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Abstract

In this paper, we revisit and extend our recent work (Holden et al. (2018) A multiphase
multiscale model for nutrient limited tissue growth, The ANZIAM Journal, 59(4), 499–532),
that considers the derivation of an effective macroscale description suitable to describe the
growth of biological tissue within a porous tissue-engineering scaffold. The underlying tissue
dynamics is described as a multiphase mixture, thereby naturally accommodating features such
as interstitial growth and active cell motion. Via a linearisation of the underlying multiphase
model (whose nonlinearity poses significant challenge for such analyses), we obtain, by means of
multiple-scales homogenisation, a simplified macroscale model that nevertheless retains explicit
dependence on both the microscale scaffold structure and the tissue dynamics, via so-called
unit cell problems that provide permeability tensors to parameterise the macroscale description.
In our previous work, the cell problems retain macroscale dependence, posing significant chal-
lenges for computational implementation of the eventual macroscopic model; here, we obtain
a decoupled system whereby the quasi-steady cell-problems may be solved separately from the
macroscale description. Moreover, we indicate how the formulation is influenced by a set of
alternative microscale boundary conditions.

1 Introduction

Tissue growth is a complex and inherently multiscale phenomenon, whose unified description re-
quires the integration of insight obtained at one scale with observations at another. For example,
growth processes (or disease manifestation) at the organ scale are driven by microscopic events at
the (sub-)cellular scale that themselves are influenced by macroscopic dynamics. Such complex-
ity leads inevitably to formulations that are analytically and computationally intractable, or are
otherwise highly idealised. For this reason, a significant area of research is dedicated to developing
various mathematical and computational techniques that enable efficient coupling between dynamics
occurring on multiple scales (see, e.g. [1, 14, 21] and references therein).

This article follows on from Holden et al. [9], in which the derivation of a coarse-scale description
of the tissue dynamics that nevertheless retains aspects of tissue microstructure and cell behaviour
is considered. Here, we show that the formulation derived therein may be significantly simplified. To
effect this, we again employ the method of multiple-scale asymptotic homogenisation (see, e.g. [2, 12],
and [7, 22] for reviews). The key feature of this approach is to derive suitable macroscale equations
from an underlying microscale description, rather than stating them ab initio. Coupling to the
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microscale physics is enabled by defining suitable problems on a prototypical ‘unit cell’, by which to
specify effective coefficients in the macroscale description.

A series of recent studies have employed these methods in a biological setting to consider grow-
ing tissues. We refer the interested reader to Holden et al. [9] for more extended motivation and
background literature, but note here that a common feature of such studies is the highly idealised
representation of growth. This deficiency was addressed in Holden et al. [9], wherein we instead
employed a multiphase model to describe the microscale tissue dynamics. In particular, this ap-
proach accommodates nutrient-limited interstitial growth, as well as cell aggregation and repulsion.
An effective macroscale description is obtained via a linearisation that ameliorates problems associ-
ated with complex mass-transfer considered in the multiphase model (see [4] for a discussion), and
allows one to obtain via homogenisation techniques a more tractable description that permits cou-
pling between micro- and macro-scale processes. The derived model comprises macroscopic PDEs
describing the evolution of the cell population, nutrient concentration, and cell and interstitial fluid
flow. These are coupled to the underlying microscale structure and dynamics via suitable cell prob-
lems. Importantly, and in contrast to other similar studies, these unit cell problems are themselves
parameterised by the macroscale dynamics, so that the micro- and macro- scale descriptions are
fully coupled. Here, we modify the analysis of [9] to obtain the more standard structure, obtaining
a system in which the quasi-steady cell-problems may be solved separately from the macroscale
description, thereby greatly simplifying the computational difficulty that would be associated with
fully-coupled multiscale descriptions. We reiterate that the effective description that we obtain em-
beds microscale modelling choices, both in terms of the model governing equations and the associated
boundary conditions describing, e.g., cell-scaffold interactions or nutrient transport into the growing
tissue. We therefore consider several alternative microscopic boundary conditions to indicate how
the macroscopic formulation is modified.

