3% for HKU-IS, with an average across the datasets of 28%. Of
these multi-object images, the majority contain only two objects.

In order to directly evaluate different state-of-the-art SOD models’
ability on the multiple salient object detection (MSOD) task, we curate
a new dataset, MSOD, containing the most challenging multi-object
scenes across the five datasets. To evaluate our, and other methods on
complex multi-object images, scenes were only included if they con-
tained three or more salient objects. The total MSOD dataset comprises
300 test images with 1342 total objects. The number of objects in each
image varies from 3 to 19 and the distribution is shown in Fig. 6. The
dataset comprises a variety of object classes, and a varied number of
these objects across the image. We observed that the objects did not
exhibit any particular predictable spatial locations.

4.2. Evaluation metrics

Three widely used metrics are applied for performance evaluation:
F-measure, mean absolute error (MAE) and the structure-based metric
S-measure (Fan et al., 2017). F-measure is a weighted harmonic mean
of precision and recall, defined as:

𝐹𝛽 =
(1 + 𝛽2) × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝛽2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
(15)

where 𝛽2 is commonly set to 0.3 in previous works to emphasize
precision. Following most state-of-the-art SOD approaches, we report
5

the maximum 𝐹𝛽 from all pairs of precision and recall on different
hresholds. We also use MAE to compare the prediction map 𝑃 and
round truth 𝑌 , of size 𝑊 ×𝐻 , defined as:

𝐴𝐸 = 1
𝑊 ×𝐻

𝑊
∑

𝑖=1

𝐻
∑

𝑗=1
|𝑃 (𝑖, 𝑗) − 𝑌 (𝑖, 𝑗)| (16)

inally, we use S-measure to consider both the region-aware 𝑆𝑟 and
bject-aware 𝑆𝑜 structural similarity, defined as:

= 𝛼 × 𝑆0 + (1 − 𝛼) × 𝑆𝑟 (17)

here 𝛼 is set to 0.5 by default. More details about S-measure can be
ound in Fan et al. (2017).

.3. Implementation details

The proposed approach is implemented in PyTorch and trained on
he DUTS-TR (Wang et al., 2017) dataset, where the salient edge ground
ruth is calculated by sober operator. To compare our method against
ther state-of-the-art methods, we train our model using both VGG (Si-
onyan and Zisserman, 2014) and Resnet-50 (He et al., 2016) back-

ones. The parameters of backbones are initialized using pretrained
odels on ImageNet (Krizhevsky et al., 2012), while the weights of
ewly added layers are initialized randomly. We use the Adam (Kingma
nd Ba, 2014) optimizer with an initial learning rate of 2e−5, which is
ivided by 10 after 30 epochs. Our model is trained for 40 epochs in
otal, which typically takes 3 days in a single 2080Ti with a forward
ass taking 0.02 s.

.4. Comparisons with the state-of-the-art

We compare our proposed method against 14 recent state-of-the-
rt methods: DSS (Hou et al., 2017), BDMP (Zhang et al., 2018a),
AGR (Zhang et al., 2018b), PiCANet (Liu et al., 2018), RAS (Chen
t al., 2018), BASNet (Qin et al., 2019), AFNet (Feng et al., 2019),
oolNet (Liu et al., 2019), EGNet (Zhao et al., 2019), CPD (Wu
t al., 2019a), SCRN (Wu et al., 2019b), GateNet (Zhao et al., 2020),
INet (Pang et al., 2020) and SCWSSOD (Yu et al., 2021). For fair

omparison, all the saliency maps of competing methods were produced
y either pre-trained models, or pre-generated by the authors.

.4.1. Quantitative comparison
Table 1 shows that our proposed method achieves the best result

nder 3 evaluation metrics across the datasets. Against the current
op approaches: MINet (Pang et al., 2020), PoolNet (Liu et al., 2019),
GNet (Zhao et al., 2019) and SCRN (Wu et al., 2019b), the average im-
rovement of our proposed method on 5 widely used datasets is 0.92%,
.27%, 2.43% and 4.09% respectively. A further performance improve-
ent can be observed in MSOD dataset, with the average improvement

ver these approaches increasing to 4.08%, 2.64%, 3.63% and 8.21%
espectively. This demonstrates the strong multiple salient object de-
ection ability of our proposed method, which obtains state-of-the-art
erformance on this challenging dataset.

