Model Predictive Control for isolated DC/DC converters with fast dynamic stabilization in DC microgrids

Linglin Chen
Department of Electrical and Electronics Engineering
University of Nottingham
Nottingham. United Kindom.
timzjuuon@gmail.com

Pericle Zanchetta
Department of Electrical and Electronics Engineering
University of Nottingham
Nottingham. United Kindom.
ceezyz@exmail.nottingham.ac.uk

Luca Tarisciotti
Department of Engineering
Universidad Andres Bello
Santiago. Chile.
lucat.tarisciotti@uab.cl

Patrick Wheeler
Department of Electrical and Electronics Engineering
University of Nottingham
Nottingham. United Kindom.
ceerppw@gmail.com

Alessandro Costabebber
Department of Electrical and Electronics Engineering
University of Nottingham
Nottingham. United Kindom.
ezzaczl@exmail.nottingham.ac.uk

Tomislav Dragičević
Department of Energy Technology
Aalborg University
Aalborg. Denmark.
td@et.aau.dk

Abstract—The proposed control for DC/DC converters with high frequency isolation, on one hand, provides fast stabilization to the DC microgrids without introducing additional passive components. On the other hand, it can improve load transition performance. Additionally a fixed switching frequency is maintained enabling easier passive components design. Moreover a minimal prediction horizon is utilized reducing the requirement on digital computational power. Simulations on a 270V/28V 100kHz 10kW Active-Bridge-Active-Clamp converter are carried out to verify the theoretical claims.

Keywords—Model Predictive Control, Active-Bridge-Active-Clamp, system stabilization.

I. INTRODUCTION

Recently, there has been a great research interest in More Electric Aircraft (MEA). The research on active rectification technology in MEA has been taken place for years [1]–[3]. However, there are still aerial applications where line-commutated rectification is preferred due to reliability purposes [4], [5]. Therefore, stability issue when loaded with constant power load may occur [6].

T. Dragičević [7] provided a comprehensive review on system damping methods, and proposed an active damping term based on Finite Control Set Model Predictive Control (FCS-MPC) to stabilize DC microgrids. However, this method is not applicable to isolated DC/DC power converters with high frequency transformers.

The applications of Model Predictive Control (MPC) in DC/DC converters are reported in [8]–[11]. P. Karamanakos et al. [8] proposed the implementation of FCS-MPC in a boost converter with the receding horizon. However this approach results in a larger current ripple than a PI-PWM based approach with the same sampling rate. F. M. Oettmeier et al. [9] have compared a Continuous Control Set MPC (CCS-MPC) with a hysteresis control in a boost converter. Although the dynamics performances are similar in the two control approaches, the voltage overshoot is completely avoided by using CCS-MPC control. K. Z. Liu et al. [10] implemented a single step prediction CCS-MPC with an outer PI loop to regulate the output voltage of a buck converter. This approach showed better response performance than a PI-PWM based control. O. Yade et al. [11] included switching loss and transformer current Root-Mean-Square (RMS) value into the cost function, and evaluate among different modulations. This approach can achieve optimal efficiency throughout the operation range, but the dynamic performance remains dominated by the PI control. Yet, none of the above mentioned literatures have applied MPC in a higher order and more complicated converter with high frequency transformer.

A number of different voltage standards co-exist for the DC electrical system on large civilian aircraft [12]. For example, 28VDC for powering avionics and other loads, 270VDC for power transmission. An isolated DC/DC power converter named Active-Bridge-Active-Clamp (ABAC) has been proposed for buffering between 270VDC and 28VDC [13].

In this paper, a Discretized Moving Control Set Model Predictive Control is proposed for the ABAC converter with the aim of controlling the LV side current, featuring fast system stabilization. It has the merits listed as follows:

1. Easy implementation on commercial control platforms;
2. Switching frequency is maintained fixed;
3. Fast system stabilization and load transition dynamics.