This paper is organised as follows. In Section 2 we briefly recapitulate the microscale model
and boundary conditions of [9]. In Section 3 we perform a multiscale homogenisation to obtain an
effective macroscale description, and consider alternative microscopic boundary conditions in Section
4; Section 5 summarises our results and provides suggestions for future work.

2 Model formulation

We consider a model of broad relevance to tissue engineering applications where tissue growth occurs
on a structured periodic scaffold, such as can be achieved through the use of 3D printing [11, 25].
We emphasise that this article follows on from Holden et al. [9], and the underlying model set-up
considered herein is identical to that study (itself following closely [13], that builds on the general
theory of multiphase porous flow developed in [3, 8, 15]), and so only a very brief descriptive summary
is included here.

The microscale domain is denoted Ω, with boundary ∂Ω, and has characteristic lengthscale l∗.
This domain comprises scaffold, ΩS , tissue ΩT and interstitial fluid ΩI . The scaffold boundary is
denoted by ∂ΩS and the tissue-interstitial boundary by Γ; see Figure 1 for a schematic diagram.
The macroscopic lengthscale (associated with the full extent of the scaffold) is denoted L. The
lengthscales in question are well-separated such that

ε =
l

L
� 1.

We model the porous scaffold material as a rigid solid, and the tissue as a two phase mixture
of cells (with volume fraction θn) and water (θw) which covers the scaffold, whilst the interstitial
space contains only water. Both cells and water are modelled as viscous fluids (with pressure pi
and velocity vi; i ∈ {n,w, I}), described by a Stokes flow. Increase in the cell volume fraction of
the mixture depends on the concentration of a generic diffusible nutrient (denoted ci; i ∈ {T, I}),
as well as the availability of water. Tissue growth is represented by movement of the boundary Γ,
occuring as a consequence of nutrient-limited phase transition within the tissue domain or cell aggre-
gation/repulsion (these being effected by the specification of suitable additional pressures φn(θn) in
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Figure 1: Schematic diagram of the microscale domain Ω illustrating a periodic scaffold covered
with a layer of tissue, indicating the scaffold, ΩS , tissue ΩT and interstitial fluid ΩI domains. The
scaffold boundary is denoted by ∂ΩS and tissue-interstitial boundary by Γ.

the cell phase). Coupling between the tissue domain and the surrounding interstitium is described
by suitable mass flux conditions across the tissue-interstitium interface, as well as continuity of tan-
gential velocity, stress and nutrient concentration. No-slip and no-penetration is imposed on the
scaffold surface. We emphasise that our model describes a complex free-boundary problem in which
the interface position Γ is not known, and should be determined as part of the solution. However, in
the multiscale analysis that follows, the boundary velocity remains undetermined. In order to close
the model, we are therefore required to specify constitutively this motion; this issue is considered in
detail in [9].

The equations governing the multiphase mixture, interstitial flow and the nutrient transport
within the microscale domain are given by (2.1)–(2.6) and (2.10)–(2.12) in Holden et al. [9]; boundary
conditions are specified in (2.13)–(2.17). This microscale model is nondimensionalised via scalings
detailed in §2.2 in [9]. We note that alternatives to the boundary conditions describing the cell-
scaffold interactions, and interfacial nutrient transport specified above may be appropriate for certain
specific biological systems. These are considered in Section 4.

3 Multiple scales analysis

Following our previous work, we reduce the degree of nonlinearity of the microscale model to enable
a more straightforward multiscale analysis by linearising the equations about a uniform steady state,
across ΩT , as follows:

θn = θ∗n + δθn,1 + · · · , (1)

with corresponding expansions for the other model variables, and where 0 < δ � 1 and asterisks
denote steady-state values. The linearised model is given by equations (2.18)–(2.22) in [9].