.4.2. Precision–recall curves
We plot precision–recall curves over 3 popular SOD datasets and the

roposed MSOD dataset in Fig. 7. Our proposed method outperforms
ll other approaches at most thresholds, especially in the two largest
atasets DUT-OMRON and DUTS-TE.

.4.3. Visual comparison
Qualitative results of our method can be seen in Fig. 8, where

ur method provides excellent performance in multi-saliency images.
ur use of non-local features and top-down feature fusion can make

ull use of the long-range dependencies between salient objects, with
nformation shared between separate regions of the image.
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Fig. 6. The distribution of the proposed MSOD dataset. All the images in MSOD dataset contain three or more salient objects to better evaluate the performance of different SOD
models in dealing with the multiple salient object detection problem. The dataset contains a variety of object classes, with humans and animals being the most frequent, followed
by outdoor scenes and vehicles.
Table 1
Quantitative comparison with other state-of-the-art methods on 5 widely used datasets and the proposed MSOD dataset. ↑ and ↓ indicate higher or lower is better respectively.

he best three results among both backbones are marked as red, blue and cyan. Our method achieves top results under 3 evaluation metrics across all datasets without any
re-processing and post-processing.
Model ECSSD DUTS-TE HKU-IS DUT-O SOD MSOD

1000 images 5019 images 1447 images 5168 images 300 images 300 images

MaxF ↑ MAE ↓ S ↑ MaxF ↑ MAE ↓ S ↑ MaxF ↑ MAE ↓ S ↑ MaxF ↑ MAE ↓ S ↑ MaxF ↑ MAE ↓ S ↑ MaxF ↑ MAE ↓ S ↑

VGG-Backbone

DSS (CVPR2017) .9207 .0517 .8821 .8251 .0565 .8237 .9161 .0401 .8783 .7812 .0628 .7899 .8410 .1201 .7478 .8240 .0550 .7806
BDMP (CVPR2018) .9284 .0446 .9109 .8514 .0490 .8616 .9205 .0389 .9065 .7739 .0636 .8091 .8517 .1057 .7833 .8401 .0538 .8379
PAGR (CVPR2018) .9259 .0608 .8883 .8540 .0555 .8383 .9187 .0475 .8891 .7706 .0709 .7751 .8358 .1447 .7137 .8204 .0627 .7852
RAS (ECCV2018) .9211 .0564 .8928 .8311 .0594 .8385 .9128 .0454 .8874 .7864 .0617 .8141 .8473 .1225 .7608 .8370 .0597 .8167
BASNet (CVPR2019) .9425 .0370 .9162 .8594 .0476 .8656 .9297 .0329 .9077 .8052 .0565 .8361 .8487 .1119 .7660 .8396 .0541 .8306
AFNet (CVPR2019) .9350 .0418 .9134 .8628 .0458 .8666 .9252 .0355 .9058 .7970 .0573 .8258 .8499 .1087 .7700 .8276 .0547 .8191
Ours .9485 .0344 .9261 .8894 .0381 .8878 .9350 .0300 .9167 .8194 .0541 .8421 .8761 .0996 .7922 .8531 .0478 .8410