This paper is organized as follows: in Section II, the MEA application background is firstly introduced, and operation for the ABAC is explained. System stabilization with linear PI controllers is also introduced. After this, stability criteria is emphasized. In Section III, a discretized model for the ABAC converter is provided. The conceptual process of MDCS-MPC is introduced in development of the proposed cost function. In Section IV, Validations are presented for a 10 kW 100kHz 270V/28V ABAC converter.

II. BASIC OPERATION OF DAB

A. MEA background

A diagram of the power generation and distribution in MEA is shown in Fig. 1. Mechanical power is transformed into AC electric power through Permanent Magnet Synchronous Motors (PMSM). After that, three phase AC power is rectified by uncontrolled Diode Bridge into DC power and then fed onto the High Voltage (HV) DC voltage bus. A galvanically isolated DC/DC converter Active-Bridge-Active-Clamp (ABAC) is used to buffer between two DC terminals.
The schematic of an ABAC converter is depicted in Fig. 2. The rectification stage is simplified by a DC source V_{DC} and its associated filters. Conceptual voltages and current waveforms on the high frequency transformer of the ABAC converter are illustrated in Fig. 3 [14]. The ABAC is operating under Single Phase Shift (SPS) [14], [15] where in one switching period T_s the duty cycles are fixed at 50%. The phase shift value $D_o T_s$ is regarded as the only control variable.

The ABAC converter used in this application needs to have the ability to smoothly switch between the current mode and the voltage mode [16]. In the voltage mode, load voltage is regulated constant. In the current mode, load side current is controlled to reference. This paper uses current mode control only as an illustration of the proposed idea. Voltage mode control is rather similar, therefore, it has been omitted here.

In the illustration shown in Fig. 2, D_o is composed of two parts: D_{ol} and D_{oc}. The ABAC converter is controlled in the current mode where Low Voltage (LV) side current I_{lv} is regulated to a constant reference value $I_{lv ref}$. Therefore, D_{ol} is generated by the standard linear PI current control. D_{oc} is the output of DC bus oscillation suppression loop [7] where high frequency oscillation on DC bus voltage is controlled zero. This control loop essentially changes the phase if the input impedance of the ABAC converter to improve the stability phase margin. This will be explained in the following subsection.

C. Stability criteria

Thevenin equivalent circuit of the DC distribution system is simplified as in Fig. 4. Z_{out} is the output impedance of a Diode Bridge, and Z_o is the input impedance of the ABAC converter. The DC bus voltage can then be expressed as:

$$V_{HV} = \frac{1}{1 + Z_{out} / Z_o} V_{DC}$$

Therefore, the DC bus voltage is stable only if:

1) V_{DC} is stable, that is when unloaded, the Diode Bridge output voltage is stable.

2) The ratio Z_{out} / Z_o meets the Nyquist stability criteria [17].

The expression of Z_{out} can be easily derived based on the Thevenin equivalent approach as:

$$Z_{out} = \frac{L_i}{sC_{HV}L_i + 1}$$

There are many ways to obtain the input impedance Z_o of the ABAC converter [17], [18]. However, the approach of the describing function is used in this paper [7]. The input impedance Z_{in} is largely dependent on the imposed control scheme. Using the linear PI control scheme shown in Fig. 2. The bode plots of Z_{in} and the Nyquist plots of the ratio Z_{out} / Z_{in} are presented in Fig. 5 and Fig. 6 using circuit parameters listed in Table I from Section IV.

Fig. 1. A diagram of the DC power generation and distribution in MEA.

Fig. 2. The schematic of a current controlled ABAC converter with linear PI controllers.

Fig. 3. Conceptual waveforms of the ABAC operating with SPS [14].

Fig. 4. Thevenin equivalent circuit of the DC distribution system in Fig. 2.