We now work with the linearised version of the model and, for the sake of clarity, suppress the as-
sociated subscripts. To derive a suitable macroscale description incorporating the microscale growth,
dynamics and structure, we follow (e.g.) [5, 20, 24] in using the method of multiple scales. Corre-
spondingly we rescale such that the timescale under consideration is that of macroscale advection
and the pressure scaling results in the appropriate leading order problem:

t = εt̃, p =
1

ε
p̃ (2)

in which tildes denote the rescaled variables. This choice of time rescaling results in a quasi-steady
problem at leading order, thereby simplifying the analysis. Correspondingly, as in [9], we rescale
growth and uptake processes to O(ε). In the subsequent sections, we drop the tilde notation for
convenience as we work exclusively with the rescaled variables.
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Next we introduce a macroscale coordinate X where X = εx (x being the microscale coordinate)
and expand all variables in the general multiple-scales form as follows:

ψ(x,X, t; ε) = ψ(0)(x,X, t) + εψ(1)(x,X, t) + . . . (3)

∇ = ∇x + ε∇X , ∇2 = ∇2
x + 2ε∇x ·∇X + ε2∇2

X . (4)

Moreover, in addition to the boundary conditions (2.13)–(2.17) we require that ψ(i) for i = 0, 1, . . .
are periodic in x. Analysing the equations at each order, and via the averaging process over the
domain ΩI

〈g〉 =
1

|Ω|

∫
ΩI

g dV, (5)

(where Ω = ΩI ∪ΩT ∪ΩS) allows us to obtain a description of the macroscale growth and transport.

3.1 Velocity and pressure ansatz

Following arguments in [6, 9, 20] we find that pressures, nutrient concentrations and cell volume
fraction are independent of the microscale variable x, i.e.

p(0)(X, t) = p
(0)
I (X, t) = p(0)

w (X, t) + θ∗nφ
(0)
n (X, t), (6)

c(0)(X, t) = c
(0)
T (X, t) = c

(0)
I (X, t), (7)

θ(0)
n = θ(0)

n (X, t), (8)

in which p(0) and c(0) denote the overall leading-order pressure and concentration, which is uniform
across ΩT ∪ ΩI .

The governing equations at O(ε) are given by (3.6)–(3.8) in [9], and therein, we followed, e.g.,
[6, 7, 16, 20, 24] in exploiting the linearity of the O(ε) momentum equations by taking an appropriate
Darcy-type form for the macroscale velocities and microscale pressures to be given by the following
ansatz:

v
(0)
i = −Ki∇Xp

(0) and p
(1)
i = −ai ·∇Xp

(0) − p̄i, for i ∈ {n,w, I}. (9)

In (9), Ki are tensors describing the permeability, ai are first order tensors imparting microscale
pressure variation, and p̄i are the mean (microscale-invariant) values of the first order pressures in
ΩI .

This choice of ansatz results in unit cell problems that are parameterised by the macroscale
pressure and cell volume fraction (through φ(0)) so that the micro- and macro-scale descriptions
are fully-coupled (see equations (3.12)–(3.14) in [9]). This provides a significant challenge from a
computational point of view. Here, we seek to remove this complexity; since both the macroscale
water pressure, and pressures associated with active cell behaviour terms, appear linearly in the
momentum equations (3.6c,d) and (3.7b), a more appropriate form for the macroscale velocities and
microscale pressures is given by:

v
(0)
i = −Ki∇Xp

(0)
w −M i∇Xφ

(0)
n , (10)

p
(1)
i = −ai ·∇Xp

(0)
w − bi ·∇Xφ

(0)
n − p̄i, (11)

for i ∈ {n,w}. In the interstitial domain, the original ansatz (9) remains suitable. Note that rather
than an ansatz in terms of the overall macroscale pressure p(0), in equations (10), (11) the macroscale
velocities and microscale pressures are given as linear functions of the macroscale common mixture

pressure p
(0)
w and extra pressure due to cell aggregation φ

(0)
n .

3.2 Microscale cell problems

Substituting (10), (11) into the conservation of mass and momentum equations (3.2a,b) and (3.6c,d)
in [9] (recalling that the mass transfer terms have been rescaled to O(ε)), we obtain the following
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modified Stokes-type cell problems in ΩT

∇x ·KT
n = 0, ∇x ·MT

n = 0, (12)

∇x ·KT
w = 0, ∇x ·MT

w = 0, (13)

∇xa
T
n − I −∇2

xKn − βθ∗w (Kw −Kn) = 0, (14)

∇xa
T
w − I − µ∇2

xKw − βθ∗n (Kn −Kw) = 0, (15)

∇xb
T
n − I −∇2

xMn − βθ∗w (Mw −Mn) = 0, (16)

∇xb
T
w − µ∇2

xMw − βθ∗n (Mn −Mw) = 0. (17)