ResNet-Backbone

PiCANet (CVPR2018) .9349 .0464 .9170 .8597 .0506 .8686 .9193 .0437 .9045 .8027 .0653 .8318 .8528 .1024 .7871 .8190 .0641 .8223
PoolNet (CVPR2019) .9489 .0350 .9263 .8891 .0368 .8865 .9358 .0300 .9187 .8048 .0539 .8309 .8706 .1034 .7854 .8546 .0459 .8429
EGNet (ICCV2019) .9474 .0374 .9247 .8885 .0392 .8868 .9352 .0309 .9179 .8152 .0531 .8408 .8778 .0969 .8000 .8516 .0470 .8402
CPD (CVPR2019) .9393 .0371 .9181 .8653 .0434 .8689 .9252 .0339 .9064 .7964 .0560 .8247 .8568 .1095 .7646 .8241 .0539 .8109
SCRN (ICCV2019) .9496 .0375 .9272 .8875 .0398 .8847 .9351 .0332 .9169 .8112 .0560 .8364 .8655 .1046 .7851 .8384 .0527 .8244
GateNet (ECCV2020) .9454 .0401 .9198 .8873 .0401 .8847 .9334 .0331 .9153 .8178 .0549 .8380 .8731 .0981 .7948 .8623 .0483 .8507
MINet (CVPR2020) .9475 .0335 .9249 .8836 .0372 .8837 .9353 .0283 .9197 .8097 .0555 .8325 .8730 .0905 .7973 .8472 .0474 .8400
SCWSSODa (AAAI2021) .9145 .0489 .8818 .8440 .0487 .8405 .9111 .0375 .8824 .7823 .0602 .8117 .8367 .1077 .7503 .8329 .0534 .8060
Ours .9519 .0325 .9297 .8967 .0358 .8946 .9389 .0293 .9218 .8234 .0530 .8470 .8786 .0934 .8024 .8720 .0442 .8614

aDenotes weakly-supervised methods
4.5. Ablation studies

In this section we investigate the contribution of different compo-
nents in our proposed approach. All experiments are based on VGG
backbone and two largest datasets: DUTS-TE and DUT-OMRON.

4.5.1. Effectiveness of NLGM
Compared to a baseline structure (1st row in Table 2), non-local

guidance (2nd row) provides performance gains across all evalua-
tion metrics on both datasets. This demonstrates the effectiveness of
capturing long-range dependencies in NLGM.

4.5.2. Effectiveness of FFG
Incorporating feature fusion (the 4th and 6th row in Table 2) can

also improve the performance beyond the ones without FFG across
all metrics on both datasets, indicating the importance of filtering the
redundant information from each part of the architecture.
6

Table 2
Ablation analysis of different components in our proposed architecture.

Models DUTS-TE DUT-OMRON

NLGM FFG ERM E MaxF ↑ MAE ↓ S ↑ MaxF ↑ MAE ↓ S ↑

.8761 .0425 .8750 .7958 .0575 .8276
✓ .8836 .0410 .8809 .8103 .0562 .8357
✓ ✓ .8847 .0410 .8839 .8138 .0563 .8366
✓ ✓ .8858 .0396 .8857 .8153 .0560 .8379
✓ ✓ ✓ .8882 .0395 .8862 .8175 .0543 .8407
✓ ✓ ✓ .8894 .0381 .8878 .8194 .0541 .8421

4.5.3. Effectiveness of ERM

As shown in Table 2, E denotes just the output of the first ERB
layer, which is then passed into different stages of our decoder in a
mechanism similar to the approach used in EGNet (Zhao et al., 2019).
By introducing ERM, we see an improvement in performance (5th
row and 6th row in Table 2). We hypothesize that the convolution
operations of ERM, applied in a cascade manner, help edge features
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Fig. 7. Precision (vertical axis) recall (horizontal axis) curves on three popular salient object detection datasets and the proposed MSOD dataset. The red solid line demonstrates
our proposed method. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 8. Qualitative comparisons with state-of-the-art approaches over some of the challenging images.
Table 3
Performance comparison of different NLGM configurations. SSNLB and CSNLB refer to
spatial-space non-local block and channel-space non-local block respectively. All three
configurations are without FFG and ERM.

NLGM Configurations DUTS-TE DUT-OMRON

MaxF ↑ MAE ↓ S ↑ MaxF ↑ MAE ↓ S ↑

SSNLB .8813 .0411 .8789 .8081 .0563 .8336
CSNLB .8816 .0415 .8790 .8079 .0566 .8348
SSNLB+CSNLB .8836 .0410 .8809 .8103 .0562 .8357

Table 4
Performance comparison of different NLGM architectures. All structures here are
without FFG and ERM.