Fig. 5. Bode plots of Z_o working under 5kW (a) without and (b) with the stabilization loop.
where,

\[c_t = (I_{L_v \text{ref}} - I_{L_v})^2 \]

It should be noted that the variable \(D_o \) is continuous in nature. However, in digital control, \(D_o \) needs to be discretized. The discretization precision is subjected to the control platform applied. \(\Delta t \) is defined as the finest phase shift value that can be achieved in a digital control platform. For bidirectional power flow, the ABAC works predominately in the range:

\[D_o \in [-0.5, 0.5] \]

(8) is further discretized into \(\mu m = \{1/\Delta t+1\} \) parts as described in (9).

\[D_o \in \{-0.5, \ldots, 2\Delta_t, 0, \Delta_t, 2\Delta_t, \ldots, 0.5\} \]

In order to realize a control algorithm that is feasible on standard commercial microcontrollers, the proposed MDCS-MPC evaluates a reduced number of values in each sampling period. In one sampling period, \(\mu (\mu \leq \mu m) \) number of points are assessed. They are centred at the previous working point.

An intuitive mechanism illustration of the proposed MDCS-MPC is depicted in Fig. 8. In the control interval \(k \) to \(k+1 \), \(\mu = 3 \) points are evaluated centred at the previous working point \(a \). The current Discretized-Control-Set (DCS) is \(\{a-a\Delta_t, a, a+\Delta_t\} \). Value \(a+\Delta_t \) results in the smallest cost function \(c_t \), therefore, apply this value at time instance \(k+1 \). In the next control interval \(k+1 \) to \(k+2 \), the same process is repeated. However, the DCS has moved, and it now becomes \(\{a, a+\Delta_t, a+2\Delta_t\} \). The DCS is moving with the working point within the domain of (9). In this control interval, value \(a+2\Delta_t \) results in the smallest cost function \(c_t \), therefore, this value is applied at the time instance \(k+2 \). This process goes on.

B. Operating principle of MDCS-MPC

The proposed Moving Discretised Control Set-Model Prediction Control (MDCS-MPC) regulates the converter current \(I_{L_v} \) based on the discretized average model of the ABAC converter in (3). A preliminary cost function is proposed as in (7) with the only purpose of regulating current \(I_{L_v} \) to the reference \(I_{L_v \text{ref}} \). It is worth mentioning that (7) is not the ultimate cost function, but a simple one meant to help illustrate the operating principle of the proposed MDCS-MPC.

\[c_t = (I_{L_v \text{ref}} - I_{L_v})^2 \]

(7)
Damping describes the fact that the point (α=50) is also adopted in this paper. The approach is not applicable.

The impedance of the ABAC controlled by PI controller is used, the conventional modelling approach is not applicable. T. Dragicevic [19] proposed a describing function approach to evaluate the impedance of the converter controlled by MPC. This approach is also adopted in this paper. The Bode plots of Z_0 and the Nyquist plots of the ratio Z_{in}/Z_0 are presented in Fig. 9 and Fig. 10 using circuit parameters listed in Table I from Section IV. Fig. 9 (a) shows that when ABAC is regulated by the proposed MDCS-MPC, the converter shows the behaviour of constant power load where the phase of Z_{in} keeps -270 degree at the low frequency range. It is noted that when the damping term is enabled as shown in Fig. 9 (b) the phase margin is improved from -90 to 90. The Nyquist plots in Fig. 10 describes the fact that the point (-1,0) is not encircled anymore when the damping term is enabled, which means the system is stable after the damping function is inserted.

IV. VALIDATION RESULTS

The circuit of the ABAC is designed and implemented in software PLECS embedded in Simulink MATLAB. The MDCS-MPC is implemented as shown in flow chart Fig. 11. Note that μ can be set greater than 3 for faster dynamic if enough computation power is provided. However, in our case, the sampling/switching frequency 100kHz is already high enough to ensure a high bandwidth. Therefore, a minimal DCS is used where μ equals to 3. HV voltage V_{HV}, LV voltage V_{LV} and current I_{LV} are measured. LV current I_{LV} is regulated to $I_{LV_{ref}}$. Outputs of both PI and MDCS-MPC controllers are considered to be the phase shift D_0 in Fig. 3. Weighting factors are set as $\alpha_1=1, \alpha_2=2, \alpha_3=50$ in all simulations for MDCS-MPC.