In ΩI , standard Stokes problems are obtained via (3.3a) and (3.7b) [9], as follows:

∇x ·KT
I = 0, (18)

∇xa
T
I − I − µ∇2

xK I = 0. (19)

These cell problems are coupled together through the boundary conditions (3.4a–c) and (3.8d)
[9] specified on the interface, Γ, which supply

KT
I n = 0, KT

nn = 0, KT
wn = 0, MT

nn = 0, MT
wn = 0, (20)

− aT ⊗ n +
(
∇KT + (∇KT)

T
)
n = −aI ⊗ n + µ

(
∇K I + (∇K I )

T
)
n, (21)

− bT ⊗ n +
(
∇MT + (∇MT)

T
)
n = θ∗n

[
−aI ⊗ n + µ

(
∇K I + (∇K I )

T
)
n
]
, (22)

in which (6) has been employed to replace p(0), and where

KT = θ∗nKn + µθ∗wKw, aT = θ∗nan + θ∗waw, (23)

MT = θ∗nMn + µθ∗wMw, bT = θ∗nbn + θ∗wbw. (24)

Lastly, on ∂ΩS , no-slip and no-penetration provides

Kn = 0, Kw = 0, Mn = 0, Mw = 0. (25)

For uniqueness in the above cell problems, we use a standard approach (see, e.g. [17, 20, 23, 24])
and impose that in the relevant domain

〈ai〉 = 0, 〈bi〉 = 0. (26)

We note that, while a standard Stokes-type cell problem is obtained in ΩI , the multiphase
dynamics in ΩT leads to significantly increased complexity. In particular, we obtain a set of coupled
modified Stokes problems, determining the permeability tensors Ki, M i and extra pressures ai, bi
for each phase, which are further coupled to the flow in ΩI via stress and velocity continuity boundary
conditions. Furthermore, we highlight that whilst the number of cell problems has increased as a
result of the change in ansatz from that employed in [9], we find that the permeability tensors are no
longer dependent on macroscale pressures. The system we obtain therefore represents a significant
simplification, taking the more familiar form, where the quasi-steady cell problems can be solved
separately from the macroscale description, that we obtain below.

3.3 Averaging

The macroscale flow is obtained by averaging (11) via the definition (5) to obtain

〈v(0)
i 〉 = −〈Ki〉∇Xp

(0)
w − 〈M i〉∇Xφ

(0)
n , (27)
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wherein p
(0)
w and φ

(0)
n (via θ

(0)
n , and equations (2.6), (2.19) in [9]) are obtained from the following

system, derived from the average (exploiting the divergence theorem) of equations (3.6a,b,e) and
(3.7a,c):

∂

∂t
〈θ(0)

n 〉T + θ∗n

(
∇X · 〈v(0)

n 〉T + 〈v(1)
Γ · n〉Γ

)
= 〈S(0)

n 〉T , (28)

∇X ·
(
K̃∇Xp

(0)
w + M̃∇Xφ

(0)
n

)
= −〈(1− ρ̄)S(0)

n 〉T , (29)

ΦT∪I

∂c(0)

∂t
+ c∗ (1− ρ̄) 〈S(0)

n 〉T = −〈Λ(0)〉T , (30)

where ΦT∪I = |ΩT ∪ ΩI |/|Ω|. We note that equation (30) arises from the average of the sum of
(3.6e) and (3.7c) in [9]; on application of the divergence theorem and boundary conditions, terms

associated with c
(1)
T and c

(1)
I vanish.

The tensors K̃ and M̃ are given by

K̃ = 〈θ∗nKn + θ∗wKw〉T + 〈K I 〉I , M̃ = 〈θ∗nMn + θ∗wMw〉T + 〈θ∗nK I 〉I , (31)

where the individual permeability tensors Ki and M i are determined from the set of coupled Stokes
problems (12)–(22), (25), (26).