NLGM Architectures DUTS-TE DUT-OMRON

MaxF ↑ MAE ↓ S ↑ MaxF ↑ MAE ↓ S ↑

(a) .8796 .0419 .8787 .8052 .0567 .8313
(b) .8815 .0415 .8801 .8075 .0565 .8330
(c) .8816 .0417 .8805 .8083 .0565 .8345
(d) .8836 .0410 .8809 .8103 .0562 .8357

to adaptively support the training of non-local and salient features in
different stages/resolutions.

4.5.4. Effectiveness of NLGM & ERM
Compared to 2nd row, the 3rd row in Table 2 has a higher perfor-

mance, which proves the effectiveness of introducing both NLGM and
ERM. Features that are mutually beneficial to both non-local and edge
saliency are emphasized. These modules appear to complement each
other, with non-local, edge and saliency all contributing to the accurate
recovery of salient regions.

4.5.5. Effectiveness of FFG & ERM
By introducing edge features as part of the FFG, performance gains

can be observed (6th row and 4th row in Table 2), which demonstrates
that the edge refinement module effectively promotes relevant salient
features prior to their combination within the FFG.
7

Fig. 9. Different architectures of NLGM. All structures here are without FFG and ERGM.
Element-wise addition operation is used at each stage to fuse different features.

4.5.6. Configurations of NLGM
As shown in Table 3, we conduct experiments to investigate the

performance of different configurations of NLGM. Compared to the
baseline (1st row in Table 2), the models incorporating SSNLB (1st row
in Table 3) or CSNLB (2nd row in Table 3) both improve performance
on two datasets. The best performance is obtained when using both
SSNLB and CSNLB together (3rd row in Table 3), showing that these
two modules are highly complimentary, and that both spatial and
channel-wise non-local features contribute to image saliency.

4.5.7. Architectures of NLGM
We perform experiments to explore the effect of different structures

of NLGM. We evaluate four different architectures to incorporate non-
local information into our U-shape network. The architectures and
the corresponding performance are shown in Fig. 9 and Table 4. Our
baseline model (a) utilizes a single DSNLB drawing features from 𝑆6,
with the same output distributed to all top-down stages. Model (b)
incorporates a stack of 5 DSNLBs in this same construction, evaluating
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the effect of chains of non-local blocks over single instances. We find
that a stack of DSNLBs improve performance on all metrics, indicating
the effectiveness of long-range multi-hop communications that build
richer relevant salient features across both spatial and channel space.
Model (c) draws features again from 𝑆6 but distributes the DSNLBs
throughout the top-down pathway as per our main architecture in
Fig. 2. Performance is again improved a little, likely because this
one-to-one guidance method can generate adaptive non-local features
appropriate to each scale of saliency features 𝐹 . Finally, model (d)
raws features from 𝑆5 as our final architecture does. The improve-
ent suggests that the increased spatial size of these features is better

xploited by the DSNLBs over the relatively small spatial size of that in
6.

. Conclusion

In this paper we seek to address the problem of segmenting multiple
alient objects in complex scenes. We present a new architecture for
alient object detection, utilizing both spatial and channel-wise long-
ange dependencies. A non-local guidance module captures long-range
ependencies between salient objects across the image, allowing the
etwork to better resolve multiple separate salient objects. We also
esign a feature fusion gate that combines salient and non-local fea-
ures. The gate utilizes progressively refined edge features to promote
he most relevant features drawn from each module. Our approach
hows state-of-the-art performance across 5 widely used salient object
atasets. We also curate an additional dataset comprising only multiple
bjects in challenging scenes, and show that the performance gap
etween ours and other methods widens. Consideration of complex
cenes is required to further drive development in image saliency, our
etwork and the new dataset can be used as a baseline for performance
n this domain.
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