A. Load transition

The load transitions are shown in Fig. 12 (a)-(c). The PI controllers are designed and tuned using approaches described in [22]. Notably the switching harmonics are cancelled in I_{LV} as shown in Fig. 12 (a). The transition time for load step up Fig. 12 (b) and down Fig. 12 (c) are 4.5ms and 4ms respectively.

TABLE I

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{HV}</td>
<td>Nominal HV voltage</td>
<td>270V</td>
</tr>
<tr>
<td>V_{LV}</td>
<td>Nominal LV voltage</td>
<td>28V</td>
</tr>
<tr>
<td>P</td>
<td>Rated power</td>
<td>10 kW</td>
</tr>
<tr>
<td>f_s</td>
<td>Switching frequency</td>
<td>100 kHz</td>
</tr>
<tr>
<td>N</td>
<td>Transformer turn ratio</td>
<td>5</td>
</tr>
<tr>
<td>C_{in}</td>
<td>Input capacitance</td>
<td>24 µF</td>
</tr>
<tr>
<td>C_c</td>
<td>Clamp capacitance</td>
<td>150 µF</td>
</tr>
<tr>
<td>L_s</td>
<td>Power transfer inductance</td>
<td>500 mH</td>
</tr>
<tr>
<td>L_f</td>
<td>Filter inductance</td>
<td>5 mH</td>
</tr>
<tr>
<td>L_o</td>
<td>Output inductance</td>
<td>1.65 mH</td>
</tr>
</tbody>
</table>

![Fig. 9. Bode plots of Z_0 working under 5kW (a) without $\alpha=0$ and (b) with $\alpha=50$ the stabilization term.](image)

![Fig. 10. Nyquist plots of the impedance ratio Z_{in}/Z_0 working under 5kW (a) without $\alpha=0$ and (b) with $\alpha=50$ the stabilization term.](image)

![Fig. 11. The flow chat of the proposed MDCS-MPC.](image)
Fig. 12. Load transition with PI controllers.

Fig. 13. Load transition with the MDCS-MPC controller.
The load transitions are shown in Fig. 13 (a)-(c) with the control of MDCS-MPC. The transition time for load step up Fig. 13 (b) and down Fig. 13 (c) are 1.2ms and 1.3ms respectively. It is clear that with the proposed control approach, the load transition is improved by at least 67.5%. It is worth mentioning that the ability of MDCS-MPC can still be pushed further if μ can be increased providing enough computational power is given.

B. Stabilization of the DC bus voltage

Comparison for DC stabilization is shown in Fig. 14. Fig. 14 (a) shows the effectiveness of the damping control loop using PI controllers as mentioned in Fig. 2. The HV DC voltage bus is stabilized after the damping loop is enabled as confirmed also in the Nyquist plot Fig. 6. It takes 30ms to stabilize the V_{HV}. However, when MDCS-MPC is used, after the damping term is enabled, the oscillation in V_{HV} is suppressed effectively. Moreover, MDCS-MPC achieves much faster stabilization process than PI controllers as validated in Fig. 14 (b).

![Fig. 14. Comparison between stabilization dynamics between (a) PI controllers and the (b) MDCS-MPC controller.](image)

V. CONCLUSION

The MDCS-MPC is proposed in this paper. On one hand, it provides fast load transition; On the other hand, it can achieve fast system stabilization. Moreover, Implementation of this controller is fairly simple. The calculation burden is much reduced compared to a long prediction horizon approach [23]. The proposed control features fixed switching frequency which eases the passive components design.

REFERENCES