We remark that while the modification to the unit cell problems outlined above is significant, the
impact of our modification to the approach of [9] on the macroscale description is less significant,
being restricted to the redefinition of the relevant permeability tensors, and the associated velocities

and pressures (in particular in the the explicit appearance of ∇Xφ
(0)
n terms associated with active

cell motion). The governing system itself is of identical structure, and comprises a macroscale Darcy
flow PDE, coupled to reaction equations describing tissue component volume fractions and nutrient
concentration. Lastly, we note that as is common in analyses of this type, the macroscale model we

obtain is not closed: we are required to specify constitutively the O(ε) boundary velocity v
(1)
Γ · n

(cf. [6, 10]). This is explored in [9] by means of detailed investigation of the travelling wave properties
of the microscale multiphase model, but we do not pursue this here.

Lastly, we note in passing that in the limit case of inviscid water (that was employed in [9] for

illustrative numerical simulations), the overall pressure p(0) is zero and consequently so is p
(0)
w +

θ∗nφ
(0)
n . This means that the new ansatz (10), (11) can be rewritten as

v
(0)
i =

[
−Ki +

1

θ∗n
M i

]
∇Xp

(0)
w ,

p
(1)
i =

[
−ai +

1

θ∗n
bi

]
∇Xp

(0)
w − p̄i, (32)

which is equivalent to (9), where the terms in square brackets are given by single tensors.

4 Alternative boundary conditions

In the model described above, we impose no-slip and no-penetration conditions on the scaffold
boundary ΩS and continuity of nutrient flux and concentration on the free interface Γ. While
these are physically sensible choices in general, reflecting the solid nature of the scaffold material
and passive diffusive transport of nutrient into the tissue domain, in some cases, a less restrictive
choice may be of interest. For example, as well as the active motion embodied by the intraphase
pressure φn, cells may exhibit significant haptotactic motion on the scaffold surface itself. This is
especially pertinent to the tissue engineering application under study, in which scaffolds may be
manufactured to incorporate substrate-bound chemoattractants thereby promoting cell ingress (see,
e.g., [18, 19, 26] and references therein). Additionally, other descriptions for solute transport across
Γ may be appropriate, for example accommodating aspects of active transport, binding kinetics or
membrane law behaviour.
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4.1 Cell motion on the scaffold surface

As a simple alternative choice of boundary condition permitting cell motion on the scaffold surface,
we now consider a slip condition of the form

vn = b
∂vn

∂n
, x ∈ Γ, (33)

where b is a constant of proportionality and ∂/∂n denotes the normal derivative. We retain the
no-penetration condition vi · n = 0 on ∂ΩS since the scaffold is assumed to remain solid. We
remark, however, that it would be straightforward to accommodate, for example, scaffold dissolution,
invoking the approach and scaling arguments in [20].

The effective macroscale equations remain the same in each case and the only change to the
Stokes problem is in the tissue-scaffold boundary conditions. The above equations give

Kn = b
∂Kn

∂n
, Mn = b

∂Mn

∂n
, KT

nn = 0, MT
nn = 0 (34)

as the set of alternative boundary conditions to be applied on Kn and Mn at ∂ΩS in the Stokes
problem. (Note that the slip condition is of similar form to that obtained by Irons et al. [10] in a
similar cell problem, for a porous medium growth model.)

4.2 Nutrient flux

As noted above, we have imposed continuity of flux and concentration on the tissue-interstitium in-
terface Γ. For completeness, we also indicate the influence of alternative concentration flux boundary
conditions. As discussed in [24] two further, widely-used, options are suggested, which we now con-
sider:

Option 1 – Membrane law The flux of nutrient concentration across the boundary is propor-
tional to the concentration jump. This widely-used approach demands:

(cIvI −DI∇cI ) · n = (cTvT −DT∇cT) · n = r (cT − cI ) , (35)

where r is a constant reflecting the permeability of the tissue boundary to nutrient flux.

Option 2 – Concentration jump due to species solubility Alternatively, a concentration
jump may be permitted, as a consequence of reduced solvability in the tissue compared to the
interstitium (cf. Henry’s law for gases in which the concentration c and partial pressure P of a gas
in solution are related through the c = γP , where γ denotes the solvability):

αcI = cT , (36)

where we assume for simplicity that α is a constant, although in a more general formulation it may
be suitable to specify α = α(θn).

In the following, we investigate the choice of boundary condition, and scaling of associated
constant, on the effective macroscale description. Note that the choice of condition has no direct
impact on the Stokes problem on the periodic cell.

4.2.1 Membrane law

Firstly we linearise the boundary condition (35); assuming that at steady state the nutrient concen-
tration is equal and uniform across both domains, ΩI and ΩT we obtain:

c∗
(
vI − vΓ −

1

PeI
∇cI

)
· n = c∗

(
vT − vΓ −

1

PeT
∇cT

)
· n = r (cT − cI ) . (37)
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In the subsequent multiple scales analysis we consider two further scaling subcases on the membrane
permeability; namely r = O(1) or r = εr̄, with r̄ = O(1). At leading order the boundary condition
reads in each case:

− 1

PeI
∇xc

(0)
I · n = − 1

PeT
∇xc

(0)
T · n =

{
r
(
c
(0)
T − c(0)

I

)
0

(38)

We recall that the leading order problem is quasi-steady, so there is no growth of ΩT , flux of
fluid across the interface or nutrient uptake; correspondingly, and in line with the linearised model
set-up, it is consistent to assume that there is no induced diffusive transport of nutrient across Γ

either. In the first sub-case (r = O(1)) this implies that, since r 6= 0, c
(0)
T = c

(0)
I , whilst in the second

sub-case (r = εr̄) there is already no interfacial transport at this order and a concentration jump
can arise. In both cases, the leading order concentration in each domain is independent of x.

Following through the rest of the analysis as described above and in [9] for O(1) membrane
permeability, we find that the effective macroscale equation is unchanged,

ΦT∪I

∂c(0)

∂t
+ c∗ (1− ρ̄) 〈S(0)

n 〉T = −〈Λ(0)〉T . (39)

In the second sub-case, there are minor differences imbued by the fact that a leading-order
concentration jump may be permitted and we obtain the following macroscale representation in
each domain

ΦT

∂c
(0)
T

∂t
+ c∗ (1− ρ̄) 〈S(0)

n 〉T = −〈r̄
(
c
(0)
T − c(0)

I

)
〉Γ − 〈Λ(0)〉T (40)

ΦI

∂c
(0)
I

∂t
= 〈r̄

(
c
(0)
T − c(0)

I

)
〉Γ, (41)

which are identical to those presented in [24], except that advective transport is linearised in our
description. Macroscale nutrient concentration in this case is given by two coupled equations, one

for each of c
(0)
T and c

(0)
I .

4.2.2 Concentration jump due to species solubility

We remark that when linearising the model equations we can no longer assume that at steady state
nutrient concentration c∗ is uniform across the entire unit cell (unless α = 1, which returns us our
original representation). We instead suppose that nutrient concentration is uniform in each domain,
connected by the boundary condition, i.e.

cT = c∗T + δcT1 + ... (42)

cI = c∗I + δcI1 + ... (43)

where
αc∗I = c∗T . (44)

and the steady state concentrations c∗T are defined as in §2.3 in [9].
The linearised and rescaled equations for the nutrient concentration are given by:

ε
∂cT,1
∂t

+ ∇ · (c∗T (θ∗nvn,1 + θ∗wvw,1)) =
1

PeT
∇2cT,1 − Λ1 in ΩT , (45)

ε
∂cI ,1
∂t

+ ∇ · (c∗I vI ,1) =
1

PeI
∇2cI ,1 in ΩI , (46)[

c∗i (vi,1 − vΓ,1) · n− 1

Pei
∇ci,1 · n

]+

−
= 0, (47)

αcI ,1 = cT,1 on Γ. (48)
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All other equations remain unchanged from the original analysis, except that in the cell proliferation
and nutrient uptake terms c∗ is replaced by c∗T . In the following, the subscripts associated with the
linearisation are omitted for clarity.

At leading order, we find, via standard arguments, that both c
(0)
I and c

(0)
T are independent of the

microscale and related by the leading order version of (48).
At O(ε) the relevant equations are:

∂c
(0)
T

∂t
+ c∗T

(
∇x ·

(
θ∗nv

(1)
n + θ∗wv

(1)
w

)
+ ∇X ·

(
θ∗nv

(0)
n + θ∗wv

(0)
w

))
=

1

PeT
∇2

xc
(1)
T − Λ(0) in ΩT , (49)

∂c
(0)
I

∂t
+ c∗I

(
∇x · v(1)

I + ∇X · v(0)
I

)
=

1

PeI
∇2

xc
(1)
I in ΩI , (50)[

c∗i

(
v

(1)
i − v

(1)
Γ

)
· n− 1

Pei

(
∇xc

(1)
i + ∇Xc

(0)
i

)
· n
]+

−
= 0, (51)

αc
(1)
I = c

(1)
T on Γ. (52)

On averaging (49) and (50) over their domains, we obtain:

ΦT

∂c
(0)
T

∂t
+ c∗T (1− ρ̄) 〈S(0)

n 〉T = 〈 1

PeT
∇xc

(1)
T · n〉Γ − 〈Λ(0)〉T , (53)

ΦI

∂c
(0)
I

∂t
= −〈 1

PeI
∇xc

(1)
I · n〉Γ. (54)

Averaging boundary condition (51) over Γ and rearranging, we find that

〈 1

PeT
∇xc

(1)
T · n〉Γ − 〈

1

PeI
∇xc

(1)
I · n〉Γ = (c∗T − c∗I ) 〈Q(0)〉Γ, (55)

where
Q(0) =

(
v

(1)
I − v

(1)
Γ

)
· n =

(
v

(1)
T − v

(1)
Γ

)
· n = θ∗w

(
v(1)
w − v

(1)
Γ

)
· n (56)

describes the leading order flux of material across the boundary of the tissue domain.

Summing (53) and (54), and exploiting (44) and (48) to eliminate c∗I and c
(0)
I , we obtain(

ΦT +
1

α
ΦI

)
∂c

(0)
T

∂t
+ c∗T (1− ρ̄) 〈S(0)

n 〉T = c∗T

(
1− 1

α

)
〈Q(0)〉Γ − 〈Λ(0)〉T , (57)

and Q(0) must be determined. Note that when α = 1, i.e. we have continuity of concentration on
the boundary, we obtain (30) as in the original model, and Q(0) no longer appears.

5 Discussion

In this paper, we have revisited and extended the work of [9] to derive a new effective description
for a growing tissue, by means of two-scale asymptotics. We considered a rigid periodic lattice-
like structure covered by a layer of growing tissue. The model is therefore applicable to problems
in regenerative medicine, such as tissue growth within a tissue engineering scaffold (our primary
motivation), or biofilm growth, for example in the subsurface or the fouling of filters.

Multiscale homogenisation techniques are increasing in popularity in biologically-inspired models,
with a recent series of studies seeking to incorporate growth [4, 6, 9, 20, 23]. As in [9], here, we
seek to accommodate a more complex description of tissue growth than one comprising a solid
undergoing accretion [20, 23] or volumetric growth [4], by employing a multiphase fluid tissue model
that naturally accommodates aspects such as interstitial growth and active cell motion, while still

9



obtaining a tractable macroscale description. (A multiphase approach was used in [6]; however,
exploiting the limit of large interphase drag reduces the dynamics to effectively an accretion-type
process.) In [9], this deficiency was addressed to obtain an effective description of tissue growth
that retains active cell motion, caused by cellular aggregation or repulsion. Analytical progress
was effected by a linearisation that ameliorates problems associated with complex mass-transfer
considered in the multiphase model; however, the macroscale description obtained was fully coupled
to the microscale unit cell problems, thereby providing a significant computational challenge in the
general case (decoupling is obtained in the inviscid limit case). Here, we address this feature by
adopting a more suitable solution ansatz to describe the velocities and pressures in the system,
that respects the linear structure of the relevant momentum equations. This analysis provides a
macroscale model of very similar structure to that presented in [9], parameterised by permeability
tensors, provided by a set of modified Stokes-type cell problems. The contribution of this work is that,
unlike that presented in [9], the cell problems are independent of the macroscale description, leading
to a system whereby the quasi-steady cell problems may be solved separately from the macroscale
description, thereby greatly simplifying the computational difficulty associated with fully-coupled
multiscale descriptions. Moreover, we also demonstrate how the model formulation is changed under
a set of exemplar alternative microscale boundary conditions associated with, for example, cell
motion over the scaffold surface, or alternative nutrient flux dynamics across the tissue-interstitium
boundary.
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